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IEICE Transactions on Communications: Editor’s Message

The month of June marks the beginning of IEICE’s fiscal year when the Editorial Board of IEICE Trans-
actions will start with new succeeding members as some board members have completed their terms of
office. With that, it is an honor and privilege to announce that I will now serve as the Editor-in-Chief
(EiC), for two years, of the IEICE Transactions on Communications.

I am compelled to reflect on the profound societal shifts precipitated by the COVID-19 pandemic. This
unprecedented global crisis has acted as a catalyst for the rapid acceleration of digital transformation across
various sectors, fundamentally altering the way we live, work, and interact. As the world grapples with the
complexities of navigating a post-pandemic landscape, it becomes increasingly evident that information
and communication technologies have emerged as indispensable pillars supporting resilience, innovation,
and progress.

Having a 105-year history since its establishment in 1917, the IEICE contributes to the advancement of
information and communication technology, and the IEICE Transactions on Communications has been
serving as one of the major platforms for the dissemination of technologies developed by national and
international researchers and engineers since it was first issued in 1991. However, since other journals are
also increasingly taking the role of new and innovative technology dissemination, the IEICE Transaction
needs to increase its competitiveness. To achieve this, we will continuously work to improve our ser-
vices, such as shortening the review period, introducing advanced publications, position paper categories,
and accepting papers submitted by non-IEICE members. In addition, to maintain reasonable review and
decision-making, which is most important for authors, review criteria are being checked by sharing case
studies with all members of the editorial committee at every quarter meeting. As a result of these steady
efforts, the number of submissions last year increased by around 20% compared with that in the previous
year. Accessibility to published articles is another key issue for academic journals, in which the former
EiC, Prof. Cho has devoted his efforts to tackle this issue and realized the migration of the IEICE Transac-
tions on Communications to IEEE Xplore. From now on, it is a privilege to take up the baton, and would
like to push forward with the launch of other novel plans. I will do my best to continuously increase the
value of the transaction with my fellow Editors, Prof. Takeshi Amishima, Prof. Tohru Kondo, Prof. Kazuya
Tsukamoto, and all the committee members.

Finally, I would like to express my deepest gratitude to Prof. Keizo Cho, the former EiC, Prof. Katsuyoshi
Iida, the former Editor, and the former associate editors, for their great effort to enhance the competitive-
ness of this transaction. Last, but not least, I would like to give my special thanks to the authors, read-
ers, and reviewers for their significant contributions in submitting, reviewing, and citing their outstanding
works, which are of the utmost importance to the value of this transaction.

Go Hasegawa, Editor-in-Chief

Go Hasegawa (Member) a member of the IEEE, received the ME and DE degrees in
information and computer sciences from Osaka University, Japan, in 1997 and 2000, respec-
tively. From July 1997 to June 2000, he was a research assistant at the Graduate School of
Economics, Osaka University. From 2000 to 2018, he was an associate professor with the
Cybermedia Center at Osaka University. He is now a professor at the Research Institute of
Electrical Communication, Tohoku University. His research is in information network archi-
tecture, wireless networking architecture, edge-cloud computing, Internet congestion control,
and so on. He has served as Associate Editor and Editor of the IEICE Transactions on Com-
munications for 10 years and has received the Best Paper Award from the IEICE in 2010.
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PAPER
Physical Layer Security Enhancement for mmWave System with
Multiple RISs and Imperfect CSI

Qingqing TU†∗a), Member, Zheng DONG††, Xianbing ZOU†, and Ning WEI†, Nonmembers

SUMMARY Despite the appealing advantages of reconfigurable intel-
ligent surfaces (RIS) aided mmWave communications, there remain prac-
tical issues that need to be addressed before the large-scale deployment of
RISs in future wireless networks. In this study, we jointly consider the non-
neglectable practical issues in a multi-RIS-aided mmWave system, which
can significantly affect the secrecy performance, including the high com-
putational complexity, imperfect channel state information (CSI), and finite
resolution of phase shifters. To solve this non-convex challenging stochas-
tic optimization problem, we propose a robust and low-complexity algo-
rithm to maximize the achievable secrete rate. Specially, by combining the
benefits of fractional programming and the stochastic successive convex ap-
proximation techniques, we transform the joint optimization problem into
some convex ones and solve them sub-optimally. The theoretical analy-
sis and simulation results demonstrate that the proposed algorithms could
mitigate the joint negative effects of practical issues and yielded a trade-
off between secure performance and complexity/overhead outperforming
non-robust benchmarks, which increases the robustness and flexibility of
multiple RIS deployments in future wireless networks.
key words: reconfigurable intelligent surfaces (RIS), physical layer secu-
rity, millimeter wave (mmWave), imperfect CSI, robust beamforming

1. Introduction

The millimeter wave (mmWave) communications can sig-
nificantly boost network capacity to make ubiquitous and
on-demand interconnection possible in future wireless net-
works [1]–[3]. However, owing to the propagation loss
of the mmWave band and the broadcast nature of wireless
channels, mmWave communication suffers from the risk of
information leakage in the presence of eavesdroppers, espe-
cially when the legitimate and wiretap channels are highly
correlated, which makes security an indispensable pursuit
for system development. In this context, physical layer se-
curity (PLS) has drawn significant research interest in re-
cent years [4], [5]. Compared with traditional cryptography,
the PLS techniques enable secrecy communication indepen-
dently of the higher layers by taking advantage of the in-
herent randomness of noise and communication channels,
such as cooperative relaying schemes, artificial noise-aided
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beamforming, and cooperative jamming [6]–[9]. However,
enhancing the PLS by deploying a large number of relays or
other active nodes will inevitably increase the cost and com-
plexity of the communication systems. To solve this prob-
lem, reconfigurable intelligent surfaces (RIS) have recently
been introduced to provide a new paradigm for the PLS en-
hancement [10], [11]. Unlike active components that for-
mulate active beamforming to transmit signal, such as base
stations, the RIS achieves passive beamforming through its
passive planar surface. This surface consists of a large num-
ber of passive reflecting elements, each capable of induc-
ing a controllable amplitude [12] and/or phase [13] changes
to the incident signal. Thus, it incurs lower energy costs
compared to active antenna arrays. With this property, the
RIS can serve as an auxiliary device flexibly deployed in
wireless networks to boost or suppress the received signals
and also improve the network coverage by creating virtual
LOS links, especially in the higher frequency bands like
mmWave [14] to deal with the severe path loss and the sig-
nal blockage problem. These unique merits stimulate the
increasing interest in RIS-aided PLS enhancement research.
As illustrated in [15]–[17], the secure performance is inves-
tigated in the RIS-aided wireless communication systems
with both legitimate receivers and eavesdroppers existing.
By developing various non-convex optimization techniques,
such as the successive convex approximation (SCA)-based
method, the semidefinite relaxation (SDR)-based method,
and the manifold optimization (MO)-based method, it re-
vealed that the secure performance of the system with RIS
outperforms the case without RIS, which proves the advan-
tage of deployment of the RIS in the secure transmission.

However, the low-rank channel of a single RIS to AP
is hard to support secure transmissions in the existence
of eavesdroppers, especially when the wiretap channel is
stronger than the legitimate user channel. To conquer this
issue, multiple RIS deployment is investigated to further
enhance the secure performance of ubiquitous wireless net-
works [18], [19]. Furthermore, the benefits brought by the
multiple RIS deployment also perfectly match with the se-
cure mmWave communications. To circumvent the inherent
disadvantages of mmWave, typical multiple-input multiple-
output (MIMO) technologies with massive array antennas
are deployed to cope with the high path-loss problem [20]–
[22]. However, continuous increment in antenna number is
impractical due to the high hardware complexity and power
consumption [23] and the blockage-prone issue has still not
been well addressed. A more feasible solution is to in-
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troduce distributed RISs to aid secure communication in
the mmWave system, which provides a more cost-efficient
way to compensate for the limited secure propagation dis-
tance problem by forming virtual line-of-sight (LoS) paths
as proved in [24], [25]. By jointly optimizing active and pas-
sive beamformers, the author in [26] maximized the secrecy
rate and proved the significant secure performance gains of-
fered by the multiple RISs deployment when the eavesdrop-
per exists. However, the multi-RIS-aided PLS enhancement
performance for the mmWave system is still restricted by
practical issues.

The first challenging issue lies in the acquisition of ac-
curate channel state information (CSI) of the RIS due to its
passive operation and a large number of reflecting elements.
In general, the performance of the joint optimization for pas-
sive beamforming and active beamforming is highly depen-
dent on the quality of the acquired CSI. Despite the various
methods for the RIS channel estimation [27]–[29], the esti-
mation error is still inevitable because of the channel back-
ground noise, time-varying characteristics, and more impor-
tantly, the fundamental limitation of no active transmitting
elements on the RIS [30]. Although the previous works on
RIS aided secure transmission treating the estimated chan-
nels as perfect ones achieved encouraging results, it will in-
evitably lead to system performance loss and weaken the
generality and practicality of the systems and algorithms.
Hence, it is crucial to consider the CSI uncertainties for the
RIS-aided PLS enhancement scheme. In the recent work to
deal with the imperfect CSI problem, one way is to intro-
duce artificial noise (AN) to deliberately destroy the wiretap
channel and reduce the dependency on CSI by optimizing
the power fraction of AN and the RIS phase shifts [31]–
[33]. However, the extra power is located to transmit the
AN signal, which is not cost-efficient. Another way is to
use the imperfect CSI to design the joint beamforming in
the RIS-aided system. To model the uncertain CSI error, the
bounded error model is commonly used in existing works
[34]–[36], which proposed a worst-case robust beamform-
ing design and obtained a suboptimal solution by setting the
channel quantization error within a bounded region. How-
ever, this model may not adapt to apply in the realistic chan-
nel, since the estimation error is Gaussian due to the lin-
ear channel estimator under Gaussian noise. This problem
can be handled in the Gaussian CSI error model (or sta-
tistical CSI error model), which could introduce stochastic
optimization in the secure design for RIS-aided networks.
Specifically, the authors in [30] showed that better perfor-
mance could be obtained in a robust beamforming design
under this type of CSI error model in terms of convergence
speed and complexity. To make the secure transmission de-
sign more practical, the authors of [37]–[40] investigated
different performance metrics for RIS-aided systems under
imperfect CSI of eavesdroppers, such as the average se-
crecy rate, energy efficiency, and secrecy outage probability,
which proposed different algorithms to improve the security
performance. However, we note that all these secure works
only considered the scenarios with the imperfect CSI of the

eavesdroppers, while no relevant research on analyzing the
secure performance of multi-RIS-aided systems consider-
ing imperfect CSI of both intended users and eavesdrop-
pers, which is more practical. Moreover, compared with
the previous work, this optimization problem is more dif-
ficult to solve, and the converged solution under alternating
optimization iteration is uncertain due to the random sys-
tem states introduced by the imperfect CSI of both the in-
tended user and the eavesdropper. Hence, due to the lack of
adequate material in the literature, the secure performance
of multiple RISs in mmWave systems under such imperfect
CSI cases is yet to be explored and utilized up to their full
potential.

The second non-neglectable practical issue is the high
computational complexity in multi-RIS-aided systems due
to the large-scale reflection coefficients optimization [41].
The number of reflection elements on RIS is typically much
larger than that of the antennas on the access point (AP),
and the reflection coefficients optimization on the RISs is
computationally prohibitive, especially when multiple RISs
are deployed. In addition, the complex methods applied to
address the non-convex joint optimization problem result in
increased complexity, such as the SDR-based method [13],
SCA-based method [42], and MO-based method [26], [43],
which will further restrict the realization of the full poten-
tial of RIS. Thus, reducing the computational complexity of
joint beamforming design is essential for the practical de-
ployment of multiple RISs.

The third practical issue is the adoption of phase
shifters with a finite resolution on the RIS to strike a balance
between hardware cost and system performance. For sim-
plicity, many aforementioned RIS-aided security schemes
implicitly assume that infinite-resolution phase shifters are
available on the RIS, which are arguably prohibitive to im-
plement [44]. On the other hand, applying finite-resolution
phase shifters will inevitably incur a notable secrecy perfor-
mance loss [41]. Previous studies have focused on address-
ing issues such as transmitted power minimization, sum-
rate maximization, and coverage improvement using the
finite-resolution phase shifters in the specific terminal set-
tings [45]–[48], which encompass parameters like RIS size,
power constraint, rate constraint. The work in [48] further
investigated the required number of phase shifts under a rate
constraint. Nevertheless, the RIS-aided PLS enhancement
scheme under the finite-resolution phase shifters case still
needs further investigation.

In summary, with the increased demands for the RIS
deployment scale in the future, it is worth extending the
secure transmission designs to more practical setups in the
mmWave systems. However, jointly considering these non-
neglectable practical issues leads to a more challenging
stochastic optimization due to more coupled variables, com-
plex objective functions, non-convex constraints, and ran-
dom system states. To our best knowledge, this is still an
open problem and requires new solution approaches.

In this paper, we consider an mmWave system with
multiple RISs deployed against eavesdroppers and investi-
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gate the secrecy performance gain jointly affected by these
practical issues. To address this challenging non-convex
stochastic optimization problem, we propose a robust and
low-complexity method to provide trade-offs concerning se-
crecy performance, complexity, and cost. The main contri-
butions of this paper are summarized as follows.

• We formulate a robust secure beamforming problem to
maximize the worst-case achievable SR under the joint
effects of non-neglectable practical issues. Different
from the existing RIS-aided work under the imperfect
CSI of eavesdroppers [37]–[40], our design simulta-
neously considers the imperfect CSI of both intended
users and eavesdroppers and also expanded to the low-
resolution shifters case.
• To solve this challenging non-convex stochastic op-

timization problem, we expressed the imperfect CSI
model with the random system states and propose ro-
bust and low-complexity methods to transform the ob-
jective problem into simplified and convex subprob-
lems by combining the benefits of the fractional pro-
gramming and the stochastic successive convex ap-
proximation techniques. We mathematically prove that
the convergence conditions are satisfied in each sub-
problem optimization, and the resulting achievable SR
under alternating optimization iteration is guaranteed
to converge.
• The proposed method exhibits a robustness improve-

ment over the non-robust benchmarks and achieves a
close secure performance gain to that of perfect CSI
performance when the estimation error is bounded,
while at a lower computational complexity via theo-
retical analysis and simulations. Furthermore, the RIS
of 3-bit phase adjustable elements achieves the equiva-
lent value as the continuous phase shift. These proved
that the proposed method can reduce the demand for
perfect CSI and infinite hardware resolution, which in-
creases the flexibility and robustness of multiple RIS
deployment in various practical scenarios.

Notations: Variables, vectors, and matrices are respec-
tively written as lower-case letters, bold lower-case letters
and bold upper-case letters. Am,n is the the m-th row and
n-th column element of the matrix A. tr(·), (·)T , and (·)H

stand for the trace, the transpose, and the conjugate trans-
pose, respectively, while (·)∗ donates the conjugate. ‖·‖ and
‖·‖F is the Euclidean norm and the Frobenius norm of a com-
plex vector and matrix, respectively. diag(·) represents the
diagonal matrix whose diagonals are the elements of the in-
put vector. j denotes the imaginary unit. [·](1:m) returns the
vector that contains the first m elements. Finally, log(x) rep-
resents base 2 logarithm of x.

2. System Model and Problem Formulation

This section describes a multi-RIS-aided downlink mmWave
system with both the intended user and eavesdropper. In ad-
dition, the channel model, which considers the CSI uncer-

Fig. 1 The multi-RIS-aided secure mmWave system.

tainties, is also discussed.

2.1 System Model

We consider the downlink of a TDD-based multi-RIS-aided
mmWave system where the eavesdropper (Eve) attempts to
eavesdrop on the confidential message sent from an access
point (Alice) to the receiver (Bob), which is under a worst-
case assumption that near-end Eve tries to intercept the in-
formation of far-end Bob, which could lead to the zero se-
crecy rate (SR) problem [41]. Specially, we assume that
both Eve and Bob are regular users of the system and hence
know the communication protocols. In addition, a set of L
RISs are distributively deployed [49] to enhance the SR as
well as the network coverage by reflecting the received sig-
nals, as depicted in Fig. 1.

We assume that Alice has N antennas, and each RIS is
equipped with M = M1 × M2 reflecting elements arranged
in a uniform planer array (UPA) with M1 elements horizon-
tally and M2 elements vertically. Following [41], the phase
shifter matrix of the l-th RIS is Θl = diag(θl) ∈ CM×M ,
θl =

√
η[θ1,l, · · · , θM,l]T , in which η is the amplitude reflec-

tion coefficient, and θm,l = e jφm,l ,m = 1, · · · ,M, l ∈ L. We
can adjust the phase shifts φm,l ∈ [0, 2π) of each reflecting
element to create a virtual line-of-sight (LoS) link.

The channel matrix between Alice and the l-th RIS is
represented by Gl ∈ C

M×N . The channel vector between the
l-th RIS and Bob is denoted by hl ∈ C

M×1, while gl ∈ C
M×1

is the channel vector between the l-th RIS and Eve. The LoS
channel vectors, the Alice-Bob link and the Alice-Eve link,
are represented by hdu ∈ C

N×1 and hde ∈ C
N×1, respectively.

Now, the received signal at Bob over the cascaded channel
via the RIS can be modeled by

yu =

 L∑
l=1

hH
l ΘlGl + hH

du

 ws + n, (1)

where s is the confidential transmitted signal such that
E[|s|2] = 1, and w ∈ CN×1 is the beamforming vector sub-
ject to a total transmit power constraint tr(wwH) ≤ P. In
addition, n ∼ CN(0, σ2) is an additive zero-mean Gaussian
noise at Bob. Likewise, the signal received at Eve can be
given by
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ye =

 L∑
l=1

gH
l ΘlGl + hH

de

 ws + ne, (2)

where ne ∼ CN(0, σ2
e) is the additive complex Gaussian

noise at Eve. The signal-to-interference-plus-noise ratio
(SINR) of the received signal of Bob is formulated by

γu =
‖(
∑L

l=1 hH
l ΘlGl + hH

du)w‖2

σ2 . (3)

The SINR for Eve is given in a similar fashion by

γe =
‖(
∑L

l=1 gH
l ΘlGl + hH

de)w‖2

σ2
e

. (4)

Therefore, achievable SR between Alice and Bob can be
written as

Rs(w,Θ) =
[

log (1 + γu) − log (1 + γe)
]+
, (5)

where [x]+ , max {0, x}. It is worth pointing out that the
optimal value of Rs is always non-negative by adjusting the
beamforming vectors. This can be shown by contradiction.
If we assume that the optimal value Rs(w∗,Θ∗) is negative
and w∗ is the optimal value. Then, by setting ‖w‖ = 0, we
can obtain Rs = 0, which contradicts our assumption.

2.2 Channel Model

In our system, there are two types of channels: the direct
channel between Alice and Bob (or Eve) hd,i, i = {u, e}, and
the RIS-aided cascaded channel G, g, and h. We assume
that the direct channel hd,i, i = {u, e} with rich scatters are
Rayleigh distributed, while the channel G, g, and h follow a
Rician fading, since the LoS components are generally con-
tained in the RIS-aided cascaded channel, which is similar
to the model described in [40], [43], [50]. More specifi-
cally, the Alice-to-RIS, the RIS-to-Bob, and the RIS-to-Eve
mmWave channels are expressed as followed

G =

√ κ1

κ1 + 1
Ḡ +

√
1

κ1 + 1
Ĝ

 LAR, (6a)

h =

√ κ2

κ2 + 1
h̄ +

√
1

κ2 + 1
ĥ
 LRU , (6b)

g =

√ κ3

κ3 + 1
ḡ +

√
1

κ3 + 1
ĝ
 LRE , (6c)

where Ḡ, h̄ and ḡ are the corresponding LoS components,
which remains unchanged within the channel coherence
time. The Rician factors in each channel are represented
by κ1, κ2, κ3, respectively. Also, Ĝ, ĥ, ĝ are the channel error
terms corresponding to the non-line-of-sight (NLoS) com-
ponents, and each of their elements is i.i.d. CSCG random
variable with zero mean and unit variance. The path-loss
terms are captured by LAR, LRU , and LRE .

Based on the mmWave channel model in [51], The LoS
component of the channel between the Alice and the RIS

with LG scatters can be formulated by

Ḡ =
1
√

LG

LG∑
lG=1

ut

(
ϕt

lG

)
ur

(
ψr

lG , ϕ
r
lG

)
. (7)

The array response vector at Alice is denoted by ut such that

ut(ϕt
lG ) =

1
√

N

[
1, e

j 2πd
λc

sin
(
ϕt

lG

)
, · · · , e

− j(N−1) 2πd
λc

sin
(
ϕt

lG

)]
, (8)

where λc is the wavelength, d is the antenna spacing, and
ϕt

lG
∈ [0, 2π) represents the angle of departure. For a typical

UPA, array response at RIS ur is expressed as

ur(ψr
lG , ϕ

r
lG ) =

1
√

M

[
1, · · · , e

− j 2πd
λc

(M1−1) cos
(
ϕr

lG

)
sin

(
ψr

lG

)]
⊗

[
1, · · · , e

− j 2πd
λc

(M2−1) cos
(
ψr

lG

)]
,

(9)

where ψr
lG

and ϕr
lG
∈ [0, 2π] represent the elevation and az-

imuth angle of arrival at the l-th RIS, respectively. The cas-
caded channel between the RISs to Bob h and Eve g is de-
fined similarly and omitted for simplicity.

With the limited propagation range due to the strong
path loss and fading effects encountered by millimeter-wave
signals during transmission, the spatial correlation between
the eavesdropping channel and the legitimate channel sig-
nificantly influences the security performance of the system,
particularly when the eavesdropper is in close proximity to
the legitimate communication devices. Therefore, we intro-
duce a correlation coefficient to describe the different spatial
correlations on the receiver sides of Bob and Eve follow-
ing [52], [53], which is expressed as

ρr =
E{hH

duhde}√
E{hH

duhdu}E{hH
dehde}

. (10)

Therefore, the RIS-to-Bob and the RIS-to-Eve mmWave
channels can be expressed as hd,i =

√
ρrhd,0 +

√
1 − ρrhd,i,1.

hd,0 is the correlated component referring to the determinis-
tic part of the channels. For ρr ∈ [0, 1], hd,i,1 donates the un-
correlated components representing random variations due
to fading, shadowing, and noise. When the correlation co-
efficient approaches 1, there is a strong spatial correlation
between the eavesdropping and legitimate channels, while
the spatial correlation of channels is weak when close to 0.

For our design, the CSI mismatch is taken into consid-
eration in the joint optimization problem. Since both Bob
and Eve are assumed to be regular users of the system as
mentioned above, in a TDD-based transmission frame struc-
ture [43], Alice can estimate the CSI of Bob (BCSI) and
the CSI of Eve (ECSI) through the transmission of pilot se-
quences with a linear estimator, e.g., by using a minimum
mean square error (MMSE) method [54], [55]. However,
the estimated BCSI and ECSI will become outdated during
transmission due to the time-varying characteristics of the
channel and the large number of links that need to be esti-
mated in a multiple RISs deployed system. From the pre-
vious work, RIS mainly focuses on scenarios characterized
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by low coverage and directed eavesdropping to support low-
mobility users in its neighborhood, which predominantly in-
volves slow-fading channel conditions [40], [45], [49], [56].
Following the work in [30], [40], [43], we consider the SR
maximization problem under a statistical CSI error model.
Through the estimation, we assume the channels expressed
as

G = G̃ + ∆G,h = h̃ + ∆h, g = g̃ + ∆g,hdi = h̃di + ∆hdi, (11)

where G̃, h̃, g̃ and h̃di donate the estimated channels,
i = {u, e}, while ∆G, ∆h, ∆g and ∆hdi are the estima-
tion error parts, which follow zero-mean complex Gaus-
sian distribution. The quality of the channel estimation
is indicated by εG = E

[
‖∆G‖22|G̃

]
, εh = E

[
‖∆h‖22|h̃

]
,

εg = E
[
‖∆g‖22|g̃

]
and εdi = E

[
‖∆hdi‖

2
2|h̃di

]
as considered

in [30], [43], [55]. Then, to simplify the description of
the uncertain channel model, we follow the methods de-
scribed in [43] and define a sample space of the channels
as Ω , {Gl(δ),hl(δ), gl(δ),hdi(δ),∀δ,∀l ∈ L}, based on the
description of imperfect CSI and statistic CSI errors. δ de-
notes the index of the random realizations of G, h, g, and
hdi drawn from the sample space Ω. Specially, these real-
izations keep constants for varied δ when under perfect CSI
setting.

2.3 Problem Formulation

In this work, we aim to maximize the achievable SR,
Rs(w,Θ) via a joint design of the active beamforming vec-
tor w at Alice and the passive beamforming matrix Θ at the
RIS. Assuming perfect CSI of Bob and Eve are available at
Alice, the optimization problem is formulated by

(P1) max
w,Θ

Rs(w,Θ), (12a)

s.t. tr(wwH) ≤ P, (12b)
Θ ∈ M, (12c)

where (12b) is the transmitted power constraint, and (12c)
is the unit-modulus constraint on each element, i.e., M ={
Θ|

∣∣∣θm,l

∣∣∣ = 1,∀m = 1, . . . ,M, l ∈ L
}
.

Next, we extend our design to a practical scenario with
CSI error on both the BCSI and ECSI. Based on the channel
model under imperfect CSI, we can see that the SR maxi-
mization problem is highly dependent on the random sys-
tem state. From the channel model discussed above and the
properties of transmission frame in RIS-aided system de-
scribed in [43], [56], we assume that w is adaptive to the
real-time CSI since the channel associate with the active
beamforming

(
hH

l ΘlGl + hH
du

)
∈ C1×N with N � M, l ∈ L,

is of low-dimension. While the channel associated with the
passive beamforming design Gl diag (hl) ∈ CN×M , l ∈ L
is high-dimensional, which is assumed to remain approxi-
mately constant within the transmission frame and can be
adjusted to the statistics of the random states. This assump-
tion is also valid as RIS is generally used to support low-
mobility users in its neighborhood [40], [45], [49], [56]. In

other words, we can optimize the active beamforming and
passive beamforming at different levels. The expectation of
the achievable SR over the channel statistics from the sam-
ple space Ω is formulated as

(P2) max
Θ,{w(δ),∀δ}

Eδ [Rs (Θ,w(δ); δ)] , (13a)

s.t. tr
(
w(δ)w(δ)H

)
≤ P, ∀δ, (13b)

θ ∈ M. (13c)

The problem (P2) is intractable due to the uncertain system
state in the coupled variables. To tackle this problem, we
decompose problem (P2) into two simplified subproblems
as [57], which can be solved alternately. Based on the solu-
tion of the first subproblem associated with the current ran-
dom state, the second subproblem is optimized recursively
to obtain the maximum achievable SR, which results in a
two-level stochastic optimization procedure as elaborated
explicitly later in Sect. 4.

3. The LCFP Algorithm for Secrecy Rate Optimization

In this section, we aim to solve the SR maximization prob-
lem by taking both the computational complexity and the
extension to complex scenarios into consideration.

3.1 Problem Transformation

We note that (P1) is challenging to solve, where the objec-
tive function is not jointly concave with respect to both the
coupled variables (w,Θ), and it contains the unit-modulus
constraint (12c). To address the non-convex SR maximiza-
tion problem with the assumption that the BCSI and ECSI
are available at Alice, we aim to develop a low-complexity
PLS enhancement algorithm based on the fractional pro-
gramming (FP) technique, the prox-linear BCD updating
technique, and the SCA method. For clarity, a summary
of the algorithm, referred to as the LCFP algorithm, is given
in Algorithm 1.

To deal with the logarithms and fractions parts of the
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objective function, we first reformulate the objective func-
tion by letting Rs = RU +RE , where RU and RE are expressed
as

RU = log
(
1 +

∥∥∥∥(∑L
l=1 hH

l ΘlGl + hH
du

)
w
∥∥∥∥2

σ2

)
,

RE = − log
(
1 +

∥∥∥∥(∑L
l=1 gH

l ΘlGl + hH
de

)
w
∥∥∥∥2

σ2
e

)
.

(14)

To construct a more tractable surrogate function to ap-
proximate the original non-convex objective function, with
h̄u,l = diag

(
hH

l

)
Gl and h̄e,l = diag

(
gH

l

)
Gl we introduce

auxiliary variables γu,1, γu,2, γe,2, and γe,p defined as

γu,1 =
∥∥∥∥( L∑

l=1

θH
l h̄u,l + hH

du

)
w
∥∥∥∥2
, (15a)

γu,2 =
∥∥∥∥( L∑

l=1

θH
l h̄u,l + hH

du

)
w
∥∥∥∥2

+ σ2, (15b)

γe,2 = 1 +

∥∥∥∥(∑L
l=1 θ

H
l h̄e,l + hH

de

)
w
∥∥∥∥2

σ2
e

, (15c)

γe,p = 1 +

∥∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥∥2

F
P

σ2
e

. (15d)

Next, by taking advantage of the Lagrangian dual trans-
form technique as [58], RU can be reformulated by

RU = log(1 + a1) − a1 + (1 + a1)
γu,1

γu,2
, (16)

where a1 is the auxiliary variable introduced by the transfor-
mation. We note that RE contains a negative logarithm func-
tion and is thus difficult to solve directly via the Lagrangian
dual transformation. Then, we introduce the auxiliary vari-
ables γe,p and γe,2 to construct an equivalent expression of
RE , which is given by

RE = log
(
1 +

γe,p − γe,2

γe,2

)
− log(γe,p). (17)

From the Cauchy-Schwarz inequality, it holds γe,2 =∥∥∥∥(∑L
l=1 θ

H
l h̄e,l + hH

de

)
w
∥∥∥∥2
≤

(∥∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥∥2

F
‖w‖2

)
≤(∥∥∥∑L

l=1 θ
H
l h̄e,l + hH

de

∥∥∥2
F P

)
= γe,p, and thus the fractional

terms in logarithm is non-negative. Then, by applying
the Lagrangian dual transform technique again, RE can be
rewritten in the following form

RE = log(1 + a2) − a2 + (1 + a2)
γe,p − γe,2

γe,p
− log(γe,p),

(18)

where a2 is the auxiliary variable. Noting that the objec-
tive is still non-convex, we transform the original objective
into the problem (P1.1) based on the idea of decoupled op-
timization of numerators and denominators in the quadratic

transform technique [58].

(P1.1) max
w,θ,a1,a2,ρ

R̃s = log(1 + a1) + log(1 + a2)

− log(1 +

∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥2
F P

σ2
e

)

+ 2ρ
√

(1 + a1)<

( L∑
l=1

θH
l h̄u,l + hH

du

)
w


− ρ2

(∥∥∥∥( L∑
l=1

θH
l h̄u,l + hH

du

)
w
∥∥∥∥2

+ σ2
)
− (a1 + a2) + (1 + a2)

×

∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥2
F P −

∥∥∥∥(∑L
l=1 θ

H
l h̄e,l + hH

de

)
w
∥∥∥∥2

σ2
e +

∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥2
F P

,

s.t. (12b), (12c),
(19)

where ρ is the new auxiliary introduced by transformation.

3.2 Active Beamforming Design

We fix the passive beamforming variable θ. Note that R̃s
is convex with the w, a1, a2, ρ when other variables are
fixed. Hence, we can employ the block coordinate descent
method [59] to attain the optimal values of a1, a2 and ρ by
setting the derivative to zero, while keeping other variables
fixed. The closed-form solution for updating the variable
a1, a2 and ρ at the t-th iteration can be given by

a(t)
1 =


√

1 +
4

ϑ(t−1)
1

+ 1

 ϑ(t−1)
1

2
, (20a)

a(t)
2 =

γ(t−1)
e,p − γ

(t−1)
e,2

γ(t−1)
e,2

, (20b)

ρ(t) =

√
1 + a(t−1)

1 <
{
ϑ(t−1)

2

}
γ(t−1)

u,2

, (20c)

where ϑ1 = ρ2γu,1 and ϑ2 =
(∑L

l=1 θ
H
l h̄u,l + hH

du

)
w. For the

variable w, the dual variable λ̂ is introduced to deal with
the power constraint. When other variables are given, by
constructing a Lagrangian function of the objective function
in the problem (P1.1), the closed-form solution to the active
beamforming subproblem is

w(t) =

√
1 + a(t−1)

1 <
{ L∑

l=1

b̄(t−1)
u,l + hdu

}[ (
ρ(t−1)

)2
B̄(t−1)

u

+
(
1 + a(t−1)

2

) B̄(t−1)
e∥∥∥∥∑L

l=1 b̄(t−1)
e,l + hde

∥∥∥∥2

F
P + σ2

e

+ λ̂IN

]−1
ρ(t−1),

(21)

where B̄u =
∑L

l=1 b̄H
u,lb̄u,l +

∑L
l=2

∑l−1
i=1 b̄H

u,lb̄u,i + 2hdub̄u,l +
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hduhH
du, B̄e =

∑L
l=1 b̄H

e,lb̄e,l +
∑L

l=2
∑l−1

i=1 b̄H
e,lb̄e,i + 2hdeb̄e,l +

hdehH
de, b̄u,l =

∑L
l=1 θ

H
l h̄u,l and b̄e,l = θH

l h̄e,l. To obtain the
optimal value of the Lagrangian multiplier, the binary search
method is a possible solution which, however, could greatly
increase the complexity. Thus, inspired by [43], we use the
prox-linear BCD updating technique to reduce the iteration
times for searching λ̂.

Note that the block for w is a convex problem while
all other blocks are fixed at their last updated values, which
satisfies the constraint required for convergence in the prox-
linear BCD updates [60]. Then, we attain the optimal solu-
tion of w at each iteration by updating

w(t+1) =arg minw

(〈
− ∇R̃s(w̃(t)),w − w̃(t)〉

+
Ct

2

∥∥∥w − w̃(t)
∥∥∥2 )

,

s.t. (12b),

(22)

where the Lipschitz constant of the block-partial gradient is
expressed as

C =

∥∥∥∥∥∥(2ρ2B̄u + 2 (1 + a2)
B̄e∥∥∥∑L

l=1 b̄e,l + hde

∥∥∥2
F P + σ2

e

)∥∥∥∥∥∥
F

.

(23)

The extrapolated point w̃(t) = w(t) + ς
(
w(t) − w(t−1)

)
, where

the extrapolation weight ς(t) = min(ς̂(t), δ
√

(C(t−1))/C(t)) sat-
isfies δ < 1 and ς̂t =

(
e(t−1) − 1

)
/e(t) with e0 = 1, and

e(t) = (1 +
√

1 + 4(e(t−1))2)/2. From (19), the block-partial
gradient at w̃(t) can be obtained as

∇R̃s(w̃(t)) =2ρ
√

1 + a1<

 L∑
l=1

b̄u,l + hdu

 − 2ρ2B̄uw̃(t)

− 2(1 + a2)
(

B̄ew̃(t)∥∥∥∑L
l=1 b̄e,l + hde

∥∥∥2
F P + σ2

e

)
.

(24)

Since the problem (P1.1) is convex with respect to w,
based on the Lagrange multiplier method, the optimal active
beamforming solution can be obtained

w(t+1) =
1

C(t) − 2λ̂

(
C(t)w̃(t) + ∇R̃s(w̃(t))

)
, (25)

where the Lagrange multiplier for the power constraint
(12b) can be updated by

λ̂∗ =
C(t)

2
−

∥∥∥C(t)w̃(t) + ∇Rs(w̃(t))
∥∥∥2

2P
. (26)

By reducing the iteration times for searching λ, and
utilizing a more efficient technique than the original BCD
technique as proved in [60], the complexity of the algorithm
for active beamforming optimization can be greatly reduced,
which will be further discussed in Sect. 5.

3.3 Passive Beamforming Design

After updating the value of w according to (25), we aim
to optimize the passive beamforming variable θ. Unfortu-
nately, the subproblem of passive beamforming optimiza-
tion is non-convex and more difficult than directly optimiz-
ing the active beamforming due to the unit-modulus con-
straint. To address this difficulty, we first reformulate the
expressions of the objective function RS in terms of θ by
constructing Θ̂ = [θ1, · · · , θL], Vi =

[
vi,1, vi,2, · · · , vi,L

]
,

i ∈ {u, e}, where vu,l = diag(hH
l )Glw, ve,l = diag(gH

l )Glw.
We also denote θ̂ = vec(Θ̂), vi = vec(Vi), and

γ̄u,1 =
∥∥∥∥hH

duw + θ̂
Hvu

∥∥∥∥2
, (27a)

γ̄u,2 =
∥∥∥∥hH

duw + θ̂
Hvu

∥∥∥∥2
+ σ2, (27b)

γ̄e,2 = 1 +

∥∥∥∥hH
dew + θ̂

Hve

∥∥∥∥2

σ2
e

, (27c)

γ̄e,1 = 1 +

(∥∥∥hH
dew

∥∥∥ +
√

M ‖tr(Ve)‖
)2

σ2
e

. (27d)

Then, RU in (14) is equivalent to

RU = log(1 + a1) + (1 + a1)
γ̄u,1

γ̄u,2
− a1. (28)

Based on the triangle inequality and the constraint
(12c), we can obtain ‖hH

dew+ θ̂
Hve‖

2 ≤ (
∥∥∥hH

dew
∥∥∥+‖θ̂

Hve‖)2 ≤

(
∥∥∥hH

dew
∥∥∥ +

√
M ‖tr(Ve)‖)2, which shows that the function

(γ̄e,1−γ̄e,2) is non-negative. Again, by constructing an equiv-
alent expression to RE and applying the Lagrangian dual
transform technique, we can obtain

RE = log(1 + a2) − log(γ̄e,1)

+ (1 + a2)
(
γ̄e,1 − γ̄e,2

γ̄e,1

)
− a2.

(29)

After dropping the constant terms and applying the
quadratic transform technique, the original optimization
problem can be reformulated into (P1.2), where Di =

hH
diw, i ∈ {u, e}.

(P1.2) max
θ,a1,a2,ρ̂

R̂s = 2ρ̂
√

(1 + a1)<
{
Du + θ̂

Hvu

}
− ρ̂2

(∥∥∥∥Du + θ̂
Hvu

∥∥∥∥2
+ σ2

)
+ (1 + a2)

( (‖De‖ +
√

M ‖tr(Ve)‖)2 −

∥∥∥∥De + θ̂
Hve

∥∥∥∥2

σ2
e + (‖De‖ +

√
M ‖tr(Ve)‖)2

)
,

s.t. (12c).
(30)

Note that problem (P1.2) is convex with the auxiliary
variable when other variables are fixed. Hence, the auxiliary
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variables introduced by transformation techniques at the t-th
iteration are given by

ρ̂(t) =

√
(1 + a(t−1)

1 )<
{

D(t−1)
u +

(
θ̂

(t−1)
)H

v(t−1)
u

}
‖D(t−1)

u + (θ̂
(t−1)

)Hv(t−1)
u ‖2 + σ2

.
(31)

It can be found that the problem (P1.2) is non-convex with
respect to θ when fixing all other variables, because of the
unit-modulus constraints. To handle this problem, we let the
phase shift as a substitute for θm,l = e jφm,l , and construct Φ̂ =

[φ1, · · · ,φl, · · · ,φL], where φl =
[
φ1,l, · · · , φM,l

]T . Then, the
objective function can be transformed into a quadric form
by letting

U = ρ̂2vuvH
u + (1 + a2)

vevH
e

σ2
e + (‖De‖ +

√
M ‖tr(Ve)‖)2

,

(32)

z = ρ̂
√

(1 + a1)<{vu} − ρ̂
2 (Duvu)

− (1 + a2)
Deve

σ2
e + (‖De‖ +

√
M ‖tr(Ve)‖)2

.
(33)

Therefore, the passive beamforming optimization subprob-
lem can be reformulated as

(P1.3) min
φ̂

[(
ejφ̂

)H
Uejφ̂ − 2<

{
(ejφ̂)Hz

}]
, (34)

where φ̂ = vec(Φ̂). To solve the non-convex problem
in (34), we apply an inexact BCD method called the block
successive convex approximation (BSCA) method [61] to
guarantee convergence. Following the updating rule, we
construct a convex second-order approximation of the ob-
jective function R̂s at φ̂

(t)
as the surrogate function, which is

expressed as

R̂s(φ̂|φ̂
(t)

) = R̂s

(
φ̂

(t)
)

+ ∇R̂s

(
φ̂

(t)
) (
φ̂ − φ̂

(t)
)

+
1
2τ

∥∥∥∥φ̂ − φ̂(t)
∥∥∥∥2
.

(35)

Since the surrogate function (35) is a local approximation
of the original function (34), to search for an optimal value
with sufficient decrease, we adopt the line search with the
Armijo step size selection rule, where the step size τ is the
largest element in {τ0βr}r=0,1,···, τ

0 > 0, β ∈ (0, 1), satisfying

R̂s

(
φ̂

(t)
)
− R̂s(φ̂) ≥ −ετ

∥∥∥∥∥∇R̂s

(
φ̂

(t)
)∥∥∥∥∥2

, (36)

where ε ∈ (0, 1), and the gradient with respect to φ̂ is given
by

∇R̂s(φ̂) = 2<
{
− je− jφ̂

(
Ue jφ̂ − z

)}
. (37)

Based on the minimum value of the surrogate function in
(35), the gradient projection updating for the optimization
variable φ is quadratic programming with a closed-form so-
lution

φ̂
(t)

= φ̂
(t−1)
− τ∇R̂s. (38)

With the function (34) continuously differentiable, τ
can be properly chosen to make the surrogate function sat-
isfy the following constraint

R̂s

(
φ̂|φ̂

(t)
)
≥ R̂s(φ̂), (39)

which guarantees the convergence of the algorithm based on
the proposition in [61]. The equality can be obtained, when
φ̂ = φ̂

(t)
.

The LCFP algorithm also can be easily extended to
a RIS-aided SR maximization optimization problem asso-
ciated with CSI errors, since the coordinated optimization
algorithms for subproblems satisfy the convergence condi-
tions to solve a two-level stochastic non-convex optimiza-
tion problem [62]. Therefore, considering reducing the
complexity and the cost of obtaining CSI, we extend the
LCFP algorithm to a more practical scenario in the next sec-
tion.

4. The LCRFP Algorithm for Secrecy Rate Optimiza-
tion with Imperfect CSI

In this section, we investigate the SR maximization problem
under a more practical scenario where both the CSI of Bob
and Eve are imperfect.

4.1 Active Beamforming Design at the First Level

As analyzed in Sect. 2, problem (P2) is a two-level stochas-
tic non-convex optimization problem containing expectation
operators with respect to the random system state, which
is more difficult to solve compared with (P1). To address
this challenging problem, we propose a robust and low-
complexity PLS enhancement algorithm based on the sta-
tistical CSI error model to maximize the SR. Our method
can reduce the impact of the CSI mismatch by combining
the benefits of the stochastic non-convex optimization tech-
niques [62] and the LCFP algorithm, which is referred to
as the LCRFP algorithm, as presented in Algorithm 2. This
algorithm consists of three major steps. First, based on the
problem transformation technique in the LCFP algorithm,
the problem (P2) is decoupled into two subproblems, which
can be optimized at different levels. Next, in the case of
given θ̄, we have the first-level subproblem with respect
to w(δ), which is the first-level optimization variable un-
der the system state. To deal with the random system state
and satisfy the assumptions when employing the stochastic
successive convex approximation techniques [62], we ini-
tially transform the objective into a minimization problem.
Then, following a similar approach used in the LCFP algo-
rithm (Sect. 3.1) for active beamforming design, we employ
the FP transformation technique to address logarithmic and
fractional components by introducing auxiliary variables ā1,
ā2 and ρ̄. The first-level optimization subproblem can be re-
formulated as
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(P2.1) min
w(δ),ā1,ā2,ρ̄

− R̃s

(
θ̄,w (δ) , ā1, ā2, ρ̄; δ

)
, (40a)

s.t. tr
(
w (δ) w (δ)H

)
6 P, ∀δ, (40b)

where R̃s is the same form as in (P1.1). As problem (P2.1)
is convex with the ā1, ā2, ρ̄ when other variables are fixed,
we can obtain a similar closed-form solution of auxiliary
variables ā1, ā2 and ρ̄ as in (20a) (20b) (20c). To derive a
closed-form solution to w(δ), we first construct a Lagrangian
function of the objective to deal with the power constraint.
Then, by employing the prox-linear BCD updating tech-
nique, which is the same as Algorithm 1 and omitted for
simplicity, we obtain the optimal active beamforming solu-
tion as depicted in (25). Therefore, during the t-th iteration,
after realizing the channel about δ(t), the auxiliary variables
and the optimal solution w(δ) can be updated, respectively.

To obtain a stationary solution for the first-level sub-
problem, we analyze the convergence of the algorithm de-
vised for handling this subproblem. It has been established
in [62] that the algorithm design must adhere to three con-
ditions to guarantee convergence. The first condition is
met by properly selecting the initial point. Subsequently,
the updating equation for each variable within w(δ), a1, a2
exhibits Lipschitz continuity when the other two variables
are held constant, satisfying the second convergence crite-
rion. Lastly, we fulfill the third convergence requirement by
leveraging the verified global convergence of the prox-linear
block coordinate method as outlined in [60]. Therefore, by
adhering to these conditions, the optimization algorithm for
the first-level subproblem is capable of converging, leading
to the stationary solution w(δ)∗.

4.2 Passive Beamforming Design at the Second Level

After obtaining the corresponding first-level variable w(δ)(t)

with respect to a new realization of the channel realizations
about δ(t) by running the first-level algorithm in the t-th it-
eration, we have the second-level subproblem (P2.2) as fol-
lowed

(P2.2) min
φ̂

k(φ̂) = Eδ
[
−R̃s

(
φ̂,w (δ) ; δ

)]
, (41)

where φ̂ is the second-level optimization variable, which is
a substitute for θ̂

(t)
to deal with the non-convex constraint,

which is constructed in the method of Sect. 3.3. As in the
passive beamforming design of the LCFP algorithm, the sur-
rogate function k̄(φ̂) is designed as a convex approximation
of the objective function of the problem (P2.2). Therefore,
the optimal solution φ̂

(t)
is solved as

φ̂
(t)

= arg min
φ̂

k̄(t)(φ̂), (42)

To obtain a stationary solution to the second-level subprob-
lem, we first design a convex surrogate function k̄(φ̂) based
on the method in (35) of the LCFP algorithm, and this surro-
gate function satisfy the assumptions of the stochastic non-
convex optimization to ensure the convergence of the algo-
rithm, as shown in (39). The approximation of the objective
function is expressed as

k̄(t)(φ̂) = k(φ̂)(t) + k(t)
φ̂

(
φ̂ − φ̂

(t)
)

+ τ
∥∥∥∥φ̂ − φ̂(t)

∥∥∥∥2
. (43)

Then, we construct the recursive approximation of
the second-level subproblem to adapt to the properties of
the first-level subproblem solution with the help of the
key theorem for surrogate function design in the stochas-
tic non-convex optimization [62]. Therefore, with the initial
value k−1

φ̂
= 0, the approximation of the partial derivative

∇φ̂k
(
φ̂
,w(δ); δ

)
, kφ̂ in (43) updates recursively as

k(t)
φ̂

= (1 − %(t))k(t−1)
φ̂

+ %(t)∇φ̂k
(
φ̂

(t)
,w(δ)(t); δ(t)

)
, (44)

where %(t) ∈ (0, 1] is a sequence satisfying
∑

t %
(t) = ∞,∑

t

(
%(t)

)2
< ∞. And the gradient of k(φ̂,w(δ); δ) with re-

spect to φ̂ in (44) is given by

∇φ̂k
(
φ̂,w(δ); δ

)
= 2<

{
− je− jφ̂

(
Ue jφ̂ − z

)}
. (45)

As such, the constant k(φ̂)(t), with the initial value k−1
φ̂

= 0,
can be calculated via a recursive formula as

k(φ̂)(t) = (1 − %(t))k(φ̂)(t−1) + %(t)k
(
φ̂

(t)
,w(δ)(t); δ(t)

)
.

(46)

With the expression of U and z already given in the
previous section, the approximation of the problem (P2.2)
is quadratic programming with respect to the passive beam-
forming variable φ̂, which leads to a closed-form solution
given by
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φ̂
(t+1)

= φ̂
(t)
−

k(t)
φ̂

2τ
. (47)

As described above, with the convergence conditions
satisfied in each level of subproblem optimization, the
LCRFP algorithm can obtain a stationary solution by solv-
ing the non-convex stochastic joint optimization problem
(P2) under the impact of imperfect BCSI and ECSI in a RIS-
aided mmWave system.

5. Complexity Analysis

In this section, we analyze the complexity of the proposed
algorithms and compare them with some widely used meth-
ods for SR maximization in RIS-aided systems. First, in the
LCFP algorithm, the complexity to update auxiliary vari-
ables and the active beamforming variable w is O(2LMN +

N2), and the updating loop for this part is Iw = 1, since
the closed-form solutions can be obtained. The complexity
of solving (32) and (33) in the passive beamforming opti-
mization is at most O(L2M2), and IA is the updating loop for
step searching due to applying the Armijo-type line search.
Therefore, the entire complexity of the LCFP algorithm is
O(IL(IA(2MN + N2) + (LM)2)), where IL is the integral up-
dating loop required for the optimization algorithm conver-
gence. Then, we consider the complexity of the PLS en-
hancement algorithm based on other existing methods. In
an SCA-based [42] PLS enhancement algorithm, the com-
plexity of solving the passive beamforming subproblem is
O((LM)3.5). The MO method can address the unit-modulus
constraint in the RIS-aided system, and the complexity of
passive beamforming optimization based on the MO method
[43] in the PLS enhancement algorithm is O(IM,θL2M2). At
the same time, the SCA technique is used to optimize the
active beamforming as in [42]. We also analyze the com-
plexity of the SDR-based [63] PLS enhancement algorithm.
Table 1 summarizes the complexity comparison of the pro-
posed algorithms and the aforementioned algorithms.

Evidently, the proposed algorithm has lower computa-
tion complexity than other algorithms. Since N � M, the
main computational complexity of schemes lies in the pas-
sive beamforming optimization part. Therefore, the com-
plexity of the SCA-based algorithm and the SDR-based al-
gorithm is higher than the LCFP algorithm. Although the
similar computational complexity in the passive beamform-
ing optimization part O((LM)2), the active beamforming
optimization part in the LCFP algorithm O(N2) still has
a slightly higher complexity than the MO-based algorithm
O(N3). The comparison shows that the proposed algorithm

Table 1 Comparison of algorithm complexity.

has lower computation complexity than benchmark algo-
rithms. The complexity of the SCA-based algorithm and
the SDR-based algorithm increases faster than the LCFP al-
gorithm with the number of reflecting elements M increas-
ing. Although there is similar computational complexity in
the passive beamforming optimization part, the active beam-
forming optimization part in the LCFP algorithm O(N2) still
has a slightly higher complexity than the MO-based algo-
rithm O(N3). Moreover, with the variable w, θ coupled, the
MO-based algorithm optimizes the subproblems indepen-
dently, which is hard to extend to the imperfect CSI case. In
summary, the LCFP algorithm has advantages in extending
to some complex scenarios and low complexity, especially
when M is relatively large, conforming to the practical com-
munication system.

Next, we analyze the complexity of the LCRFP algo-
rithm. Besides the advantage of the low complexity of each
algorithm to optimize the active beamforming or passive
beamforming at different levels due to the basis of the LCFP
algorithm, the updating method utilized in this algorithm
also brings benefits in reducing the complexity. Compared
with other updating methods to solve a two-level stochastic
optimization problem, i.e., batch alternating optimization al-
gorithm, which needs to minimize a sample average approx-
imation function as k(t)

SAA(φ) ,
∑t

r=1 k(φ,w(φ(t), δr)∗, δr),
where t is the iteration times, the updating method we ap-
plied needs fewer iterations. Since it only needs to solve the
first-level problem with respect to the current system state
δ(t), batch alternating optimization needs to solve t times as-
sociated with all the previous system states to obtain the av-
erage approximation. The total complexity of the LCRFP
algorithm is O(IR(IAI f (2LMN + N2) + (LM)2)), where I f
denotes the iterative numbers of the first-level optimization
subproblem to find a stationary solution.

6. Numerical Results

In this section, we evaluate the effectiveness of our pro-
posed algorithms via simulation to verify the utility of
the PLS enhancement in a RIS-aided mmWave system
when jointly considering the non-neglectable practical is-
sues. The schematic system model for the simulated RIS-
aided mmWave system is shown in Fig. 1, where both Bob
and Eve are regular users of the system. Alice serves as the
transmitter equipped with N = 4 antennas and is situated
at (0 m, 0 m). The location of the legitimate receiver (Bob)
is (D1 m, 0 m). Eve moves along a circular path with a ra-
dius of R m around Bob. Here, R, the distance between Bob
and Eve, is initially set as 8 m, and the receiving distance
denoted by D1 is predefined as 70 m. To enhance the com-
munication secrecy between Alice and Bob, L RISs are de-
ployed around Bob. The number of the reflecting elements
on each RIS is initially set as M = 50. The amplitude re-
flection coefficient is set as η = 1 to maximize the reflection
strength. Assuming the channel hd,k follows Rayleigh fad-
ing and G, g, and h follow Rician fading as in [43]. In the
cascade channels of Alice-to-RIS, RIS-to-Bob, and RIS-to-
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Fig. 2 Convergence of the LCPF algorithm versus different RIS size and
transmit antennas.

Eve, the Rician factor is set as κ = 10. The path loss expo-
nent of the RIS-related channels is set to 2.2, and that of the
direct Alice-Bob and Alice-Eve channels is set to 3.67. The
spatial correlation between Bob and Eve is initialized to a
low level with ρ = 0.1. The total transmit power constraint
is set to P = 5 dBm.

Firstly, we discuss the convergence behavior of the
LCFP algorithm. As illustrated in Fig. 2, the proposed algo-
rithm converges in the limit iterations by assuming the per-
fect CSI is obtained. Then, we set the random passive beam-
forming on RIS as a benchmark scheme. It can be seen that
the SR of the random phase setting is very low (SR value is
0.36 bps/Hz) due to the more advantageous position of Eve.
With a proper passive beamforming optimization of multiple
distributed RISs, the proposed algorithm can achieve a se-
crecy performance gain that outperforms the random phase
setting.

Secondly, we show the security performance of the
LCFP algorithm versus different numbers of reflecting el-
ements M and antennas N. It can be observed from Fig. 2
that the optimal SR increases with the number of reflecting
elements or antennas increasing. Specially, by increasing
the reflection number up to 50%, where M = 75,N = 4, the
achievable SR increases by 49.6%. On the other hand, the
achievable SR only increases by 27.5% when increasing the
antenna number up to 50%, where M = 50,N = 6. There-
fore, with the benefits of array gain, increasing the RIS size
can provide a more obvious performance improvement than
increasing the antenna number.

Next, we illustrate the variation of the achievable SR
with the different number of RISs under different RIS-aided
PLS enhancement schemes. By increasing the number of
the RIS L from 1 to 5 with P = 5 dBm,M = 50,N = 4,
we compare the secrecy performance achieved by the LCFP
algorithm with the widely used SCA-based algorithm and
MO-based algorithm mentioned in Sect. 5. The SDR-based
algorithm is excluded from the simulation due to the high
complexity, and the convergence is hard to be guaranteed.
By setting the random passive beamforming RIS setting as
the lower bound, we treat the MO-based [43] PLS enhance-
ment algorithm and the SCA-based [42] PLS enhancement

Fig. 3 The algorithms versus different RIS numbers.

Fig. 4 The algorithms versus different spatial correlation.

algorithm as benchmarks. Figure 3 shows that the achiev-
able SR increases as the number of RISs increases under
all the algorithms, except the random phase setting scheme.
From the results, we can also obtain that the LCFP algorithm
can achieve a better secrecy performance compared with the
MO-based algorithm. In addition, with the RIS number in-
creasing, the LCFP algorithm can achieve a better secrecy
performance than the SCA-based algorithm. Therefore, the
proposed LCFP algorithm outperforms the benchmarks in
security performance.

Figure 4 evaluates the impact of spatial correlation be-
tween the eavesdropping and legitimate channels on security
performance. By increasing the spatial correlation coeffi-
cient ρr from 0.1 (indicating a low level) to 0.9 (indicating
a high level), with parameters set as P = 5 dBm, M = 50,
and N = 4, we observe a decline in the achievable SR as
the spatial correlation grows. Furthermore, this reduction in
SR exhibits an amplified trend with increasing spatial cor-
relation. Specifically, compared to a scenario with a low
spatial correlation between Bob and Eve (ρr = 0.1), there
is a 10.4% security performance loss as the spatial corre-
lation escalates to 0.3. This reduction becomes more sub-
stantial, reaching 33.7%, as the spatial correlation is ele-
vated to 0.5. Notably, an even more pronounced drop of
60.5% is observed with a spatial correlation of 0.7. This
is attributed to the reduced channel capacity difference re-
sulting from the decreased spatial correlation between le-
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Fig. 5 The performance of proposed algorithm versus different resolu-
tion phase shifters.

gitimate and eavesdropping users. However, the proposed
LCFP algorithm outperforms the random phase scheme by
optimizing the passive beamforming to deal with the perfor-
mance loss caused by spatial correlation between the eaves-
dropping and legitimate channels.

Also, we study the impact of the different resolution
phase shifters of the RIS on system secrecy performance.
Herein, the infinite-resolution-continuous-phase shifter set
is defined asΩc for θm,l, while the finite-resolution-discrete-
phase shifter set as Ωd, which are expressed as

Ωc =
{
θm,l = e jφm,l |φm,l ∈ [0, · · · , 2π)

}
, (48)

Ωd =

{
θm,l = e jφm,l |φm,l =

2πn
2B , n ∈ [0, · · · , 2B − 1)

}
,

(49)

where B is the number of quantization bits. As shown
in Fig. 5, we exploit the secrecy rate gap between finite-
resolution phase shifters and infinite-resolution phase
shifters. The secrecy rate is plotted versus a range of dis-
tances D1 from 50 m to 100 m between the transmitter (Al-
ice) and receivers (Bob and Eve) with M = 50,N = 4, L = 2,
and R = 8 m. As the phase shifter resolution B increases
from 1 to 5, the secrecy rate gap in comparison to infinite-
resolution phase shifters diminishes. Specially, at a distance
D1 = 70 m, this secrecy rate gap reduces from 0.21 bps/Hz
to 0.02 bps/Hz when B varies from 2 to 4. Notably, this se-
crecy performance enhancement in finite-resolution phase
shifters setting exhibits a diminishing trend once B exceeds
a value of 3, suggesting a proper threshold for phase reso-
lution. Figure 5 also indicates that increasing the distance
D1 has a detrimental effect on the secrecy performance.
Nonetheless, when D1 remains below a certain threshold,
i.e., D1 ≤ 77 m, the system is capable of sustaining a secrecy
rate above 1.0 bps/Hz, and this remains effective even when
Bob and Eve are in a close distance of R = 8 m. Therefore,
both spatial parameter D1 and resolution B play pivotal roles
in security performance, necessitating proper design based
on practical scenarios. Building on the results of the dimin-
ishing returns observed beyond a certain resolution, a 3-bit
setting appears as a practical choice, yielding near-optimal

Fig. 6 The performance of proposed algorithm under different spatial po-
sitioning.

Fig. 7 The secure locations of Eve under different angles.

results compared to an infinite-resolution phase shifter set-
ting.

Furthermore, we investigate the impact of the spa-
tial parameters, including the eavesdropping distance be-
tween Eve and Bob R and the receiving distance D1, on
security performance. As delineated in Fig. 6, the secrecy
rate increased with the extension of R or a decrease in D1
attributable to the reduced correlation between legitimate
and eavesdropping channels. This observation aligns with
Fig. 4, establishing that enhanced spatial correlation reduces
secrecy rates. Such an observed trend provides opportuni-
ties for maintaining secure transmissions even when dis-
tances D1 exceed 77 m. For systematic analysis on se-
cure locations of Eve, we set a fixed receiving distance
D1 = 77 m, and vary the location of Eve around a cir-
cle centered at Bob, utilizing predefined angles φABE ∈

{0, π6 ,
π
3 ,

π
2 ,

2π
3 ,

5π
6 , π,−

5π
6 ,−

2π
3 ,−

π
2 ,−

π
3 ,−

π
6 }. This configura-

tion facilitates the systematic evaluation of the impact of
eavesdropping distance (corresponding to the radius R of
the circle) on the secrecy rate. With a threshold secrecy
rate defined at 1.0 bps/Hz, we can obtain the secure loca-
tions of Eve. As illustrated in Fig. 7, the secure locations of
Eve expand as φABE increases from 0 to π, the angle rela-
tive to the line between Bob and Alice. Notably, when Eve
is located between Bob and Alice (φABE = 0), a minimal
secure location range of Eve is observed, confined between
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(59 m, 0 m) and (69 m, 0 m). Two factors influence this be-
havior. First, as Eve moves away from Bob, the spatial cor-
relation of the channels reduces, enhancing the secrecy rate.
Then, as Eve moves closer to Alice while away from Bob,
its eavesdropping capability increases, eventually offsetting
the benefits garnered from spatial channel variations and re-
ducing the secrecy rate below the threshold. In addition,
the augmentation of φABE can diminish the eavesdropping
capability, thereby expanding the secure location range of
Eve. For instance, when φABE = π

6 , the secure locations of
Eve lie between (59.6 m, 10 m) and (70.9 m, 3.5 m), a range
nearly 13 m wider than the range at φABE = 0◦. For angles
in the domain π

2 ≤ φABE ≤ π and − π2 ≥ φABE ≥ −π, the se-
cure eavesdropping range broadens, extending radially. Fig-
ure 7 also shows that the symmetrical nature of the observed
trends for both positive (0 ≤ φABE ≤ π) and negative angles
(−π ≤ φABE ≤ 0). Therefore, the spatial topological rela-
tionship between network nodes is essential for optimizing
system security performance to construct secure transmis-
sion.

In addition, we evaluate the robustness of the LCRFP
algorithm by comparing it with other benchmarks with
channel mismatch. We assume that the statistical CSI er-
ror models of both Bob and Eve follow the CSCG dis-
tribution and set the relative amount of CSI uncertainty
ε = εG = εh = εg = εdi, i = {u, e} and ε = {0.1, 0.3, 0.6} to
characterize the estimated precision, and the transmit power
P = 5 dBm. Figure 8 compares the LCRFP algorithm with
the non-robust algorithm (LCFP algorithm) in terms of se-
crecy rate versus the iteration number under the imperfect
CSI (ε = 0.1) setting. It shows that only the LCRFP algo-
rithm achieves almost sure convergence to a solution after a
few iterations, demonstrating the robustness of our proposed
algorithm. Then, we depict the achievable SR versus differ-
ent CSI uncertainty in Fig. 9. The non-robust algorithm un-
der the perfect CSI setting is set as the upper bound, and the
random phase scheme under the perfect CSI setting is set
as the lower bound. It shows that increasing channel uncer-
tainty ε leads to more iteration times to obtain the stationary
solution by analyzing the achievable SR versus different CSI
uncertainty. Furthermore, it can be seen that there has been
an increasing secrecy performance loss with the CSI uncer-

Fig. 8 Convergence of algorithms under imperfect CSI.

tainty increasing compared with the upper bound. However,
the secrecy performance of our proposed algorithm is al-
ways over the lower bound. In particular, the proposed algo-
rithm can increase up to 54.6% SR compared with the lower
bound when CSI uncertainty is as low as 40%, demonstrat-
ing that the LCRFP method can mitigate the loss of the se-
crecy performance caused by the random system state. In
addition, there is only 10.2% secrecy performance loss on
the LCRFP algorithm when ε = 10% (with a secrecy rate
of 1.07 bps/Hz) compared with the upper bound. Therefore,
we can achieve a close solution by the proposed algorithm
with imperfect CSI to that in the case of perfect CSI when
the estimation error is in a certain region, and the LCRFP al-
gorithm can improve system secrecy performance compared
with the non-robust benchmark schemes.

Finally, we delve into a more practical scenario char-
acterized by imperfect CSI and finite-resolution phase
shifters, offering a comprehensive understanding of how
these factors impact secrecy performance. As presented
in Fig. 10, we examine the impact of CSI uncertainty (ε ∈
{0.1, 0.3, 0.6}) across various finite-resolution settings B.
Compared with the infinite-resolution setting, we observe
that secrecy performance loss amplifies as resolution B di-
minishes. Specifically, a marked decline is evident as res-
olution transitions from 1-bit to 3-bit, followed by a more

Fig. 9 The LCRPF algorithm versus different CSI uncertainty.

Fig. 10 The performance loss varies with CSI uncertainty under differ-
ent finite resolution phase shifters compared with infinite resolution phase
shifters.
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modest reduction as the transition advances from 4-bit to
5-bit. Furthermore, as ε increases, the gradual increase
in security performance loss becomes evident, which sig-
nifies that the SR achieved with a finite-resolution setting
gradually falls behind the performance level of the infinite-
resolution setting. This trend is attributed to the impact of
quantization error, which degrades performance as CSI un-
certainty intensifies. Building upon these observations, we
provide a threshold for quantitative analysis. Notably, to
ensure a security performance loss below 10%, when the
channel uncertainty is 0.3 or lower, a choice of B = 3 is
adequate. However, when the uncertainty escalates to 0.6,
a value of B = 5 is suggested. Therefore, after making a
trade-off, we can obtain that the greater resolution B is nec-
essary to keep the performance loss in a certain range as
CSI uncertainty increases. This underscores the practical-
ity of adopting a finite-resolution phase shifter setting in the
RIS-aided mmWave system for optimal performance.

7. Conclusion

In this work, we investigated the secure transmission under
the effect of the non-neglectable practical issues in a mult-
RIS-aided mmWave system, including the high computa-
tional complexity, imperfect CSI acquisition, and finite res-
olution phase shifters limitation. A robust PLS enhancement
method was proposed to solve the challenging optimiza-
tion problem due to the coupled variables, complex func-
tions, non-convex constraints, and uncertain system states.
Both theoretical derivations and simulations demonstrated
that the proposed algorithms could mitigate the joint neg-
ative effects of practical issues and outperform the bench-
mark schemes in convergence. Moreover, it was illustrated
that there exists a tradeoff between secure performance and
complexity/overhead, which can help multiple RIS deploy-
ments potentially be extended to more practical secure com-
munication scenarios.
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[21] A. Alkhateeb, J. Mo, N. González Prelcic, and R.W. Heath, Jr.,
“Mimo precoding and combining solutions for millimeter-wave sys-
tems,” IEEE Commun. Mag., vol.52, no.12, pp.122–131, 2014.



444
IEICE TRANS. COMMUN., VOL.E107–B, NO.6 JUNE 2024

[22] J.A. Zhang, X. Huang, V. Dyadyuk, and Y.J. Guo, “Massive hybrid
antenna array for millimeter-wave cellular communications,” IEEE
Wirel. Commun., vol.22, no.1, pp.79–87, 2015.

[23] S.A. Busari, K.M.S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez,
“Millimeter-wave massive MIMO communication for future wire-
less systems: A survey,” IEEE Commun. Surveys Tuts., vol.20, no.2,
pp.836–869, 2018.

[24] Y. Cao, T. Lv, and W. Ni, “Intelligent reflecting surface aided multi-
user mmWave communications for coverage enhancement,” 31st
IEEE Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications, PIMRC 2020, London, United King-
dom, pp.1–6, 2020.

[25] S. Gong, C. Xing, P. Yue, L. Zhao, and T.Q.S. Quek, “Hybrid ana-
log and digital beamforming for RIS-assisted mmWave communica-
tions,” IEEE Trans. Wireless Commun., vol.22, no.3, pp.1537–1554,
2023.

[26] Y. Xiu, J. Zhao, C. Yuen, Z. Zhang, and G. Gui, “Secure beam-
forming for multiple intelligent reflecting surfaces aided mmWave
systems,” IEEE Commun. Lett., vol.25, no.2, pp.417–421, 2021.

[27] K. Yamaguchi, H.P. Bui, Y. Ogawa, T. Nishimura, and T. Ohgane,
“Channel prediction techniques for a multi-user MIMO system in
time-varying environments,” IEICE Trans. Commun., vol.E97-B,
no.12, pp.2747–2755, Dec. 2014.

[28] L. Wei, C. Huang, G.C. Alexandropoulos, C. Yuen, Z. Zhang, and
M. Debbah, “Channel estimation for RIS-empowered multi-user
MISO wireless communications,” IEEE Trans. Commun., vol.69,
no.6, pp.4144–4157, 2021.

[29] H. Liu, X. Yuan, and Y.A. Zhang, “Matrix-calibration-based cas-
caded channel estimation for reconfigurable intelligent surface as-
sisted multiuser MIMO,” IEEE J. Sel. Areas Commun., vol.38,
no.11, pp.2621–2636, 2020.

[30] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A frame-
work of robust transmission design for IRS-aided MISO communi-
cations with imperfect cascaded channels,” IEEE Trans. Signal Pro-
cess., vol.68, pp.5092–5106, 2020.

[31] D. Yang, J. Xu, W. Xu, Y. Huang, and Z. Lu, “Secure communi-
cation for spatially correlated RIS-aided multiuser massive MIMO
systems: Analysis and optimization,” IEEE Commun. Lett., vol.27,
no.3, pp.797–801, 2023.

[32] H. Niu, X. Lei, Y. Xiao, M. Xiao, and S. Mumtaz, “On the efficient
design of RIS-assisted secure MISO transmission,” IEEE Wireless
Commun. Lett., vol.11, no.8, pp.1664–1668, 2022.

[33] Z. Zhang, C. Zhang, C. Jiang, F. Jia, J. Ge, and F. Gong, “Improving
physical layer security for reconfigurable intelligent surface aided
NOMA 6G networks,” IEEE Trans. Veh. Technol., vol.70, no.5,
pp.4451–4463, 2021.

[34] X. Lu, W. Yang, X. Guan, Q. Wu, and Y. Cai, “Robust and secure
beamforming for intelligent reflecting surface aided mmWave MISO
systems,” IEEE Wireless Commun. Lett., vol.9, no.12, pp.2068–
2072, 2020.

[35] L. Zhang, C. Pan, Y. Wang, H. Ren, and K. Wang, “Robust beam-
forming design for intelligent reflecting surface aided cognitive ra-
dio systems with imperfect cascaded CSI,” IEEE Trans. Cogn. Com-
mun. Netw., vol.8, no.1, pp.186–201, 2022.

[36] W. Wang, W. Ni, H. Tian, Z. Yang, C. Huang, and K. Wong, “Safe-
guarding NOMA networks via reconfigurable dual-functional sur-
face under imperfect CSI,” IEEE J. Sel. Topics Signal Process.,
vol.16, no.5, pp.950–966, 2022.

[37] H. Jia, L. Ma, and S. Valaee, “STAR-RIS enabled downlink secure
NOMA network under imperfect CSI of eavesdroppers,” IEEE Com-
mun. Lett., vol.27, no.3, pp.802–806, 2023.

[38] Z. Li, S. Wang, M. Wen, and Y. Wu, “RIS-aided secure energy-
efficiency maximization under uncertain CSI,” IEEE Global Com-
munications Conference, GLOBECOM 2022, Rio de Janeiro,
Brazil, pp.4637–4642, 2022.

[39] S. Li, B. Duo, M.D. Renzo, M. Tao, and X. Yuan, “Robust se-
cure UAV communications with the aid of reconfigurable intelligent

surfaces,” IEEE Trans. Wireless Commun., vol.20, no.10, pp.6402–
6417, 2021.

[40] C. Liu, C. Tian, and P. Liu, “RIS-assisted secure transmission ex-
ploiting statistical CSI of eavesdropper,” IEEE Global Communica-
tions Conference, GLOBECOM 2021, Madrid, Spain, pp.1–6, 2021.

[41] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent re-
flecting surface-aided wireless communications: A tutorial,” IEEE
Trans. Commun., vol.69, no.5, pp.3313–3351, 2021.

[42] G. Zhou, C. Pan, H. Ren, K. Wang, and Z. Peng, “Secure wireless
communication in RIS-aided MISO system with hardware impair-
ments,” IEEE Wireless Commun. Lett., vol.10, no.6, pp.1309–1313,
2021.

[43] H. Guo, Y. Liang, J. Chen, and E.G. Larsson, “Weighted sum-rate
maximization for reconfigurable intelligent surface aided wireless
networks,” IEEE Trans. Wireless Commun., vol.19, no.5, pp.3064–
3076, 2020.

[44] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming de-
sign for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Pro-
cess., vol.10, no.3, pp.501–513, 2016.

[45] Q. Wu and R. Zhang, “Beamforming optimization for wireless
network aided by intelligent reflecting surface with discrete phase
shifts,” IEEE Trans. Commun., vol.68, no.3, pp.1838–1851, 2020.

[46] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H.V. Poor, “Hy-
brid beamforming for reconfigurable intelligent surface based multi-
user communications: Achievable rates with limited discrete phase
shifts,” IEEE J. Sel. Areas Commun., vol.38, no.8, pp.1809–1822,
2020.

[47] Y. Cao, T. Lv, and W. Ni, “Intelligent reflecting surface aided multi-
user mmWave communications for coverage enhancement,” 31st
IEEE Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications, PIMRC 2020, London, United King-
dom, pp.1–6, 2020.

[48] H. Zhang, B. Di, L. Song, and Z. Han, “Reconfigurable intelligent
surfaces assisted communications with limited phase shifts: How
many phase shifts are enough?,” IEEE Trans. Veh. Technol., vol.69,
no.4, pp.4498–4502, 2020.

[49] A. Almohamad, A.M. Tahir, A. Al-Kababji, H.M. Furqan, T. Khat-
tab, M.O. Hasna, and H. Arslan, “Smart and secure wireless commu-
nications via reflecting intelligent surfaces: A short survey,” IEEE
Open J. Commun. Soc., vol.1, pp.1442–1456, 2020.

[50] Z. Li, W. Chen, Q. Wu, H. Cao, K. Wang, and J. Li, “Robust
beamforming design and time allocation for IRS-assisted wireless
powered communication networks,” IEEE Trans. Commun., vol.70,
no.4, pp.2838–2852, 2022.

[51] M.R. Akdeniz, Y. Liu, M.K. Samimi, S. Sun, S. Rangan, T.S.
Rappaport, and E. Erkip, “Millimeter wave channel modeling and
cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol.32,
no.6, pp.1164–1179, 2014.

[52] D. Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn, “Fading correla-
tion and its effect on the capacity of multielement antenna systems,”
IEEE Trans. Commun., vol.48, no.3, pp.502–513, 2000.

[53] K. Xu, J. Zhang, X. Yang, S. Ma, and G. Yang, “On the sum-rate
of ris-assisted MIMO multiple-access channels over spatially corre-
lated rician fading,” IEEE Trans. Commun., vol.69, no.12, pp.8228–
8241, 2021.

[54] H. Gao, P.J. Smith, and M.V. Clark, “Theoretical reliability of
MMSE linear diversity combining in Rayleigh-fading additive inter-
ference channels,” IEEE Trans. Commun., vol.46, no.5, pp.666–672,
1998.

[55] A.D. Dabbagh and D.J. Love, “Multiple antenna MMSE based
downlink precoding with quantized feedback or channel mismatch,”
IEEE Trans. Commun., vol.56, no.11, pp.1859–1868, 2008.

[56] B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced
OFDM: channel estimation and reflection optimization,” IEEE
Wireless Commun. Lett., vol.9, no.4, pp.518–522, 2020.

[57] S.P. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2014.



TU et al.: PHYSICAL LAYER SECURITY ENHANCEMENT FOR MMWAVE SYSTEM WITH MULTIPLE RISS AND IMPERFECT CSI
445

[58] K. Shen and W. Yu, “Fractional programming for communication
systems — Part II: Uplink scheduling via matching,” IEEE Trans.
Signal Process., vol.66, no.10, pp.2631–2644, 2018.

[59] D.P. a. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scien-
tific Belmont, Athena Scientific, MA, USA, 1999.

[60] Y. Xu and W. Yin, “A block coordinate descent method for regu-
larized multiconvex optimization with applications to nonnegative
tensor factorization and completion,” SIAM J. Imaging Sci., vol.6,
no.3, pp.1758–1789, 2013.

[61] M. Razaviyayn, M. Hong, and Z. Luo, “A unified convergence anal-
ysis of block successive minimization methods for nonsmooth opti-
mization,” SIAM J. Optim., vol.23, no.2, pp.1126–1153, 2013.

[62] A. Liu, V.K.N. Lau, and M. Zhao, “Online successive convex
approximation for two-stage stochastic nonconvex optimization,”
IEEE Trans. Signal Process., vol.66, no.22, pp.5941–5955, 2018.

[63] W. Shi, X. Zhou, L. Jia, Y. Wu, F. Shu, and J. Wang, “Enhanced
secure wireless information and power transfer via intelligent re-
flecting surface,” IEEE Commun. Lett., vol.25, no.4, pp.1084–1088,
2021.

Qingqing Tu received the B.Eng. and
M.Eng. degrees in Computer Science and En-
gineering from the University of Electronic Sci-
ence and Technology of China (UESTC) in 2011
and 2014, respectively. She has also completed
an international exchange study in the Univer-
sity of Electro-Communications in Japan. She
is currently working toward the Ph.D. degree in
cyberspace security with the University of Elec-
tronic Science and Technology of China and
serving with the National Computer Network

Emergency Response Technical Team/Coordination Center of China. Her
research interests include physical layer security and millimeter wave com-
munications.

Zheng Dong received the B.Sc. (in Elec-
tronic Information Science and Engineering)
and M.Eng. (in Communication and Informa-
tion System) degrees from the School of In-
formation Science and Engineering, Shandong
University, Jinan, China, in 2009 and 2012, re-
spectively, and the Ph.D. degree from the De-
partment of Electrical and Computer Engineer-
ing (in Telecommunications), McMaster Uni-
versity, Canada, in 2016. He was a Postdoc Re-
search Fellow in the School of Electrical and In-

formation Engineering, The University of Sydney, Australia. He is cur-
rently a Professor in the School of Information Science and Engineering,
Shandong University, China. His research interests include the Industrial
Internet of Things and Ultra-reliable Low-Latency Communications.

Xianbing Zou received the B.Eng. degree in
Physics at Gannan Normal University, Ganzhou,
China, in 1995, and M.Eng. degree in Electro-
magnetic Field and Microwave Technology at
the University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, China, in
1998. He is now an associate professor of Elec-
tronics and Communication Engineering at the
National Key Laboratory of Science and Tech-
nology on Communications, UESTC. His cur-
rent research interests are in RF front-end and

hardware platform of wireless communication system.

Ning Wei received the B.Eng. and Ph.D.
degrees in electrical engineering from the Uni-
versity of Electronic Science and Technology
of China (UESTC) in 2003 and 2008, respec-
tively. He was a Visitor of The University of
Texas at Austin, Austin, TX, USA, in 2012. He
is currently a Full Professor with the University
of Electronic Science and Technology of China.
His research interests include wireless commu-
nications networks and signal processing, in-
cluding ad hoc networks, multiRAT, channel

coding, millimeter wave communications, cooperative communications,
and physical-layer network coding. He has served as a Reviewer for var-
ious international journals and conferences, including the IEEE TRANS-
ACTIONS ON VEHICULAR TECHNOLOGY and the IEEE TRANSAC-
TIONS ON WIRELESS COMMUNICATIONS.



446
IEICE TRANS. COMMUN., VOL.E107–B, NO.6 JUNE 2024

PAPER
Federated Deep Reinforcement Learning for Multimedia Task
Offloading and Resource Allocation in MEC Networks∗
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SUMMARY With maturation of 5G technology in recent years, multi-
media services such as live video streaming and online games on the Internet
have flourished. These multimedia services frequently require low latency,
which pose a significant challenge to compute the high latency requirements
multimedia tasks. Mobile edge computing (MEC), is considered a key tech-
nology solution to address the above challenges. It offloads computation-
intensive tasks to edge servers by sinking mobile nodes, which reduces task
execution latency and relieves computing pressure on multimedia devices.
In order to use MEC paradigm reasonably and efficiently, resource alloca-
tion has become a new challenge. In this paper, we focus on the multimedia
tasks which need to be uploaded and processed in the network. We set the
optimization problem with the goal of minimizing the latency and energy
consumption required to perform tasks in multimedia devices. To solve the
complex and non-convex problem, we formulate the optimization problem
as a distributed deep reinforcement learning (DRL) problem and propose a
federated Dueling deep Q-network (DDQN) based multimedia task offload-
ing and resource allocation algorithm (FDRL-DDQN). In the algorithm,
DRL is trained on the local device, while federated learning (FL) is respon-
sible for aggregating and updating the parameters from the trained local
models. Further, in order to solve the not identically and independently
distributed (non-IID) data problem of multimedia devices, we develop a
method for selecting participating federated devices. The simulation re-
sults show that the FDRL-DDQN algorithm can reduce the total cost by
31.3% compared to the DQN algorithm when the task data is 1000 kbit, and
the maximum reduction can be 35.3% compared to the traditional baseline
algorithm.
key words: multimedia transmission, computing offloading, resource allo-
cation, federated learning, deep reinforcement learning

1. Introduction

In recent years, with the continuous development of 5G net-
works, the number of multimedia services and smart termi-
nals in mobile networks has increased rapidly, leading to a
significant increase in mobile data volume [1]. According to
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Cisco’s latest forecast report [2], much of the new significant
trafficwill originate frommobilemultimedia services, which
will rapidly increase as a percentage of total traffic due to the
sheer volume of data. In 2017, mobile multimedia services
accounted for 59% of all mobile data traffic. By 2023, this
figure will jump to 79%.

Ultra-low latency, intensive computing and massive
transmission are the distinctive features of most mobile mul-
timedia services, for example, webcasting, virtual reality
services (VR), augmented reality services (AR), cloud com-
puters, and online games. These mobile multimedia services
often have high requirements on network latency, bandwidth
and computing power. Meanwhile, due to the amount of traf-
fic and computing on mobile users and devices increasing
dramatically, multimedia devices need to handle many in-
tensive mobile multimedia tasks such as video compression
and transcoding [3], [4]. The huge amount of computation
caused by intensive computing tasks puts a lot of pressure
on users. However, due to the limited computing resources
and storage capacity of multimedia devices, these devices
cannot handle tasks locally with low latency as well as low
power consumption.

In view of these problems, Mobile Cloud Computing
(MCC) has been proposed as a solution, where large amounts
of data are centralized in cloud servers to alleviate the burden
on local devices [5]. However, traditional cloud computing
suffers from problems such as high latency, high load, and
core network congestion, as cloud servers are typically de-
ployed at a distance from multimedia devices. In contrast,
Mobile Edge Computing (MEC) offers a promising approach
by deploying edge servers at edge nodes or base stations.
This enables mobile terminals to offload their computing
tasks to nearby edge nodes for processing, using wireless
channels to reduce task processing delays, improve network
utilization efficiency, and enhance Quality of Service [6].
Nevertheless, compared to cloud computing, edge comput-
ing is limited by offload decisions, wireless resources and
computing resources. Wireless resources mainly include
bandwidth and transmitting power. Computational resources
generally refer to the CPU frequency of local mobile devices
and edge servers. To fully leverage the advantages of the
MEC paradigm, there is a need for joint optimization of
offloading decisions, communication, and computational re-
sources. This presents a major problem in wireless networks
between user devices and MEC servers.

To address this challenge, several studies have inves-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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tigated the joint allocation of wireless and computational
resources in MEC systems [7]–[11]. The Lyapunov op-
timization methods, online dynamic task scheduling, and
game theory has been proposed to solve the problems of
joint wireless resources, computational resources, and of-
floading decisions. The authors in Ref. [7] proposed a local
compressed offload model to solve the resource allocation
problem of multi-user mobile edge computing offload sys-
tems. In Ref. [8], the authors proposed a Lyapunov optimiza-
tion based approach to study the task assignment schedul-
ing scheme for maximum power consumption and execution
delay in MEC systems with energy harvesting capability.
The authors in Ref. [9] considered a heuristic algorithm for
solving joint resource allocation decisions to minimize the
time delay. The authors in Ref. [10] investigated a compu-
tational resource allocation scheme based on potential game
theory to reduce the energy consumption of MEC networks
and improve the efficiency of computational resources. In
Ref. [11], the paper proposed a suboptimal resource alloca-
tion algorithm that generates priorities for users based on
their channel gain and locally calculated energy consump-
tion, and implements different offloading schemes for dif-
ferent priorities to minimize the weighted sum of delay and
energy consumption. However, these algorithms are usually
time-consuming and computationally intensive in complex
MEC networks because they need to constantly resolve the
problem in a time-varying MEC network environment.

Deep reinforcement learning has become a trend as an
approach in solving optimization problems in MEC systems,
in recent years [12]–[17]. DRL can adjust its strategy in
unstable environments and can adapt to complex MEC sce-
narios by making different actions with its intelligences. The
DRL agents can make adaptive offloading decisions and re-
source allocation through the different actions it makes. In
Ref. [12], the authors proposed a distributed machine learn-
ing approach that makes it possible for DRL to perform
online offloading in an MEC environment. The authors
in Ref. [13] considered a DRL-based video offload scheme
to maximize its long-term performance. The authors in
Ref. [14] studied a temporal attentional deterministic policy
gradient based on a deep reinforcement learning algorithm
called Deep Deterministic Policy Gradient (DDPG) to solve
the joint optimization problem of computational offloading
and resource allocation in MEC. Ref. [15], this paper pro-
posed a DRL-based offloading scheme to enhance the utility
of multimedia devices in dynamic MEC. Simulation results
demonstrate that the DRL scheme reduces energy consump-
tion, computational experiments and task failure rate. The
authors in Ref. [16] proposed aDRL-based offloading frame-
work that can be adaptive to the common patterns behind
various applications to infer the optimal offloading strat-
egy for different scenarios. Ref. [17], the authors propose
an advanced deep learning based computational offloading
algorithm for multistage vehicle edge cloud computing net-
works tominimize the total time and energy cost of thewhole
system. Although DRL is very resilient in complex MEC
networks, because most DRL learn in a centralized manner,

the required action space and configuration of parameters
explode when multimedia devices are added, which directly
leads to less efficient training and easier privacy disclosure.
To solve this problem, Federated learning (FL) is proposed
to optimize MEC networks [18].

Federated learning is a distributed machine learn-
ing that enables distributed multiple device nodes to co-
communicate and participate in the aggregation of global
models. Different devices can perform local model training
separately, communicate with each other through federated
learning and upload model parameters from local model
training for global model aggregation. Federated learning
allows the exchange of model parameters without sharing
raw data and enhances the collaboration capability of multi-
ple distributed devices and protects the privacy and security
of the devices.

Several studies have investigated the resource alloca-
tion and computational offloading problems involved in FL
for two optimization objectives based on system latency and
energy consumption minimization [19], [20]. The authors
in Ref. [19] minimized the value of the FL loss function
by optimizing the joint resource allocation and UE selec-
tion, and satisfied both the latency and energy consumption
requirements for performing FL. The authors in Ref. [20]
proposed an alternative directional algorithm formulating
the joint optimization of CPU frequency and power control
as a nonlinear programming (NLP) problem to solve the
problem of minimizing the energy consumption of all mul-
timedia devices subject to federated learning time require-
ments. References [21]–[23] focus on the combined learning
of federation learning and deep reinforcement learning, i.e.,
training local DRL models and then integrating them to-
gether to develop a comprehensive global DRL model. The
authors in Ref. [21] proposed a joint optimization scheme for
optimal path selection and power allocation based on the fed-
eral deep Q-network learning algorithm, which maximizes
network throughput while ensuring power constraints and
mobility constraints, taking into account communication re-
sources, but without considering a reasonable allocation of
computational resources. In [22], this paper considered a
multimodal deep reinforcement learning framework based
on hybrid policies and proposes an online joint collabora-
tion algorithm in combination with FL and validates the
performance of the algorithm, however, the intelligent body
agent in this work does not undertake some resource alloca-
tion operations such as allocation of power, computational
offloading of tasks. The authors in [23] proposed a federate
cooperative caching framework based on deep reinforcement
learning but the work did not take into account task offload-
ing.

We compare the objectives and resource optimization
of ourstudy with some related work in the MEC systems,
the resultsof which are shown in Table 1. It is obvious that
our study can overcome the shortcomings of many previous
works.

For mobile multimedia devices, their limited comput-
ing resources and battery capacity may hinder efficient task
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Table 1 Comparing with some related work.

completion. In such cases, offloading tasks to edge or cloud
servers becomes necessary. The offloading decision made
by the multimedia device plays a critical role in controlling
the overall MEC system overhead and ensuring a good user
experience. Additionally, task offloading consumes wire-
less channel resources, necessitating reasonable allocation of
these resources in MEC systems. In this paper, we propose
an adaptive offloading framework based on federated deep
reinforcement learning to jointly optimize transmit power,
computational resources, and offloading decisions, with the
aim of minimizing delay and energy consumption for mobile
multimedia devices in task completion. The contributions
of this paper can be summarized as follows:

1. We transform the optimization problem into a multi-
objective optimization problem with the objective of
minimizing the weighted sum of delay and energy con-
sumption required by the system to perform the task. To
solve this complex problem, we jointly allocate compu-
tational and communication resources and transform
the nonlinear planning problem into a federated deep
reinforcement learning problem for multiple intelligent
agents.

2. For multimedia devices, the changing location and dif-
ferent kinds of multimedia task of devices cause non-
IID data. To reduce the impact of non-IID data. In
this paper, we propose a mechanism for selection of
participating federal learning devices. To ensure the
communication overhead as well as convergence of FL
learning.

3. We design an adaptive offloading algorithm based on
FL and DRL, which jointly allocates computational re-
sources and task offloading, which not only increases
the overall scalability of the system but also accelerates
the learning speed of deep reinforcement learning. It
maintains relatively stable performance in the complex
MECnetwork environment and outperforms other DRL
algorithms.

The rest of this article is organized as follows: Section 2
describe the system model and the problem formulation is
described in Sect. 2. In Sect. 4, we present the design of
the FDRL-DDQN algorithm. Section 5 presents simulation
results. Finally, Sect. 6 shows the conclusion of this paper.

2. System Model

In this paper, we consider a MEC network configuration that
consists of aMEC server, anMCC server, aMECbase station
(BS) and a set of N = {1,2, . . . ,N} multimedia devices.
As depicted in Fig. 1, when a task is generated, the user’s
task request is initially submitted to a multimedia device.
Subsequently, the MEC BS receives offloading tasks from
the multimedia devices. The computing tasks offloaded to
the BS are processed by the BS server, and the results are
then returned to the terminal. Meanwhile, the remaining
multimedia tasks are executed locally. We make a diagram
to explain the function of each layer in Fig. 2, and some key
parameters are listed in Table 2.

We consider the time into consecutive time frames,
which are divided into T time slots denoted as a set of
T = {1,2, . . . ,T}. This article explores a ternary offloading
strategy. Specifically, the local offloading decision of device
i as xi , where xi = 1 signifies that the multimedia device
executes the tasks locally, and xi = 0 means the multime-
dia device offloads the multimedia tasks to the MEC server
or MCC server. Moreover, we use yi and zi to represent
the multimedia devices’ offloading of computing tasks to the
MCC server and MEC server, respectively. In this context,
zi = 1 denotes offloading to the MEC server, while yi = 1
implies offloading to the MCC server. Therefore, we have
the ternary offloading strategy as follows:

xi + yi + zi = 1, ∀i ∈ N. (1)

2.1 Computing Model

This section focuses on modeling the delay and energy con-
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Fig. 1 A MEC system model.

Fig. 2 The function of each layer.

Table 2 Key parameters.

sumption experienced by multimedia devices during the ex-
ecution of multimedia tasks. When multimedia device i
offloads its task to either the MEC server or MCC server,
various factors come into play, including the size of the mul-
timedia tasks, channel conditions, and transmitting power.
It’s important to note that the transmission of offloaded mul-
timedia tasks occurs over wireless channels, involving both
multimedia devices and base stations. Furthermore, the ex-
ecution of multimedia tasks requires the allocation of uplink
frequency resources for transmission. Therefore, the uplink
transmission rate of multimedia device i is determined by

ri = Blog2(1 +
pihi
σ2 ), (2)

where B and pi denote the operating bandwidth and transmit
power of the multimedia device, respectively, hi and σ2

denote the transmission link gain and channel noise between
the multimedia device and the base station, respectively.

The communication delay and the energy consumption
of mobile task offloading are respectively given by

Tibs =
Li

ri
, (3)

Ei
bs = piTibs, (4)

where Li is the size of task (in bit). Since the comput-
ing power of edge servers and clouds is very resource-rich
compared to local devices, this paper ignores the computing
consumption at the edge servers or clouds, so only the energy
consumed by their task transmission is calculated. From the
device’s point of view, when a task is offloaded to either
server, the energy consumed to process the task is the energy
spent on the task transfer. So both of the energy consumption
of MCC server and MEC server would be equal to Ebs

i .
Due to limited computing power and battery capacity,

multimedia devices offload tasks to edge servers or cloud
services to meet QoS requirements. The computation delay
of MEC server and MCC, while offloading is given, respec-
tively, as follows:

Te
i =

Ci

Fe
, (5)

Tc
i =

Ci

Fc
, (6)

where Fe and Fc denote the average computing power of
the edge server and the cloud, respectively. Ci denotes the
CPU cycle requirement of the task (in cycle/second). The
delay of the multimedia tasks offloading to the MEC server
and MCC server respectively as follows:

TE
i = Te

i + Tbs
i , (7)

TC
i = Tc

i + Tbs
i . (8)

Assuming that user-submitted multimedia tasks are se-
lected for execution on the local multimedia device and they
do not need to be offloaded to the edge server for processing,
the processing delay and energy consumption for task on
device is defined as

TL
i =

Ci

f Li
, (9)

EL
i = κi( f

L
i )

2, (10)

where κi is the energy consumption factor related to the
multimedia device, which depends on the CPU performance
architecture of the terminal.

In this paper, we aim to optimize the computational
resource allocation as well as the offloading policy, which
minimizes the multimedia task execution cost. The long-
term expected cost of each multimedia device is a weighted
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sum of execution delay and energy consumption. Each of
multimedia device cost is given by

Ti(pi, fi, xi, yi, zi) = xiTL
i + yiT

E
i + ziTC

i , (11)
Ei(pi, fi, xi, yi, zi) = xiEL

i + yiE
e
i + ziEc

i , (12)

where pi , fi , xi , yi and zi represent the vectors of transmit
powers, computation resource allocation, local computing,
edge offloading, and cloud offloading decision of device i,
respectively.

3. Problem Formulation

In this paper, the problem is formulated to solve the joint
minimization of long-term delay and energy consumption of
multimedia devices over time T .

In solving the optimization problem of offloading de-
cisions and computational resource allocation for MEC sys-
tems, the objective of this paper is to minimize the total
cost of the combination of execution delay and energy con-
sumption of the devices in the MEC system. Based on the
above analysis, the optimization problem can be described
as follows:

min
pi , fi ,xi ,yi ,zi

ωTi + λEi

subject to :
C1 : f Li ≤ Fmax,∀i ∈ N
C2 : xiEL

i + yiE
e
i + ziEc

i ≤ Emax,i,∀i ∈ N
C3 : Ti ≤ Tmax,∀i ∈ N
C4 : xi + yi + zi = 1,∀i ∈ N
C5 : xi, yi, zi ∈ {0,1},∀i ∈ N,

(13)

whereω and λ in the above optimization problem are denoted
as the delay and energy consumption weighting factors of
device i in performing the multimedia task, respectively. Let
0 ≤ ω ≤ 1, and 0 ≤ λ ≤ 1, ω + λ = 1, the ratio of ω to λ is
a constant, the value of the weight factor should be chosen
according to the heterogeneity of the resources available
on each multimedia device, if the device receives greater
constraints in terms of energy resources than computational
resources, the value should be larger, otherwise it should
be smaller. The constraint C1 indicates that the computing
resources allocated for the user should not exceed the total
computing capacity of the MEC system Fmax . C2 indicates
a limit on the energy resources of the device, which should
not exceed the maximum energy Emax that the MEC system
can provide, and C3 expresses that the overall service time
cost should not exceed the maximum allowable delay for the
user Tmax . C4 and C5 are the ternary offloading schemes
used in this paper.

However, to satisfy the requirement of minimizing the
total system cost under the multimedia task execution de-
lay as well as energy consumption tolerance. With binary
offloading variables (xi, yi, zi) included of above formulated
problem (13) makes the problem into a mixed integer non-
linear programming (MINLP) problem that cannot be solved
in an acceptable time frame.

4. The Proposed FDRL-DDQN Algortihm

In this section, we present our solution to address the com-
plex and non-convex optimization problem. We propose a
deep reinforcement learning algorithm that combines fed-
erated learning, and for offloading actions, we adopt the
Dueling DQN algorithm. This algorithm is referred to as
FDRL-DDQN.

The framework of the FDRL-DDQN algorithm is il-
lustrated in Fig. 3. The FDRL-DDQN algorithm contains
three main components: the training of offloading decision
and resource allocation, federated aggregation and update of
local model parameters. In the first step, devices participat-
ing in federated learning are selected. Next, the local model
is trained to learn multimedia task offloading decisions and
resource allocation. Subsequently, the trained model param-
eters are federated and aggregated. Finally, the updated pa-
rameters are distributed to each multimedia device involved
in federated learning. Algorithm 1 provides a detailed de-
scription of the proposed FDRL-DDQN algorithm in this
paper. And We give a flow chart of the Federation frame-
work in Fig. 4.

In a complex MEC network environment, mobile mul-
timedia devices are faced with three options for computing
multimedia tasks. This results in a total of 23N possible com-
putation offloading options per device at each time slot. With
an increasing number of multimedia devices, the complex-
ity of the state and action spaces for intelligent agents also
grows exponentially. Consequently, implementing central-
ized training becomes extremely challenging when dealing
with large-scale datasets and expansive action spaces. More-
over, in mobile multimedia services, which involve extensive
data transmission, centralized training leads to significant
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Fig. 3 Federated framework model.

Fig. 4 Federated framework model.

communication overhead and raises privacy concerns. Fed-
erated learning, a distributed machine learning approach,
offers several advantages in the MEC environment. Firstly,
it enables individual training of intelligent agents, allowing
them to cooperate and make independent decisions during
multimedia task execution. This approach enhances learn-
ing efficiency, reduces communication overhead, and better
adapts to large-scale MEC networks. Secondly, federated
learning facilitates interactive updates of model parameters

between distributed and central nodes, eliminating the need
for sharing original data. This mechanism provides a robust
guarantee for the security of local data.

4.1 Select Device

In cases where a large number of devices are involved in
joint learning, it can result in increased drop rates and un-
necessary communication overhead. To address this issue,
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we introduce a device selection strategy in this paper. At the
beginning of each iteration of the FDRL-DDQN algorithm,
a specific set of multimedia device agents is carefully chosen
to participate in the learning process. The principles of how
to select devices in this article are as follows

arg max
i∈N

MSE(
diPmax,i

Fmax,i
), (14)

where di denotes the distance between the device and the BS
and the function MSE denotes the mean squared error. This
approach allows for the selection of the most cost effective
method for different multimedia devices. Choosing the right
device to participate in the learning process can also help
with the overall learning speed.

4.2 Local Model Training

For the training of local agents in the FDRL-DDQN algo-
rithm, eachmultimedia device employs theDDQNalgorithm
to train its own local model and learn offloading and resource
allocation strategies. The Dueling DQN algorithm utilizes
an experience pool to store data for each state at time t. This
includes the action chosen based on the current state, the
reward received for that action, the new state after perform-
ing the action, and whether the state terminates during the
training process. As the amount of stored data in the experi-
ence pool reaches a sufficient size, small batches of data are
randomly selected and fed into the neural network for train-
ing. This continuous training process optimizes the weight
parameters in the neural network. By randomly selecting
training data, a broad range of experiences can be learned,
breaking the correlation between sample data and preventing
overfitting issues resulting from local experiences. Based on
the system model and optimization objectives presented in
this chapter, the FDRL-DDQN algorithm defines three key
elements: the state space, action space, and reward function,
which can be defined as

1. State space:

Si = {Li, hi} , (15)

where Si denotes the state space of each device, Li de-
notes the amount of multimedia task, and hi denotes
the path gain of infinite transmission between the mul-
timedia device and the base station.

2. Action space:
In the FDRL-DDQN model considered in this paper,
the intelligence is responsible for making appropriate
decisions based on the computational multimedia tasks.
The decisions include, determining whether the com-
putational multimedia tasks are offloaded to the edge
server or the cloud server, and how much computa-
tional resources should be allocated when the multime-
dia tasks are executed locally. The action space consists
of two parts, the multimedia device offloading decision

{αL
i , α

E
i , α

C
i }, where α

L
i denotes that the task is exe-

cuted locally, αE
i denotes that the task is offloaded to

the edge server, and αCi denotes that the task is of-
floaded to the cloud. The resource allocation strategy
f = { f1, f2, . . . , fN }.

3. Reword function:
The cost of each agent is the weighted sum of the delay
and energy consumption in the objective function. The
optimization objective of this paper is to minimize the
cost, so the reward function should be negatively corre-
lated with the cost, so the reward function as shown

Ri = −

(
ω(yiTE

i + ziTC
i ) + λ(yiE

e
i + ziEe

i )

ωxiTL
i + λxiEL

i

)
.

(16)

The Dueling DQN algorithm is utilized to address com-
plex decision control challenges in real-world multimedia
environments. It combines Q-learning algorithms, empiri-
cal replay mechanisms, and target Q-values based on action
value functions to approximate the Q-value of the optimal
policy. Q-learning selects the actionwith the highestQ-value
by consulting the Q-table, while dueling DQN uses a neural
network to obtain the corresponding Q-value based on the
input, resulting in improved operational speed and stability.
As depicted in Fig. 5, the Dueling DQN architecture divides
the fully connected layer of the network into two branches,
each with its specific output. The upper branch represents
the state value function, which quantifies the value of the
static state environment itself, irrespective of actions taken.
The lower branch represents the state-dependent action ad-
vantage function, which captures the average action payoff
relative to states, indicating the additional value brought by
decision-making behavior. These two branches are then
combined to derive the Q-value for each action. This ap-
proach allows for mutual supervision, eliminates redundant
degrees of freedom, mitigates the risk of inflated Q-value es-
timates, and enhances algorithm stability. Therefore, in this
paper, the notation ui(s,a) is employed to represent the di-
rect cost incurred by each device as determined through the
aforementioned optimization process. Using the Bellman
equation, the action state values are given by

Fig. 5 The network of DDQN algorithm.
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Qi(s,a) = ui(s,a) + γ
∑
s′∈S

Pss′(a)max Qi(s′,a′), (17)

where Qi(s,a) denotes the Q value corresponding to the
action a generated according to the current state s. Similarly,
max Qi(s′,a′) is used to denote the action a′ corresponding
to themaximumQ value output by the stare s′. Pss′(a) stands
for the transfer probability function, γ represent the discount
factor. There are twonetwork parameters in the duelingDQN
network, one is the current Q network parameter, denoted by
θevali , to evaluate the greedy strategy of the current network
and the other is the target network parameter, denoted by
θ
target
i , to evaluate the target value yi . In each training
iteration, the target value used to train the evaluation network
in device i is calculated as

yi = ui(s,a)+γQi(s′,arg max
a′∈A

Qi(s′,a′; θevali ), θ
t arg et
i ).

(18)

Meanwhile, to obtain the optimal strategy andminimize
the gap between the target value and the evaluated value, we
set the loss function as

L(θ) = E[(yi −Qi(s,a))2]. (19)

4.3 Parameter Aggregation and Update

At the start of each learning round in FDRL-DDQN, the par-
ticipating local devices upload their network parameter mod-
els to the MEC server for model aggregation. This aggrega-
tion process combines the models to create a global model
within the MEC. Subsequently, the MEC server distributes
the aggregated global model parameters to each multimedia
device participating in FDRL-DDQN as the network param-
eters for the next round. In this paper, we employ FedAvg
[24] as the model aggregation method.

θglobal =

∑
i∈W θi

eval

|W|
, (20)

where |W| denotes the total number of participating train-
ing devices. θglobal represents the global model parameters.
Once the global model aggregation is complete, the model
parameters are transmitted to the local device, which then
updates its own model parameters. The local device uti-
lizes its local data to train the network evaluation parameters
during the offloading decision update. This update process
continues iteratively for the local devices until the algorithm
converges.

5. Simulation Results

In this section, we use tensorflow1.0 GPU version to imple-
ment the FDRL-DDQN framework in python and perform
simulations to evaluate its performance. The main simula-
tion parameter settings in this paper are shown in Table 3.

To simulate the proposed FDRL-DDQN algorithm, we

Table 3 Simulation parameters.

constructe a network comprising 50 multimedia devices.
However, only 10 devices were selected for each training
round. Each device has a maximum computational capacity
of 1 Gbps and a maximum energy consumption of 23 dBm.
Due to the limitations of computing power on the multi-
media devices in the MEC network, we utilize the smallest
feasible neural network for our algorithm. Considering the
computational constraints, our neural network consisted of
an input layer, two hidden layers, and an output layer. The
first and second layers consisted of 32 and 16 neurons, re-
spectively. ReLU activation functions were used throughout
the network.

5.1 Convergence Performance

In this section, we evaluate the convergence performance of
the FDRL-DDQN algorithm and compare it with the dis-
tributed DDQN. We examine the convergence of the two
schemes using selected devices and all devices to partici-
pate in the federation to address the non-IID data issue of
multimedia devices. Additionally, we analyze the impact
of learning rate and batch size on the convergence of the
FDRL-DDQN algorithm.

Firstly, we assess the convergence speed of the training
loss in the FDRL-DDQN algorithm. In Fig. 6, the average
training loss L(θ) of the FDRL-DDQN model is plotted.
Initially, the algorithm exhibits significant fluctuations due
to the lack of experience during the initial training, mak-
ing it challenging for the intelligence to learn the optimum.
However, as the experience pool accumulates sufficient data,
the intelligence can make actions that lead to the optimal
solution, resulting in maximum rewards. As the number of
iterations increases, the loss function steadily decreases, in-
dicating a smoother learning process. After approximately
200 iterations, the algorithm reaches the optimum value for
the neural network.

In Fig. 7, we address the non-IID problem among mo-
bile multimedia devices by selecting only a fraction of de-
vices to participate in each round of federated learning, en-
suring the convergence speed of the overall algorithm. To
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Fig. 6 Convergence process of loss function.

Fig. 7 Comparison of convergence between FDRL-DDQN and systems
without selection mechanism.

evaluate the effect of the device selection method on the
convergence of the FDRL-DDQN algorithm, we compare
the approach of adding all devices to federated learning with
the partial device addition. The convergence performance of
the FDRL-DDQNalgorithm is validated using 5W randomly
generated multimedia tasks, which are offloaded for optimal
resource allocation decisions. In each iteration round, the in-
telligence derives a reward value based on its decision. The
average reward of the FDRL-DDQN algorithm is plotted,
showing an increasing trend with the number of iterations as
the intelligence improves its decision-making ability. The al-
gorithm converges after approximately 200 iterations. It can
be observed from the figure that the average reward value
of the overall algorithm, after utilizing the device selec-
tion mechanism, is significantly higher and converges faster
compared to the approach of adding all devices to federated
learning.

Furthermore, we examine the impact of learning rate
and batch size on the convergence of the FDRL-DDQN al-
gorithm. Figure 8 illustrates the effect of the intelligence’s
learning rate on the convergence performance of the FDRL-
DDQN framework. We experiment with learning rates of

Fig. 8 Convergence of reward value under different learning rates.

Fig. 9 Convergence of reward value under different batch size.

0.0001, 0.001, and 0.002. While a higher learning rate leads
to faster learning, the figure shows that a learning rate of
0.0001 results in slow convergence due to the low learning
rate. On the other hand, a learning rate of 0.002 increases
learning efficiency, but it compromises algorithm stability,
causing repeated oscillations that hinder convergence. Thus,
in this paper, we set the learning rate to 0.001 in the simula-
tion.

Another parameter of interest is the batch size for multi-
media task processing. Figure 9 demonstrates that increasing
the batch size improves the convergence of the FDRL-DDQN
algorithm. With a small batch size of 10, convergence takes
around 380 iterations. However, when the batch size is in-
creased to 20, convergence occurs after 310 iterations, and
with a batch size of 30, the algorithm converges quickly in
only 180 iterations. Larger batch sizes enable training with
more instances, providing the intelligence with faster expe-
rience accumulation. Consequently, the executed actions
can reach optimal solutions more rapidly, resulting in faster
algorithm convergence.
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Fig. 10 Influence of delay weight on total system cost.

5.2 Comparison of Total Cost

In this section, we first compare the proposed FDRL-DDQN
algorithm with the distributed DDQN algorithm. To further
evaluate the algorithm’s performance, we also compare it
with the centralized DDQN algorithm, centralized DQN al-
gorithm, and two baseline computation offloading policies:
mobile execution and edge node execution. Mobile execu-
tion refers to local device computation of multimedia tasks,
while edge node execution involves offloading all tasks to
the edge node. We investigate the effect of delay weights on
the FDRL-DDQN algorithm in comparison to the four men-
tioned centralized algorithms. Additionally, we discusse the
trade-off between delay and energy consumption.

In Fig. 10, we experiment with the weights of delay and
energy consumption on algorithm performance. To handle
different types ofmobilemultimedia tasks, we set theweights
of delay ω to equal values of 0-1 and similarly γ to 1 − ω.
We set the delay weights of the centralized DQN algorithm,
DDQN algorithm, to be consistent with FDRL-DDQN. As
ω increases the system assembly also rises, the total cost of
FDRL-DDQN is always lower than the other four algorithms.
This is due to the fact that FDRL-DDQN is able to provide an
optimal offloading strategy for the optimized target compared
to the other four algorithms, thus achieving an overall cost
reduction.

Figure 11 illustrates the equilibrium trend of the net-
work’s average delay and average energy consumption as
the delay weight varies. In this simulation, the number of
users is set to N=5. From Fig. 11, it is apparent that the net-
work’s average delay gradually decreases as the delay weight
increases, while the average energy consumption of the net-
work increases. Both the average delay and average energy
consumption of the network stabilize when the delay weight
reaches a certain thresholdwhen theω >= 0.4. This happens
because when the value of ω is small, increasing it reduces
delay at the expense of energy performance. However, when
the value ofω is large, due to limitations on user transmitting
power, further increasingω doesn’t result in reduced average

Fig. 11 The average delay and the average energy consumption curve.

Fig. 12 The cost of FDRL-DDQN scheme is compared with distributed
DDQN algorithm.

delay or increased average energy consumption.
Figure 12 compares the average total cost of the pro-

posed FDRL-DDQN algorithm with the distributed DDQN
algorithm. We select three multimedia devices which are
trained individually using the distributed DDQN algorithm
without any parameter exchange between the three multi-
media devices during the period. When the training is fin-
ished, we add the three multimedia devices to the FDRL-
DDQN framework for retraining until convergence. The
experimental results show that the cost of each device is
reduced using the FDRL-DDQN algorithm, where the aver-
age consumption can be reduced by 20.3%. By combining
federated learning with deep reinforcement learning, coop-
erative training between devices is achieved. It avoids the
equipment alone training by environmental instability, ac-
tion space, state space and other inexperienced impact, and
provides a relatively stable intelligent body learning envi-
ronment, combining different devices together intelligently.
Because of the devices involved in training only upload the
model parameters needed for learning, it can effectively pro-
tect the privacy and security of users. In addition, federated
learning enables knowledge sharing between devices and
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Fig. 13 Effect of the number of multimedia tasks on the total cost of the
system.

enriches the data parameters they can collect.
To demonstrate the performance benefits of the FDRL-

DDQN algorithm, in Fig. 13, it shows the impact of multi-
media tasks data size on the average total cost of devices. We
compared FDRL-DDQN algorithm with centralized DDQN
algorithm, centralized DQN algorithm, mobile execution al-
gorithm and edge note execution algorithm. It can be seen
that the FDRL-DDQN has a faster learning speed than the
basic centralized DDQN, and the cost rises more slowly with
the number of tasks, with the smallest optimization perfor-
mance at a total cost of 600 Kbits and the largest optimiza-
tion performance at a total cost of 1000 Kbits. This is due
to the fact that when the multimedia task data size increases,
more and more information be interacted between devices,
the advantage of federated learning can be fully reflected,
and the learning speed of the intelligence will be faster and
faster, while the centralized DDQN will decrease due to the
increase of the multimedia task data size, which leads to
the exponential growth of the action space received by the
intelligence. FDRL-DDQN algorithm can reduce the total
cost by 7.1% when the system multimedia task volume is
600Kbit and 31.3% when the multimedia task volume is
1000Kbit compared with centralized DDQN, while FDRL-
DDQN algorithm can reduce up to 35.3% compared with
mobile local offloading algorithm and 34.8% compared with
edge node offloading algorithm, because FederatedDeep Re-
inforcement Learning combines FL and DRL are organically
combined to obtain the exact optimal policy by intelligent
and effective learning for multiple device parameters. In
addition, FDRL-DDQN can reduce the cost by up to 30.1%
compared to the centralized DQN algorithm which has al-
ready widely used to offload multimedia task policies. The
biggest advantage of the DDQN algorithm over the DQN al-
gorithm is that it can ensure the stability of the target network,
which helps the whole system to update the parameters and
thus converge faster to get the optimal policy. When FL is
combined with DDQN its effect is more obvious, FL makes
DDQN algorithm more stable making the final result more
accurate and faster convergence.

6. Conclusion

In this paper, we propose an adaptive offloading algorithm
FDRL-DDQN that combines federation learning and deep
reinforcement learning. For the computational offloading
problem in theMEC scenario ofmobilemultimedia dynamic
multimedia task arrival, we jointly allocate computational
and communication resources with the goal of minimizing
latency and energy consumption, and make reasonable of-
floading decisions. For the non-IID data problemwith differ-
ent multimedia devices, we design an adaptive device selec-
tion mechanism as a way to ensure the convergence of FL. In
addition, we compared FDRL-DDQN with centralized Du-
eling DQN, distributed DDQN, mobile algorithm and edge
algorithm with better results. Simulation results show that
the algorithm has good latency and energy performance. In
future work, we will consider resource coordination among
multiple MEC servers, as well as investigate more flexible
and generalized resource allocation and computational of-
floading strategies.
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SUMMARY Handover is an important property of cellular communica-
tion that enables the user to move from one cell to another without losing the
connection. It is a very crucial process for the quality of the user’s experi-
ence because it may interrupt data transmission. Therefore, good handover
management is very important in the current and future cellular systems.
Several techniques have been employed to improve the handover perfor-
mance, usually to increase the probability of a successful handover. One
of the techniques is predictive handover which predicts the target cell us-
ing some methods other than the traditional measurement-based algorithm,
including using machine learning. Several studies have been conducted
in the implementation of predictive handover, most of them by modifying
the internal algorithm of existing network elements, such as the base sta-
tion. We implemented a predictive handover algorithm using an intelligent
node outside the existing network elements to minimize the modification
of the network and to create modularity in the system. Using a recently
standardized Open Radio Access Network (O-RAN) Near Realtime Radio
Intelligent Controller (Near-RT RIC), we created a modular application that
can improve the handover performance by determining the target cell us-
ing machine learning techniques. In our previous research, we modified
The Near-RT RIC original software that is using vector autoregression to
determine the target cell by predicting the throughput of each neighboring
cell. We also modified the method using a Multi-Layer Perceptron (MLP)
neural network. In this paper, we redesigned the neural network using Long
Short-Term Memory (LSTM) that can better handle time series data. We
proved that our proposed LSTM-based machine learning algorithms used
in Near-RT RIC can improve the handover performance compared to the
traditional measurement-based algorithm.
key words: cellular, handover, 5G, LTE, machine learning, lstm, neural
network

1. Introduction

Handover is one of the crucial processes in cellular commu-
nication especially in high mobility users such as vehicular
terminals. This process can be defined as the process that
prevents ongoing communication from getting interrupted
as the mobile equipment changes its attachment point such
as cells [1]. However, some disruptions may occur in active
communication due to packet losses and delays and these
disruptions may result in significant loss of performance [2].
In the 5G era, this handover process is getting more crucial
due to the usage of a higher frequency spectrum [3] that
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causes a smaller cell range.
The traditional handover algorithm is usually reliable

in the ideal network condition. However, in some non-ideal
network conditions, such as the presence of a coverage hole,
this algorithm may not be reliable and result in transmission
failure. We prove this through our simulation described in
Sect. 8.

Apart of the traditional handover algorithm that will
be described in Sect. 2, many other algorithms are proposed
including the machine-learning-based algorithms [4] (de-
scribed in Sect. 3). Neural networks are one of the most
popular machine-learning-based methods for handover im-
provement [5]–[10]. The main issue with those proposed
methods is their real-world implementation becausemachine
learning is not originally part of the cellular networks [11].
Most of the machine learning algorithms to improve han-
dover performance require major modifications in the exist-
ing cellular networks for their implementation. This will
raise many problems in the network deployment and imple-
mentation stage.

O-RAN Alliance consortium [12] introduces the Near
Real Time Radio Intelligent Controller (Near-RT RIC), a
new additional network element in the radio access network
(RAN) that can host applications to control base stations.
Using this Near-RT RIC, a machine learning algorithm for
improving the handover process can be implemented mod-
ularly without major modifications to the existing cellular
networks. Our implementation of Near-RT RIC will be fur-
ther described in Sect. 4.

In our previous papers, we described the implementa-
tion of machine learning in Near-RT RIC to take advantage
of its modularity aspect. The machine learning algorithm
can be implemented modularly outside the base station with-
out modifying the current software of the base station. We
proved that this method performs better compared to the tra-
ditional handover algorithms in a simulated non-ideal net-
work, in this case, a network with coverage holes. We mea-
sured the performance in terms of data transmission (i.e., file
download) success rate if the user moves along the network
and performed a handover. The target cell is determined by
several methods, the traditional algorithm and our proposed
machine-learning-based algorithm.

As described in [13], we modified the Near-RT RIC
original software to fit our simulation case. We modified
the vector autoregression (VAR) algorithm used the original
in Near-RT RIC software to consider the UE movement and
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compared the performance of this proposed method with the
traditional handover algorithm. In the simulation result, we
showed that this method can improve the handover perfor-
mance in a network with a coverage hole.

In our next publication ([14], we extended our re-
search by replacing the VAR algorithm with a Multi-Layer-
Perceptron (MLP) neural network. It is proven that this
method is also superior compared to the traditional handover
algorithm. However, this simple neural networks still under-
performed the VAR method. In this paper, we performed
further improvement in the neural network to increase the
performance.

1.1 Research Motivation and Contribution

The motivation of this research is to improve the machine
learning method implemented in Near-RT RIC to solve the
handover reliability issue in a non-ideal network. Using
Near-RT RIC, the machine learning algorithm to control the
handover process can be implemented modularly without
major modification of the existing network elements.

In our previous research, we used a simple MLP neural
network and it was still underperformed since it did not
consider the time-series nature of the input data. We used
the user measurement data as the input to determine the
target cell in the handover process. In our MLP design,
we statically use several last measurement data as the input
and thus cannot consider the temporal feature of the time-
series input. We suggest that this was the main cause of the
underperformance.

The contribution of this research is designing and im-
plementing a Long Short-TermMemory (LSTM)-based han-
dover algorithm in Near-RT RIC to control the handover
process. LSTM is chosen as it is better to handle the time-
series data and consider the temporal feature of the data. We
consider this time-series data handling for machine learning-
based handover as our novel contribution.

In this paper, we performed modifications in Near-RT
RIC original software, more precisely in the QoE Predic-
tor xApp. We have done two modifications in our previous
research and we will briefly review them in Sect. 5: adapt
the VAR (the original algorithm used in Near-RT RIC) to
consider the UE movement and replaced the vector autore-
gression with MLP neural network. Our newly proposed
method to improve our previous ones is the LSTM neural
network that will be described in Sect. 6. We have done
simulations to test the performance of those methods and
we also studied the effect of training data amount on the
handover performance (described in Sect. 7). Finally, we
compared the performance of our proposedmethods with the
traditional handover algorithm and showed that the machine-
learning-based handover in Near-RT RIC performs better in
a non-ideal condition, in this case, a network with a coverage
hole (described in Sect. 8).

Fig. 1 Solution taxonomy for handover improvement.

1.2 Research Scope and Limitation

This research focuses on the usage of a machine learning al-
gorithm in Near-RT RIC to control the handover process. In
this study, we compare the performance of the handover con-
trol in Near-RT RIC with the baseline traditional handover
algorithm.

There are various solutions to improve the handover
performance and we organized the solutions taxonomy in
Fig. 1. We focus only on the machine-learning-based solu-
tion that is implemented externally for modularity reasons,
and we compare the result of our methods with the baseline
traditional handover algorithms. The innovations that are
implemented on top of the traditional handover algorithm
such as soft handover, conditional handover, make-before-
break, are not considered and not compared with our pro-
posed machine-learning-based algorithm in Near-RT RIC.
The other state-of-the art machine learning algorithms for
handover improvement as described in Sect. 3 are also not
compared with our method.

1.3 Paper Organization

In this Sect. 1, we provide a gentle overview of our research,
problem statement, motivation, contribution, and the scope
of this study.

Section 2 describes the Traditional Handover Algo-
rithm, the baseline algorithm for cellular mobility manage-
ment that we would like to improve using our research. We
present the way of working, the issues, limitations, and room
of improvement of this traditional algorithm.

We use machine learning techniques to improve the
Traditional Handover Algorithm. In Sect. 3, we describe the
State of The Art of the usage of Machine Learning for han-
dover improvement. Here we explored the previous works
conducted to improve the handover algorithm using various
machine learning techniques.

Our solution utilizes an O-RAN new network element
called Near-RT RIC, which is described in Sect. 4. Here we
also describe how the software is implemented and used for
our solution.

Next in Sect. 5, we reviewed our previous methods that
we already published in earlier publications [13], [14]. Here
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we explain how we modified the original Near-RT RIC soft-
ware to utilize our proposed machine learning methods: the
modified VAR and MLP Neural Network.

In Sect. 6, we introduce our newly proposed method to
be used in Near-RT RIC using LSTM. Here we explain the
novel algorithm to improve the handover performance.

To test our proposed method, we designed a simulation
that will be explained in Sect. 7. We also explain how we
collect and utilize the data to prove the effectiveness of our
proposed methods.

The result of our simulation with the proposed meth-
ods is discussed in Sect. 8. We show the improvement in
handover performance compared to the traditional handover
algorithm. The overall conclusion and possible future works
are written in Sect. 9.

2. Traditional Handover Algorithm

In the traditional handover algorithm [15], the UE sends
measurement reports to the serving base station about the
condition of serving cell and neighbor cells. The measure-
ment report is about the cell’s signal strength (Reference
Signal Received Power - RSRP) and/or signal quality (Ref-
erence Signal Received Quality - RSRQ). The serving base
station will analyze the measurement report to determine the
target cell for the handover destination. Usually the target
cell is the best-measured neighbor cell (Fig. 2).

The handover process may interrupt the data transmis-
sion because it caused temporary disconnection of the UE
from the serving cell (thus stopping the data transmission)
and connects again to the target cell. The interruption is de-
fined asMobility Interruption Time (MIT) and 3GPP defines
MIT as the shortest time duration supported by the system
during which a user terminal cannot exchange user plane
packets with any base station during transitions [17]. MIT
can be calculated as [2]:

Fig. 2 Traditional handover algorithm [16].

TMIT = {(1 − PHOF) × THIT} + {PHOF × THOF} (1)

TMIT = Total MIT
PHOF = Probability of either a handover failure (HOF)

or a radio link failure (RLF) during handover
THIT = Handover Interruption Time, MIT in a

successful handover
THOF = Handover Failure Time, MIT in a HOF or RLF

The THOF contributes more significantly to MIT (TMIT),
thus reducing the TMIT can be better done by reducing PHOF.
In LTE Network, THIT is reported around 50ms while THOF
ranges from several hundred milliseconds to a few seconds
[18]. This means the best way is to avoid unnecessary han-
dovers or handovers to the wrong cell. Target cell determi-
nation is very crucial in the handover process to minimize
MIT.

The traditional handover algorithm is reliable in ideal
conditions, where RSRP/RSRQ measurement always re-
flects the real condition of the network. Using this algorithm,
the best target cell to continue the network connection is al-
ways the cell with the best RSRP/RSRQ measurement. In
a non-ideal condition, the RSRP/RSRQ measurements may
not reflect the real network condition.

An example of this non-ideal network is the presence
of a cell coverage hole due to an obstacle. A UE may be
handed over to a target cell with the best RSRP/RSRQ, but it
enters the target cell’s coverage hole after the handover, and
the connection fails after that. In this case, the traditional
handover algorithm is not reliable to determine the target cell
correctly and ensure network connectivity. Our simulation
proves the unreliability of the traditional handover algorithm
in Sect. 8. This raises the need for machine-learning-based
target cell determination.

Besides the baseline traditional handover algorithm,
which is part of the base station algorithm as compliance to
3GPP standard [16], there are some other handover algorithm
that aims primarily to reduce MIT by reducing PHOF. Some
innovations include fast measurements [19], soft-handover,
dual connectivity [20], make-before-break [2], [21], con-
ditional handover [5], [22], [23], and predictive handover
[5], [24]–[28].

Fast measurement makes the source base station send
a handover command before an abrupt deterioration of the
radio link to the UE. The UE reacts faster to the channel
changes and improves mobility robustness.

Soft handover, dual-connectivity, and make-before-
break work similarly by making multiple separate connec-
tions to different radio resources simultaneously. This im-
proves mobility robustness but increases the network com-
plexity and requires more radio resources.

In traditional handover, the handover command is sent
when the radio conditions start to get degraded [23]. Condi-
tional handover prepares in advancemultiple candidate target
cells in the network. This enables the handover command
to be sent to the UE earlier than at the traditional handover
when the radio conditions are still good.



PRANANTO et al.: LSTM NEURAL NETWORK ALGORITHM FOR HANDOVER IMPROVEMENT IN A NON-IDEAL NETWORK USING O-RAN NEAR-RT RIC
461

In predictive handover, the candidate target cells are
predicted using various techniques, including user behavior
and learning the network condition using machine learning
techniques.

3. Machine Learning for Handover: State of the Art
and Related Works

Machine learning is an application of artificial intelligence
(AI) that provides systems the ability to automatically learn
and improve from experience without being explicitly pro-
grammed [29]. It studies the computer algorithms that im-
prove automatically through experience [30].

Since the traditional handover algorithm is sometimes
not reliable in a non-ideal network condition, some alterna-
tive methods are required to determine the target cell, and
one of the approaches is the predictive handover using ma-
chine learning. Several studies [4] have implemented ma-
chine learning to improve handover performance using the
predictive handover method (i.e. predict the target cell using
machine learning).

Supervised learning is widely used for handover im-
provement. The neural networks (NN) method is one of
the most popular techniques used in several studies [5]–[10].
Some studies use support vector machine [31] and K-nearest
neighbor [32], [33]. Unsupervised learning techniques are
also used by some studies, for example, K-means [27], [34]
and Long Short-Term Memory [25]. Reinforced learning
is used by some researchers that usually employ Q-learning
algorithms [24], [35].

The neural networksmethod is popular inmobilityman-
agement improvement studies. The basic idea behind these
studies is to use the concept of neural networks to learn a
mobility-based model for every user in the network and then
make predictions of which cell the user is most likely to be
next [4].

Several previous studies [6], [36] used neural networks
for target cell selection in the handover process and per-
formed simulations to justify their proposed method. We
based our research on these works and improved them us-
ing our proposed methods. The previous research did not
perform the implementation of the software in the Near-RT
RIC platform and considered only the simple MLP neural
network. As a novelty of our research, we present the imple-
mentation of themachine learning algorithm in the real Near-
RT RIC platform. We also test several methods other than
simple MLP neural networks, including the LSTM-based
neural network that can better process time-series measure-
ment data.

4. O-RAN Near-RT RIC

Open Radio Access Network (O-RAN) Alliance standard-
izes and introduces several new applications for open and
intelligent RAN on top of the legacy cellular network. This
enables the introduction of machine learning applications
since machine learning is not originally part of the cellular

Fig. 3 O-RAN architecture [12].

network standard. O-RAN introduces new network elements
called Radio Intelligent Controller (RIC) to add intelligence
to the cellular radio network. There are two variants of RIC:
Near-Real Time (Near-RT) and Non-Real Time (NRT) RIC
(Fig. 3).

Near-RT RIC hosts applications that require real-time
response, such as mobility management applications like
handover control. Because of this response requirement,
Near-RT RIC is typically implemented in an Edge Cloud, a
virtual environment that is placed physically near the radio
network. The effectiveness of Edge Cloud is already proven
to implement RAN elements [37].

NRT-RIC hosts applications that do not require imme-
diate response such as network monitoring and optimization.
It can be implemented in Central Cloud and typically colo-
cated with the existing network management system.

There are some use cases defined by O-RAN Alliance
[38] to be implemented in O-RAN to provide RAN open-
ness and intelligence, for example, Context-Based Dynamic
HOManagement for V2X, Flight Path-Based Dynamic UAV
Radio Resources Allocation, QoE Optimization, and Traffic
Steering. However, the exact implementation of the use case
is given to specific vendors. For example, Nokia prioritizes
Traffic Steering and Network Anomaly Detection use case
for its RIC solution [39].

Several studies already use O-RANRIC architecture for
many applications such as connectionmanagement [40], mo-
bility management [41], and scheduling policy optimization
[42]. Various machine learning algorithms are implemented
in RIC including reinforcement learning [43].

The Near-RT RIC can be implemented in any virtu-
alized environment. In our research, we installed it on an
Ubuntu-based virtual machine by installing the open-source
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Fig. 4 The software architecture of RIC [44].

Fig. 5 Anomaly detection use case of Near-RT RIC [45].

software provided by the O-RAN Software Consortium (SC)
[44]. The software is container-based and contains several
applications called xApps. This architecture can be viewed
in Fig. 4.

The Anomaly Detection use case [45] is one of the al-
ready existing Near-RT RIC use case examples fromO-RAN
SC that mostly corresponds to our research need. However,
we have to perform some modifications to fit our simulation
scenario.

The software contains three xApps: Anomaly Detec-
tion, Traffic Steering, and Quality of Experience (QoE) Pre-
dictor. The xApps exchange messages in RMR protocol,
the Near-RT RIC internal communication. Currently, in this
research, the Near-RT RIC works stand alone without any
connection to the RAN, and all simulation data is stored in
the database.

The scenario begins with the Anomaly Detection xApp
detects an anomalous UE, for instance, the UE experiencing
degradation of RSRP. In this research, this information is
obtained from the database but in the real implementation,
this information is notified by RAN (i.e. base station). The
Anomaly Detection xApp then informs the anomaly to the
Traffic Steering xApp.

Traffic Steering xApp then sends a message to QoE
Predictor xApp sending the identity of the UE experiencing
an anomaly. QoE Predictor xApp then predicts the score
of QoE of the UE if the UE is placed in the neighboring
cells. In the original software, this score is the throughput
of the data transmission and is predicted using the vector
autoregression (VAR) method. Therefore, QoE Predictor
predicts the throughput experienced by the UE if it is placed
in a certain cell.

This prediction is sent back to Traffic Steering xApp.
Based on this prediction, it will perform some necessary
actions. The action can be a handover command to the cell
where the throughput prediction is the highest one. From
this scenario, it is clear that QoE Prediction is the one that
actually determines the target cell by performing a prediction
of QoE (score) in each cell. The Traffic Steering xApp is
just simply choosing the target cell with the highest score.

In this research, we modified the original Near-RT RIC
xApps in the Anomaly Detection Use Case to adapt to our
simulation scenario. We mainly performed modifications
in QoE Predictor xApp as it is the one that actually per-
forms predictions that will determine the target cell. We
performed two modifications to the original QoE Predictor
xApp. The first modification is to adapt the original software
to our simulation scenario. The prediction is still done by the
vector autoregression method. The second modification is
completely replacing the vector autoregression with a neural
network. The neural network design is based on our previous
studies [46], [47] that yield optimum results.

5. Our Previous Methods: A Review

The original QoE Predictor xApp software provided by O-
RAN SC predicts the QoE using the VARmethod. However,
the original software is not immediately usable for our re-
search case so we have to perform some modifications in the
original xApp. Our research aims to determine the target
cell in a non-ideal network containing a coverage hole. This
target cell is determined by the movement of the UE that is
reflected in the RSRP/RSRQ measurements.

5.1 Modified VAR

Vector Autoregression (VAR) is a statistical time series
model used to analyze the relationship between multiple
variables. In a VAR model, each variable in the system is
modeled as a function of its past values and the past values
of all the other variables in the system. A VAR model of
order p, denoted as VAR(p), is a set of linear equations that
relate each variable in the system to its own past values and
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the past values of all the other variables in the system up to
p lags. The equations can be written in matrix form as:

Yt = A1Yt−1 + A2Yt−2 + . . . + ApYt−p + ut (2)

whereYt is a k-dimensional vector of the current values of the
k variables in the system, A1, A2, . . . , Ap are k×k matrices of
coefficients that capture the dynamic relationships between
the variables at lags 1 to p, and ut is a k-dimensional vector of
error terms that represent the unexplained part of the system
at time t.

The original QoE Predictor xApp determines the target
cell by predicting the throughput of each cell using time-
series throughput data in the training data. However, this
software only considers the position of the UE, i.e. what the
neighbor cells are. It does not consider themovement and the
trajectory angle of the UE. If we use the unmodified original
software and training data, the prediction will always give
the same target cell for all simulation cases.

Our proposed modified method using VAR can be ex-
pressed in the following pseudocode (Algorithm 1). The
italic expression in Algorithm 1 indicates our modification.

To adapt the original software to our simulation sce-
nario, we reconstructed the software and training data to put
the UE movement into account. The UE movement and its
trajectory angle can be reflected by the RSRP measurement
variations. From the training data generation process de-
scribed in Sect. 7, we construct the new training data that
considers the UE movement to predict the next throughput
by evaluating RSRP values. Using this modified training
data, the target cell is determined by the UE movement, not
only the UE position like the original QoE Predictor xApp.

5.2 MLP Neural Network

For our second method, we completely replaced the VAR in
the QoE Predictor xApp with a neural network. In this pre-
liminary stage, we use a very simple Multi-Layer Perceptron
(MLP) neural network regression model to predict whether
the download is successful or failed using RSRP and RSRQ
samples as input.

This method works in a different approach than the
previous one. The VAR method views the problem as a
prediction problem, this MLP neural network method views

Fig. 6 MLP neural network design.

the problem as a classification problem. The prediction
problem in the VAR method requires throughput data and
determines the target cell by choosing the neighbor cell with
the highest predicted throughput. The throughput data is
not immediately available in real-life handover cases so we
decide to use the already available RSRP/RSRQ data. It is
possible to perform prediction of RSRP/RSRQ data but in a
non-ideal network, RSRP/RSRQ data do not directly reflects
the throughput or QoE of the user.

In our second method, we decided to view the prob-
lem as a classification problem, without necessarily predict-
ing the future RSRP/RSRQ data. We directly collect the
RSRP/RSRQ data reported by the UE to determine whether
it is good or not to perform a handover in a certain neighbor
cell.

The MLP neural network in our method contains fully
interconnected 18 input nodes, 4 hidden nodes, and 1 output
node (Fig. 6). The inputs are the last 3 samples of RSRP
and RSRQ measurements from all the 3 cells. The output is
whether the data transmission (i.e. file download) is success-
ful or not, represented by the number 0 (failed download)
or 1 (successful download). The result of the output node
is a floating point continuous number between 0 and 1 that
can be used as the prediction score. The score will then be
sent to Traffic Steering xApp and the cell with the highest
score will be determined as the target cell. In this method,
we do not need throughput data and perform any prediction
to determine the target cell.

We use Tensor Flow Keras API for the implementation.
Currently, the training process is done with 150 times itera-
tions through the whole training data (epoch = 150), and the
model is updated every 10 training data (batch size = 10).

The MLP neural network method has a simpler im-
plementation than the VAR method since it uses only
RSRP/RSRQ measurement without a throughput measure-
ment. This MLP neural network method can be faster as
the neural network model can be saved and reused without
necessarily querying the training data on each prediction.

As a summary, our two previous methods can be com-
pared in Table 1.
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Table 1 Comparison of the previous methods: VAR and MLP-NN.

6. Proposed Method: LSTM Neural Network

The two previous methods can outperform the traditional
handover algorithm. However, the MLP neural network still
underperforms the VAR method. We view the neural net-
work as more promising since it has a less complex and less
demanding implementation. It requires only RSRP/RSRQ
measurements with no throughput measurement and the
model can be created once and used repeatedly in every case.
Therefore, we seek ways to improve this neural network.

MLP has several limitations and weaknesses: it is state-
less, unaware of temporal structure, has messy scaling, and
requires fixed-sized inputs and outputs [48]. In our sce-
nario, the input is RSRP/RSRQ measurements which are
time-series data, not static fixed-sized data. The length of
the input is actually not fixed, depending on the cases. Using
MLP, we have to fixate the input to only 3 samples per cell
and thus limit the amount of information. Our MLP neural
network also has an issue with scaling. When we add or re-
move the cell amount in the network we have to completely
change the model architecture.

In machine learning, time-series data can be handled
in various ways. Time-series prediction involves predicting
the next value for a given input sequence, time-series clas-
sification involves predicting a class label for a given input
sequence, and time-series generation involves generating a
newoutput sequence that has the same general characteristics
[48].

We assess and identify our scenario as a time-series
classification problem because our input data has a temporal
structure and we solve the problem by classifying if the file
download is successful or not. There are so manymethods to
solve this time-series classification problem [49], including
the deep learning approach using neural network [50]. In-
stead of using a simple MLP neural network for time-series
data, it is recommended to use a Recurrent Neural Network
(RNN) that better considers the temporal feature of the input.
There are several methods based on RNN, for example, Sim-
pleRNN, Gated Recurrent Unit (GRU), and Long Short-term
Memory (LSTM).

Long Short-term Memory (LSTM) [51] is an artificial
neural network that has a feedback connection and thus can
be classified as RNN. LSTM has been shown to outperform

Fig. 7 LSTM neural network design.

other RNN methods on numerous temporal processing tasks
[52]. These temporal processing tasks include the processing
of multivariate time-series data to perform predictions on
future values. Several applications employ LSTM due to
this capability, for example, handwriting recognition, speech
recognition, and machine translation.

LSTM employs the “Long-term memory” and “Short-
term memory” that occurs in the RNN architecture that pro-
cesses time-series data. The connection weights and biases
in the network change once per episode of training, analo-
gous to how physiological changes in synaptic strengths store
long-term memories; the activation patterns in the network
change once per time-step, analogous to how the moment-
to-moment change in electric firing patterns in the brain
store short-term memories [53]. The LSTM architecture
aims to provide a short-term memory for RNN that can last
thousands of timesteps, thus “Long Short-Term memory”.
LSTM networks are well-suited to classifying, processing,
and making predictions based on time series data since there
can be lags of unknown duration between important events
in a time series.

Wemodify our neural network by adding anLSTM layer
before the MLP layer. This will enable the neural network
to process the time-series input data before feeding them to
the MLP to perform classification (Fig. 7).

The LSTM layer contains 18 serially-connected LSTM
cells. The input is the RSRP/RSRQ data fed into the first
LSTM cell and processed serially to the next LSTM cells.
Besides providing input to the next LSTM cell, all 18 LSTM
cells also provide input to the MLP’s 18 input layers that
will further perform the classification function. Using this
architecture, any arbitrary length of input can be processed,
unlike the MLP neural network that requires fixed-length
input. The dropout rate is chosen 50% and the MLP layer
architecture is the same with the previous method 18 input
nodes, 4 hidden nodes, and 1 output node (Fig. 6). The
activation function is relu in the hidden layer and sigmoid
in the output layer. The training process is done with 150
times iterations through the whole training data (epoch =
150), and the model is updated every 10 training data (batch
size = 10).
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Fig. 8 Environment for simulation with 3 cells and 1 coverage hole.

Fig. 9 Environment for simulation with 4 cells and 2 coverage holes.

7. Simulation Design and Data Collection

In this research, we created two network environments for
two experiments. The first one contains three cells, one
moving UE, and a building creating a coverage hole (Fig. 8).
The second one contains four cells, one moving UE, and two
buildings creating two coverage holes (Fig. 9). This environ-
ment is built using NS3 LTE network simulator [54] based
on previous studies[33], [36]. The simulation parameters are
reusing the previous work as described in Table 2.

On each simulation, the UE moves to the right side of
the network with a random trajectory angle. Due to this
movement, the UE needs to perform a handover from Cell 1
to either Cell 2 or Cell 3 (or also Cell 4 for 4 cells simulation),
depending on the trajectory angle. The UE also downloads
files during the movement and in the end, the download may
be successful or may not. For every simulation, we noted
down the target cell, the download success status, and the
RSRP/RSRQ measured by UE.

The simulation activity can be described in Fig. 10.
Our simulation contains three activities: the training data
generation (1), handover simulations using the traditional
algorithm (2), the target cell determination using Near-RT

Table 2 NS3 simulation parameters.

Fig. 10 Simulation activities done for this research.

RIC (3), and the handover result verification of the target cell
determined by Near-RT RIC (4).

To create the training data, we ran 100 simulations of
deterministic handover to each neighbor cell. The first 100
simulations are deterministic handover cases where the UE
is forced to perform handover to Cell 2 regardless of the
trajectory angle. The next 100 simulations are also deter-
ministic handover cases but this time to Cell 3. There are
also the next 100 simulations to Cell 4 for 4 cells simulation.
This activity is described as the first activity in Fig. 10.

To compare the performance of the handover algorithms
(the traditional algorithm and our RIC-based proposed algo-
rithms), we ran other simulations of non-deterministic han-
dover. In these simulations, the UE may perform a han-
dover to any neighbor cell, using a traditional handover
algorithm, based on the RSRP/RSRQ measurements.The
result of these simulations (download success status and
RSRP/RSRQ measurement) is the result of the traditional
handover algorithm and is used as a baseline to be com-
pared with machine-learning-based algorithms run in Near-
RT RIC. The RSRP/RSRQ measurement for these simula-
tions is also used as input for the RIC-based handover algo-
rithm. This activity is described as the second activity in
Fig. 10.

Next, we performed RIC-based handover simulations.
For each simulation run, we performed target cell determi-
nation using the machine-learning-based algorithm in Near-
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RT RIC by providing RSRP and RSRQmeasurements of the
same simulations that we ran in the traditional handover al-
gorithm process. The algorithm in Near-RT RIC would then
get the score of each existing neighbor cell in the network.
The cell with the highest score is then chosen as the target
cell. This activity is described as the third activity in Fig. 10.

FromNear-RT RIC we only obtained the target cell, but
not yet the download success status. Therefore, we need to
perform verification using NS3 to check if the download is
successful or not, given the target cell from Near-RT RIC.
Next, we performed deterministic handover again using NS3
but using the target cell obtained by Near-RT RIC. From
here we get the download success status if the handover is
controlled by Near-RT RIC. This activity is described as the
fourth activity in Fig. 10.

We choose download success rate as the main perfor-
mance metric. As stated in Eq. (1) in Sect. 2, the handover
process is best improved by reducing the probability of han-
dover failure, thus avoiding unnecessary handover and han-
dover to a wrong cell. Based on this statement, we focus on
the target cell determination process. We decide the perfor-
mance metric as download success rate if we use a certain
method to select the target cell.

8. Simulation Result and Discussion

As described in Sect. 7, we already performed three sets of
simulations in our previous papers: the traditional handover,
Near-RT RIC handover using VAR, and Near-RT RIC using
MLP neural network. In this paper, we propose an additional
method which is Near-RT RIC using LSTM neural network
and we also performed another set of simulations. The tra-
ditional handover was done using the NS3 simulator and
we noted down the RSRP/RSRQ measurement and the han-
dover results (target cell and download success status). The
RSRP/RSRQ measurement of those simulations was used
as input in Near-RT RIC handover simulations. After that,
we compared the download success rate of all simulations
among all methods (Fig. 11 and Fig. 12). We performed all
those simulations in two network scenarios: 3 cells with 1
coverage hole and 4 cells with 2 coverage holes.

The successful download rate for the traditional han-
dover algorithm, in 3 cells 1 coverage hole environment,
is 86.2%, not 100% due to the presence of the coverage
hole. All of the simulations with failed downloads happened
when the UE was handed over to Cell 2 (based on the best
RSRP/RSRQ measurement) but it entered the coverage hole
behind the building after the handover. If it was handed over
to Cell 3 instead of Cell 2, the download may be successful
because Cell 3 was not obstructed by the building. This re-
sult shows that sometimes the traditional handover algorithm
is not reliable in a non-ideal condition.

This successful download rate for the traditional han-
dover algorithm is getting worse in the 4 cells 2 coverage
holes environment, which reached only 29%. The two cov-
erage holes created a blank spot in the network that caused
download failure if the UE performed a handover to either

Fig. 11 Simulation result comparison for a network with 3 cells and 1
coverage hole.

Fig. 12 Simulation result comparison for a network with 4 cells and 2
coverage holes.
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Table 3 Comparison of the handover methods.

Cell 2 or Cell 3. The UE may experience a successful
download if it performed a handover to Cell 4 but Cell 4 is
never an option in the traditional handover algorithm as the
RSRP/RSRQ are too low at the time of handover.

When we determined the target cell using Near-RT RIC
in the 3 cells 1 coverage hole network environment, the
successful download rates are mostly increasing, depending
on the method and the amount of training data (Fig. 11). If
the QoE Predictor xApp uses vector autoregression (VAR),
the success rate can reach 95.3% using all 100 available
training data, 94.1% with 50 training data, and 92.7% with
only 25 training data. If we use MLP-NN, the success rate is
slightly lower but still higher than the traditional algorithm
in most cases, the download success rate can reach 91.9%
using all 100 available training data and 88.4% using only 50
training data. However, the performance plummeted to only
58.8% if we only use 25 training data (even lower than the
traditional handover algorithm). Using our newly-proposed
LSTM-NN, the success rate is superior to other methods,
reaching 97.6% using 100 training data, 95.7% using 50
training data, and 91.8% using only 25 training data.

If we use Near-RT RIC to determine the target cell
in the 4 cells 2 coverage holes network environment, some
methods significantly can increase the success rate, given
enough training data. As shown in Fig. 12, VAR didn’t
perform much in this network environment. Our previous
MLP-NNmethod performed better but ultimately our newly-
proposed LSTM-NN worked best for this environment.

The related work [6] reported that their proposed
method achieved a download success rate of 95.37% com-
pared to the state-of-the-art method that yields only 54.45%
in their simulation. However, they did not perform the im-
plementation in the Near-RT RIC.

It is shown that machine-learning algorithms can pro-
vide better handover performance by determining the correct
target cell in a non-ideal network condition, given enough
training data. The more training data, the better the perfor-
mance. From the simulation result, our newly proposed
LSTM-NN works better than all other methods and we
proved it in both network environment cases.

As a summary, all of the handover methods discussed

Fig. 13 Comparison of RNN-based methods for a network with 3 cells
and 1 coverage hole.

in this paper can be compared in Table 3. TheModified VAR
and MLP-NN are our previous proposed methods [13], [14]
while LSTM-NN is the current proposed method.

In addition, we also compared other RNN-based meth-
ods that are designed for time-series classification. We re-
placed the LSTM layer with the GRU and SimpleRNN layer.
No changes were performed in the MLP layer and the hyper-
parameters. The result is similar to the LSTM method but
LSTM is still superior to those methods (Fig. 13). However,
those methods are very promising for future exploration.
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9. Conclusion and Future Work

The handover process may cause an interruption in the data
transmission, moreover in a high-mobility condition where
the radio condition may worsen because of the user speed.
Increasing the probability of successful handovers, such as
making sure to perform handover to the correct target cell,
can minimize this interruption. Therefore, target cell deter-
mination is very important in the handover process.

In this paper, we presented the result of our newly pro-
posed method, the LSTM neural network, using O-RAN
Near-RTRIC to determine the target cell in the handover pro-
cess. This new method is an improvement of our previous
machine-learning-based methods that is better at handling
the time-series nature of the input data. From the simulation
result, it can be concluded that this method can be used and is
proven better to determine the target cell compared to other
methods, the traditional handover algorithm, and our previ-
ous machine-learning-based methods. The performance of
the algorithms depends on the method and the amount of
training data.

In the future, wewill further improve the neural network
to get better performance. We plan to test this method in an-
other non-ideal network environment other than the coverage
hole case. We also plan to explore the possibilities of using
another RNN-based methods such as GRU and SimpleRNN.
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PAPER
A Novel Remote-Tracking Heart Rate Measurement Method Based
on Stepping Motor and mm-Wave FMCW Radar

Yaokun HU †,††a), Student Member, Xuanyu PENG †††∗, and Takeshi TODA ††††∗∗, Members

SUMMARY The subject must be motionless for conventional radar-
based non-contact vital signs measurements. Additionally, the measure-
ment range is limited by the design of the radar module itself. Although
the accuracy of measurements has been improving, the prospects for their
application could have been faster to develop. This paper proposed a novel
radar-based adaptive tracking method for measuring the heart rate of the
moving monitored person. The radar module is fixed on a circular plate and
driven by stepping motors to rotate it. In order to protect the user’s privacy,
the method uses radar signal processing to detect the subject’s position to
control a stepping motor that adjusts the radar’s measurement range. The
results of the fixed-route experiments revealed that when the subject was
moving at a speed of 0.5 m/s, the mean values of RMSE for heart rate mea-
surements were all below 2.85 beat per minute (bpm), and when moving at
a speed of 1 m/s, they were all below 4.05 bpm. When subjects walked at
random routes and speeds, the RMSE of the measurements were all below
6.85 bpm, with a mean value of 4.35 bpm. The average RR interval time of
the reconstructed heartbeat signal was highly correlated with the electrocar-
diography (ECG) data, with a correlation coefficient of 0.9905. In addition,
this study not only evaluated the potential effect of arm swing (more nor-
mal walking motion) on heart rate measurement but also demonstrated the
ability of the proposed method to measure heart rate in a multiple-people
scenario.
key words: FMCW radar, health care, heart rate, radar signal processing,
vital sign detection

1. Introduction

The number of seniors living alone and in nursing homes is
rising because of longevity. It is difficult to detect poten-
tial medical problems in the body of a senior person. How-
ever, cardiovascular disease is the primary cause of death in
Japan, accounting for 25.5% of all deaths [1]. The devel-
opment of an indoor heart rate monitoring system for older
people living alone is urgently needed because of this grow-
ing social issue.

The conventional contact measures are inappropriate
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for continuous, round-the-clock monitoring and seniors with
skin issues. The research on non-contact radar-based heart
rate measurements has recently gained popularity. In [2],
they estimated the subject’s vital signs were estimated using
a millimeter-wave FMCW radar. The authors of [3] pro-
posed a differential enhancement approach and employed
an FMCW radar with an 8.4 GHz center carrier frequency
to precisely measure the heart rate. In [4], a learning-
refined integral null space pursuit algorithm was suggested
for adaptively acquiring vital signs with an impulse radio
UWB (IR-UWB) radar and a stepped-frequency continuous-
wave UWB radar. For non-contact vital sign monitoring,
a continuous wave (CW) Doppler radar that operates as
a phase-locked loop in a phase-demodulator configuration
was proposed in [5].

IR-UWB radar [4], [8], [9], CW Doppler radar [5],
[10]–[14], and FMCW radar [2], [15]–[18] are the types
of radars that are currently most frequently utilized in this
study field. The maximum signal energy levels that can be
transmitted are not very high, which reduces the precision
and signal-to-noise ratio (SNR) of IR-UWB radars [19].
Likewise, because CW Doppler radar lacks a range capac-
ity [20], measurements are subject to interference and are
therefore inappropriate for keeping track of the vital signs
of moving targets. The FMCW radar combines the advan-
tages of the first two, with good range and speed measure-
ment capabilities, and the millimeter-band FMCW radar is
extremely sensitive. It can effectively measure the displace-
ment of the human skin surface. Therefore, this study em-
ploys the FMCW radar in the 77–81 GHz band.

Most radar-based vital signs estimation studies call for
subjects to stay still, including standing, sitting in a chair,
or resting in bed [2]–[20]. This limits the application of
radar-based heart rate measurement methods. For this rea-
son, the authors of [21], [22] and [23] attempted to use IR-
UWB radar and FMCW radar, respectively, to estimate the
heart rate of a moving person. However, the subjects in the
research mentioned above could only move slowly. To ad-
dress this issue, we proposed an improved adaptive range
bin selection (IARBS) method for moving subjects’ heart
rate measurements based on the FMCW radar [24]. The sub-
jects maintained a high measurement accuracy when they
walked at an average speed of 1 m/s. However, because
of the radar characteristics, the measurement range may be
constrained. It is challenging to cover the entire room, even
with beamforming techniques. When the angle is too large,
the beam widens, the antenna gain drops, and the perfor-

Copyright c© 2024 The Institute of Electronics, Information and Communication Engineers
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mance suffers. If there are several radars in the room, they
can interfere with each other and increase background noise.
Moreover, these methods increase the cost of the measure-
ment system, which is not conducive to the popularity of the
application.

The authors of [34] proposed a novel approach for
mounting radar on a mobile robot. However, it may not be
appropriate for older adults living alone, in senior homes,
or in medically isolated observations. There is a safety risk
because the senior may trip over the wires because the robot
must be attached to the power source. It is difficult to contin-
uously monitor if a charging method is employed. In [26], a
method for adaptively changing radar orientation by acquir-
ing the subject’s position through a camera was proposed.
However, image processing using cameras is sensitive to
ambient lighting and involves personal privacy issues. Addi-
tionally, the subjects’ heart rate measurements while moving
were not evaluated in the abovementioned study.

In [27], we proposed and discussed the possibility of
using a stepping motor to change the radar orientation but
only verified it using a simple simulation. This paper im-
proves the method of [27] and proposes a novel, radar-based,
adaptive remote-tracking heart rate measuring technique to
address the abovementioned issues. In this study, we build
an actual measurement device. The radar module is fixed
to a rotatable circular plate. The radar measures the heart
rate while measuring the position of the monitored person,
which is then processed and transmitted to a stepping motor
to drive the rotation of the radar module. A stepping mo-
tor is used in this study because for the following reasons.
Because the stepping motor has no brushes, it is more reli-
able. Additionally, it does not accumulate the error of one
step to the next step, and thus has better position accuracy.
Furthermore, the motor is simple and inexpensive, because
its response is based only on a digital input pulse.

The monitored person can always be within the ideal
measurement range owing to the adaptively adjusted radar
orientation. Next, after sampling the raw radar data, the
range bins where the subject is located are selected along the
time dimension using the IARBS method, and their phase
information is extracted. The displacement information of
the human skin surface, brought on by the body’s torso,
heartbeat, and breathing, can be obtained using the phase
change information. We suggested using the improved com-
plete ensemble empirical mode decomposition with adap-
tive noise (ICEEMDAN) approach to extract the heartbeat
signal and determine its heart rate [28]. In this study, we
continue to use this technique to analyze the experimental
data and evaluate the accuracy of the proposed measurement
system.

In this study, we build an actual measurement device,
using a stepping motor to change the radar direction to ad-
just the ideal range for measuring the heart rate. The pro-
posed measurement system tracks a moving subject using
radar signal processing. Even though this subject walks at
an average speed of 1 m/s and the horizontal angle to the
radar module varies widely. This significantly increases the

application potential of radar-based remote heart rate mea-
surements. To the best of our knowledge, this is the first
study that challenges this field.

The principle of employing FMCW radar to detect vi-
tal signs is explained in Sect. 2. The proposed method is
explained in detail in Sect. 3. The experiments and conclu-
sions are presented in Sects. 4 and 5, respectively.

2. Principle for Heart Rate Measurements

Figure 1 depicts the structure of the FMCW radar-based
heart rate measuring system for moving people. As shown in
Fig. 2, the ramp generator periodically outputs an up-chirp
signal with a time duration of Tc and frequencies ranging
from fmin to fmax at specific time intervals. The slope of the
upward linear frequency modulation of each chirp is Ks, and
the sweeping bandwidth is B = fmax − fmin=TcKs.

The power amplifier amplifies each chirp signal before
transmission. The radar module receives the signal after it
is reflected by the object and amplifies it using a low-noise
amplifier. The transmitted and the received signals are cor-
related by the in-phase and quadrature (I/Q) mixer to gen-
erate the intermediate frequency (IF) signal. Since there are
four receivers (with the same configuration), there are also
four IF signals. After the analog-to-digital converter (ADC)
samples each IF signal, phase information can be preserved.
The sampled raw data are transmitted frame-by-frame to the
computer for signal processing. Each IF signal can be de-
fined by the following equation:

Fig. 1 The block diagram of the FMCW radar module. The analog-to-
digital converter, low-noise amplifier, and power amplifier are each denoted
by the acronyms PA, LNA, and ADC. The computer receives the raw data
to process the signals.

Fig. 2 The time-frequency diagram of the transmitted and received
chirps of the case of single Tx and single Rx.
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Fig. 3 The flow chart of the proposed processing.

sif(t) = AtAr exp
(

j
(
2π fmintd + 2πKstdt − πKst2

d

))
≈ AtAr exp ( j (2π fmintd + 2πKstdt)) td < t < Tc (1)

where At is magnitude associated with the transmission
power and Ar is related to At by the radar equation. Time
delay, td between the signal being transmitted and received.
Because πKst2

d in (1) is small, it can be disregarded [2], [28].
The relationship between the instantaneous distance R0 and
delay time td of the measured target and radar module can
be expressed as:

R0 =
ctd
2

(2)

where c represents the speed of light. Combining (1) and
(2), the frequency of the IF signal and its phase information
can be expressed as

fb =
2KsR0

c
, ϕ(t) = 4π fmin

(R0 + x(t))
c

(3)

where x(t) can be interpreted as the displacement of the tho-
racic cavity caused by the heartbeat and breathing of the tar-
get. The heart rate estimation can usually be accomplished
with only one IF signal.

3. Proposed Measurement System

As mentioned in the introduction, the inability to alter the
radar module’s orientation is a drawback of conventional
radar-based heart rate measurement methods. Therefore,
it is impossible to estimate the heart rate once the subject
has departed from a specific range. A heart rate measure-
ment method with a motor combined with a millimeter-wave
FMCW radar is proposed in this study as a solution to the
abovementioned issue and to increase the applicability of
the measurement method. The proposed approach utilizes
radar signal processing to calculate the target’s motion in-
formation, which is then sent to a stepping motor to adjust
the orientation of the radar module. In this manner, real-time

adaptive tracking heart rate monitoring is accomplished.
The signal processing flowchart of the proposed

method is shown in Fig. 3, where the computer section is
divided into sections for heart rate monitoring and stepping
motor rotation control.

3.1 Stepping Motor Rotation Control

The ADC samples the IF signal, which is then sent to a com-
puter in frames for signal processing. In radar-based heart
rate measurement research, 0.05 s is a typical choice for the
frame period [2], [15]. A frame period Tf of 0.05 s is com-
parable to sampling the target’s heartbeat signal at a sam-
pling frequency of 20 Hz because the average human heart
rate is less than 2 Hz, which satisfies the sampling theorem.
However, excessive shortening of the frame period leads to
more frequent data transmission from the radar module to
the computer, which may increase the possibility of data
loss. Therefore, in this study, the frame length was fixed
at 0.05 s.

As shown in Fig. 4, this study emits L chirp signals in a
single frame cycle to execute multidimensional FFT calcu-
lations, in contrast to other studies that emit only one chirp
signal in each frame. A raw data matrix with L rows and
N columns is generated for each frame after each chirp sig-
nal is sampled N times. A range-FFT is first performed to
the fast time dimension of each frame’s raw data to gener-
ate the range profile matrix (RPM). Next, a Doppler-FFT is
applied to the slow time dimension of the RPM to create a
range-Doppler matrix (RDM).

A flowchart of the calculation of the rotation angle of
the stepping motor is shown in Fig. 5. Assuming a frame
period of 0.05 s, the maximum distance moved in a single
frame is only 10 cm, even if the subject walks at a higher
speed of 2 m/s. Therefore, the distance moved by the sub-
ject in a single frame cycle is relatively small, and consid-
ering the high real-time requirements of this measurement
method, it is not necessary to rotate the motor frame by



HU et al.: A NOVEL REMOTE-TRACKING HEART RATE MEASUREMENT METHOD BASED ON STEPPING MOTOR AND MM-WAVE FMCW RADAR
473

Fig. 4 Diagram of frame period in relation to rotation period.

Fig. 5 Flowchart of calculating the rotation angle.

frame. Instead, it determines whether a stepping motor is
required to correct the radar alignment by detecting the sub-
ject’s position every M frames (one rotation period Tr). The
motor rotation angle calculation module receives the RDM

of the kM + 1 th frame (k = 1, 2, 3, . . . ,K) as input, as de-
picted in Fig. 4.

The clutter brought on by other objects and the noise
produced by the radar receiver due to temperature, weather,
and other factors influence the quality of the radar signal.
Therefore, the range bin cells containing the target candi-
dates and their Doppler shifts are identified by performing
2D-CA-CFAR processing for each RDM. 2D-CA-CFAR,
2D-OS-CFAR, and other CFAR algorithms are increasingly
being utilized [29], [30]. 2D-OS-CFAR performs better in
scenarios with numerous strong interference targets, but the
computational effort is substantial [31]. 2D-CA-CFAR is
computationally simple and exhibits good performance in
pure-noise situations. The 2D-CA-CFAR algorithm is cho-
sen because the environmental background of this study is
not complex, the subject is only one person, and the require-
ment for real-time performance is high. In addition, because
the millimeter wave has a high sweep bandwidth, the range
bin cell corresponds to a tiny distance interval; therefore, the
protection and reference cells of the CA-CFAR algorithm do
not affect the measurable range of the radar. CFAR-related
algorithms are not the main topic of this work, and the cor-
relations between false alarm probability, judgment thresh-
old, and detection probability are discussed in more detail in
[31].

Objects in the RDM that exceed the threshold after 2D-
CA-CFAR processing are referred to as target candidates.
The instantaneous velocities of the target candidates in the
kM + 1 th frame are calculated using the Doppler shift. All
target candidates, including the subject, remain immobile
when the velocities are zero. As a result, the rotation angle
θkM+1

r is zero, and the motor does not need to be adjusted to
change the orientation of the radar module.

A target candidate matrix (TCM) AkM+1
TCM is created if

u (u = 1, 2, 3, . . . ,U) moving targets are detected in the
kM + 1th frame, with the number of columns representing
the number of candidates. The first row is the distance RkM+1
from the radar, and the second row represents the instanta-
neous velocity information vkM+1, as shown in (4).

AkM+1
TCM =

[
RkM+1

1 RkM+1
2 RkM+1

3 · · · RkM+1
U

vkM+1
1 vkM+1

2 vkM+1
3 · · · vkM+1

U

]
(4)

The instantaneous angle of the object can be calculated by
the following

θ = sin−1 λ∆ω

2πd
, (5)
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where λ is the wavelength, ∆ω is the phase difference ob-
tained after angle-FFT processing in the antenna direction
based on the data obtained by RDM, and d is the pitch of
the receiver antennas. The geometric significance of θ is the
angle of arrival (AoA) of the object with the radar module
in the horizontal plane.

It is assumed that the radar coordinate point is the ori-
gin of the coordinate system, and the initial orientation of
the radar module is the positive direction of the y-axis, from
which the absolute coordinate system is established. The
initial position and velocity of the target are (0,R0

1) and zero,
respectively. Additionally, angle θkM+1

a is formed by the ini-
tial and current radar orientations and is updated in real time.
The orientation of the radar changes when tracking the tar-
get. Therefore, utilizing θkM+1

a to map the target’s current
coordinates into the initial absolute coordinates is necessary.
In this way, the TCM can be expanded to five rows, as shown
in (6), with the third row representing the angle information
and the fourth and fifth rows representing the x-axis and y-
axis absolute coordinates, respectively. The x-axis and y-
axis directions are defined in Fig. 3.

A0
TCM =


R0

1
0
0
0

R0
1

 ,
AkM+1

TCM

=



RkM+1
1 · · · RkM+1

U

vkM+1
1 · · · vkM+1

U

θkM+1
1 · · · θkM+1

U

RkM+1
1 sin(θkM+1

1 + θ(k−1)M+1
a ) · · · RkM+1

U sin(θkM+1
U + θ(k−1)M+1

a )

RkM+1
1 cos(θkM+1

1 + θ(k−1)M+1
a ) · · · RkM+1

U cos(θkM+1
U + θ(k−1)M+1

a )


(6)

Although the subject may generate multiple target can-
didates, clutter may also exist in the TCM. Therefore, a
range of values is specified based on the prior motion in-
formation of the target, which is very similar to the im-
proved range bin selection method we proposed previously
[24]. The distinction is that the specified range of values
in this study is expanded from a one-dimensional line to
a two-dimensional surface. All target candidates within a
specific range are regarded as being produced by the subject
and creating a new target matrix AkM+1

TM . Then, averaging
along each row of the AkM+1

TM yields a rotation decision ma-
trix AkM+1

DM for that frame with one column and five rows, as
shown in (7).

AkM+1
DM =



R
kM+1

vkM+1

θ
kM+1

R
kM+1

sin
(
θ

kM+1
+ θ(k−1)M+1

a

)
R

kM+1
cos

(
θ

kM+1
+ θ(k−1)M+1

a

)


, (7)

where θ
kM+1

is the angle between the subject and the posi-
tive direction of the radar module. To obtain the AkM+1

TM , the
specific range of values for the current TCM is defined as

1) The center coordinates of the circle are set to the values
A(k−1)M+1

DM (4,1) and A(k−1)M+1
DM (5,1) of the preceding rotation

period.

2) The human walking process can be approximated as a
uniform motion, so the radius rkM+1

s of the specific range
of values can be calculated using (8) and (9). The protec-
tion unit βs is also introduced to increase fault tolerance,
considering that there is occasionally acceleration from
the stationary state to the uniform state.

rkM+1
s =

(∣∣∣v(k−1)M+1
∣∣∣ Tr

)
+ βs, (8)

βs =
1
2

asTr
2, (9)

where as is the subject’s acceleration, and the value can
be adjusted based on the conditions of the environment
and the application background.

3) Assume that matrix TCM has u (u = 1, 2, 3, . . . ,U) target
candidates. Then, the target candidates satisfying (10)
are retained to form AkM+1

TM . This is compared to the ma-
trix A0

TCM when k is zero.

rkM+1
s ≥

√√√√√√√(
AkM+1

TCM (4,u) − A(k−1)M+1
DM (4,1)

)2
+(

AkM+1
TCM (5,u) − A(k−1)M+1

DM (5,1)

)2
(10)

When AkM+1
TCM or AkM+1

TM is empty, AkM+1
DM inherits the ma-

trix A(k−1)M+1
DM except for the second element (instantaneous

velocity information), because there is no moving target in
a particular range. Hence, the value of the second element
is zero.

By contrast, AkM+1
TM is averaged along the row direction

to produce AkM+1
DM if it is not empty. AkM+1

DM (3,1) is the arrival
angle of the subject, and its angle with the positive direction
of the y-axis in absolute coordinates is AkM+1

DM (3,1) +θ
(k−1)M+1
a .

The rotation angle threshold value θs is set to filter an-
gle AkM+1

DM (3,1). If the subject’s movement results in only a
slight angle shift, it is not essential to rotate the motor to
change the radar’s orientation. Thus, the proposed method
can be used to ensure that the subject is always within the
measured range and not precisely on the midline of the radar
azimuth. Frequent, brief back-and-forth rotations may re-
duce the accuracy of heart rate measurements. The Algo-
rithm I calculates the angle θkM+1

r the motor needs to rotate
at each period and updates the angle θkM+1

a . Finally, the step-
ping motor operates according to angle θkM+1

r .
In the multi-subject scenario, regardless of whether the

other subjects are stationary, their information will not be in-
cluded in the ATM since they are not within a specific range.
Usually, the specific range is very small. For example, if the
rotation period is 0.2 s and the average speed is 1 m/s, the
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radius of the search range is only about 0.2 m. The proba-
bility of other subjects entering this range is very low. An
object may generate more than one target candidate point.
Even if the other subjects are close to the tracked subject,
only a few points from other subjects exist within the spe-
cific range. Then, the average processing in the calculation
of ADM will remove their effect. Therefore, the proposed
tracking method can also correctly lock the target without
interference from other subjects in a multi-subject scenario.

3.2 Heart Rate Monitoring

The approach mentioned above ensures that the subject is
constantly within the measurement range. By examining the
RPM, the phase change information ϕ(t) can be obtained
from the range bin cell where the subject is located. The
thoracic skin displacement x(t) is determined by using the
phase change information, and this displacement is then uti-
lized to extract the heartbeat signal and determine the heart
rate.

As discussed in the introduction, subjects had to remain
still (sitting, standing, or lying down) for the measurement
in most earlier studies using radar-based heart rate moni-
toring. In addition, the subjects were typically close to the
radar. In this situation, techniques such as RPM peak de-
tection can quickly identify the range bin cell in which the
subject is located. Furthermore, once the range bin cell is lo-
cated, no further modifications are required for the duration
of the measuring cycle.

In contrast, the subjects in this study were accompanied
by two states, motion and stationary, implying that the target
range bin cells were constantly changing. Additionally, be-
cause RPM peak-seeking or RDM peak-seeking is suscep-
tible to noise, it is challenging to locate the target range bin
cells using these methods alone. Therefore, we suggested
the improved adaptive range bin selection approach [24],
which is also utilized in this study, to collect high-quality
phase information precisely and swiftly.

The initial location confirmation and adaptive range bin
selection are two parts of the IARBS method. The initial

DRM Di is obtained in the first step by immediately accu-
mulating the up-chirp signals of H frames, which ensures
that the appropriate range bin cell αH

optimal is acquired at the
beginning.

In the second stage, starting with frame H + 1, the in-
stantaneous velocity of the subject, as determined by the
data from the preceding frames, adaptively limits the peak-
seeking range of the DRM for each frame. The following
are the justifications for not directly using the data from ma-
trix ADM. High real-time performance is needed for motor
rotation, and the rotation angle calculation function quickly
calculates the subject’s approximate position per M frames.
However, heart rate measurement must precisely obtain the
optimal range bin cell.

aH+ j
max , αH+ j

min , and αH+ j
optimal are the upper and lower bounds

of the peak-seeking range and the outcomes for frame H + j
( j = 1, 2, 3, . . . , J), respectively. Their relationship is de-
fined by (11), (12), and (13).

α
H+ j
min = α

H+( j−1)
optimal −

 v
H+ j
m Tf

Rbin

 − βH+ j
p , (11)

α
H+ j
max = α

H+( j−1)
optimal +

 v
H+ j
m Tf

Rbin

 + β
H+ j
p , (12)

β
H+ j
p =

η
αH+ j

max − α
H+ j
min + 1

2


 , (13)

where d. . .e rounds the element to the next larger integer,
and Rbin represents the length of each range bin cell. The
instantaneous velocity of the subject from frame H + ( j− 1)
to frame H + j is represented by vH+j

m . The coefficient η (0 ≤
η ≤ 1) and the peak-seeking range determine the protection
cell length, represented as βH+ j

p . H and η are typically set at
0.5 and 0.1, respectively, according to [24].

After choosing the optimal range bin cell, L phase in-
formation (L chirp signals per frame) can be collected for
each frame and averaged to enhance the phase quality. This
implies that each frame extracts a phase value in the optimal
range bin to which it corresponds. Then, the phase infor-
mation of each frame in an observation window is stitched
together in order of time, which gives the phase information
ϕ(t) over time.

Sudden body shaking or noise may occur during the
measurement, and longer observation windows will provide
better immunity to interference. The measurement will also
be more accurate because the longer the data, the higher is
the resolution of the FFT bins. In contrast, a shorter obser-
vation window provides a better real-time performance. The
length of the observation window should be adjusted accord-
ing to the application. In addition, if the subsequent win-
dows are consecutive, the first stage of the IARBS method
can be skipped after processing for the first observation win-
dow. Finally, the subject’s thoracic displacement x(t) is de-
termined using (3).

Along with the heartbeat signal, x(t) includes the respi-
ration signal and other noises (e.g., body and radar shaking).
Wavelet transform and bandpass filter are two techniques for
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extracting heartbeat signals [32]–[35]. However, these con-
ventional techniques have limitations because the heartbeat
signal differs from person to person and the human heart
rate is close to the high-order harmonics of the respiratory
frequency.

An improved empirical mode decomposition (EMD)
method called ICEEMDAN can adaptively divide a signal
into a limited number of intrinsic mode functions (IMFs)
depending on the time scale of the signal [36], [37]. There-
fore, this study uses the ICEEMDAN method to decompose
the x(t) and reconstruct the heartbeat signal, which was con-
firmed in our previous work. The relationship between x(t)
and each IMF, and the residual rn(t) is given by (14).

x(t) =

n∑
i=1

IMFi(t) + rn(t) i = 1, 2, 3, . . . , n (14)

Then all IMFs perform a spectral analysis. The IMF
with energy concentrated at 0.8 Hz to 2.0 Hz as heart IMF
is extracted to reconstruct the heartbeat signal, and the heart
rate can be calculated [28].

4. Experiment

4.1 Equipment

In this experiment, a stepping motor with the specification
NEMA17 was employed, and an Arduino UNO develop-
ment board was used to connect the motor to the computer.
The angle information of the subject was transmitted from
the computer to the Arduino via serial communication. This
motor is a hybrid stepping motor that combines the benefits
of reactive and permanent magnet types. It has a high res-
olution, speed, and torque, and the specific parameters are
listed in Table 1.

The radar module used in this research was based on
Texas Instruments Inc. IWR1443. It operates at frequencies
in the 77–81 GHz range and can continuously chirp up to
4 GHz. However, the radar module can only send chirp sig-
nals with a bandwidth of 3.6 GHz during operation, owing
to local laws in Japan. Furthermore, the maximum effective
isotropic radiated power (EIRP) complies with the Japanese
Radio Law and the FFC regulations. It does not cause harm
to the human body. In contrast to the SISO mode used by
traditional heart rate measurement techniques, in this study,
the radar uses a 1Tx4Rx mode to gather data on the subject’s
angle. The main parameters of the radar module are listed
in Table 2.

Although the MIMO mode provides a better angular
resolution than the SIMO mode, the SIMO mode is utilized
in this study for the following reasons.

First, the background of this application is the medical
monitoring of older people living alone. In most cases, there
is typically no interference from other moving targets after
screening using range-FFT and Doppler-FFT processing.

Second, as discussed in Sect. 3, after locking the target
subject using the proposed method, the range of the current

Table 1 Motor parameters list.

Table 2 Radar module main parameters.

Fig. 6 The physical diagram of the hardware.

target selection is restricted to the spatial plane based on the
target position of the previous rotation period. Therefore,
even if other subjects are present during the measurement
procedure, the proposed method ensures that there is no in-
terference from them.

Third, employing the 3Tx4Rx mode for radar will in-
evitably increase the frame period and the amount of com-
putation. This will reduce the real-time performance of the
motor rotation and lead to the possibility that the subject will
be out of the measurement range. The SISO data is utilized
to calculate the chest displacement; hence, switching to the
MIMO mode while maintaining a constant frame time will
reduce the length of the SISO data. The phase quality of
the IF signal is subsequently reduced. To increase measure-
ment accuracy, this study focus on the phase quality of the
IF signal rather than just the angular precision and angular
resolution of the target subject.

In addition, we proposed in [24] a measurement
method to simultaneously measure the heart rate of multiple
people while walking. The proposed method for this study
tracks a target subject and measures the vital signs, aiming
to maximize the measurement range. Theoretically, it can
also obtain the vital signs of other people within the mea-
surement range. Moreover, the motor rotation angle calcu-
lation algorithm can be initialized to change the target sub-
ject.

A physical diagram of the hardware is shown in Fig. 6.
A bracket holds the radar module on a circular plate, and the
stepping motor rotates the plate. A DC power supply feeds
the motor.
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4.2 Experimental Environment and Route

The experiment for this study has four parts: a fixed route
experiment, a random route experiment, an arm swing
(more normal walking motion) comparison experiment, and
a multi-subject scenario experiment.

There are five fixed routes, A, B, C, D, and E, as shown
in Fig. 7(a) and (b). Routes A, B, and C are horizontal lines
with midpoints of 0.5, 1, and 1.5 m from the radar mod-
ule, and their ends are at an angle of 90 degrees from the
radar. Move along a straight line with an average speed of
roughly 0.5 m/s and 1 m/s, starting at the right endpoint of
each route. For simplicity, the routes are denoted as A1, B1,
C1 (average speed of 0.5 m/s), and A2, B2, and C2 (average
speed of 1 m/s), respectively. The x-axis and y-axis direc-
tions are also defined in the various subplots of Fig. 7.

Route D is a 180-degree arc with a radius of one meter
centered on the radar coordinates. The starting point coor-
dinates are (1, 0) and also move with an average speed of
0.5 m/s (route D1) and 1 m/s (route D2), respectively.

The above routes evaluate the feasibility of the pro-
posed method, whereas route E is considered for its appli-
cability. The subject traveled down route E in a 4 m × 2 m
rectangle at a typical walking speed of 1 m/s. Furthermore,
in the fixed route experiment, the subject attempted to face
the radar module with either the front or back of the body.

The random route is then a free walk within a 4.5 × 5
square meter area in front of the radar module to further
measure the practical application potential of the proposed
method.

There are two routes for the arm swing comparison ex-
periment, as shown in Fig. 7(d). Routes F1 and G1 indi-
cate scenes without arm swings, whereas F2 and G2 indi-
cate scenes with arm swings. The subjects moved along the
route back and forth at an average speed of no more than
1 m/s.

The multi-subject scenario experiment aims to demon-
strate that the proposed measurement system can precisely
track the target subject in this case. This experiment was
conducted with three subjects simultaneously, as shown in
Fig. 7(e). Subject I, as the target, walked back and forth be-
tween 0.5 m and 3.5 m in front of the radar at an average
speed of no more than 1 m/s (with the arm swing). Subjects
II and III walked randomly along a horizontal straight line
1 and 3 m from the front of the radar, respectively. This ex-
periment can observe whether the orientation of the radar is
interfered with by other people while the measurement sys-
tem tracks subject I.

The subjects alternated between walking and con-
stantly standing during each measurement period of 60 s
to simulate the movement of people in the room. Figure 8
depicts the actual experimental scenario. Additionally, the
subject wore an ECG device to record heart rate data during
the measurement.

Fig. 7 Walking route maps of subjects.
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Fig. 8 Experiment scenarios.

Fig. 9 The figure depicts how to select the appropriate minimum rotation
angle by the half-power angle of radar.

4.3 Parameter Analysis

The radar’s horizontal left-half power angle is θleft, and the
minimum measurement distance is Rmin. The following
equation must be satisfied by the variables M and θs.

MTfvp <
|θleft − θs| πRmin

180◦
, (15)

where vp is the speed at which the person moves under nor-
mal conditions. As shown in Fig. 9, assume that the sub-
ject’s distance from the radar is precisely Rmin and that the
subject’s angle with the radar centerline is infinitesimally
close to θs. In the next rotation period, the possible walking
distance of the subject is at most MTfvp to ensure that it is
within the measurement range. In the context of the appli-
cation of this measurement system, elderly individuals who

Table 3 Information about subjects.

live alone typically do not move indoors at speeds greater
than 1 m/s. This experiment sets M and θs to 4 and 5 degrees
because Rmin is 0.5 m and the half-power angle of azimuth
and elevation are about 70 and 10 degrees, respectively.

4.4 Experimental Results

Six volunteers participated in this experiment, and Table 3
lists their heights and weights. In order to better evaluate
the proposed approach, it is necessary to reduce the variable
factors between the different subjects as much as possible.
Therefore, the height of the radar module was adjusted ac-
cording to the thoracic height of the volunteer before the
beginning of the measurement to try to keep both at the
same horizontal plane. Each volunteer participated in all
the routes of this experiment.

Figure 10 shows the cumulative distribution func-
tions (CDF) of the absolute values of the measured AoA
(
∣∣∣Angle

∣∣∣ :
∣∣∣∣AkM+1

DM (3,1)

∣∣∣∣) for each rotation period of the fixed
route and the random route experiments for all subjects.
Overall, the subjects remained within the ideal measure-
ment range of plus or minus 35 degrees in front of the radar
throughout the measurement cycle.

Owing to the subjects’ faster angular velocity, as they
moved along route A, the AoA values for route A were
greater than those measured for the other routes. The re-
sults for routes B and C showed that in 90 percent of cases,
the subjects had an AoA of less than 10 degrees. The AoA
values increased with the movement speed of the subject.
However, the effect is not particularly substantial, according
to the combined results of all fixed route experiments.

The results for route D show that the measurement sys-
tem tracks accurately even when the subject’s angle changes
by up to 180 degrees. Accordingly, depending on the re-
quirements of the application, it is possible to position the
radar module in the center of the room for 360-degree track-
ing measures. The angular velocity of the subject relative to
the radar during route D was higher than that of routes A, B,
and C, which led to a more significant difference in the re-
sults of the CDF of routes D1 and D2 than the other routes.
In addition, the measurement system can accurately track
the subject during random walks. In a few cases, the an-
gle of the subject’s position was approximately 30 degrees.
However, no subject’s position was outside the ideal mea-
surement range, which demonstrates the reliability of the
system.

Because route E contains straight lines similar to routes
A-C, Fig. 11 shows only the results of the traced trail for one
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Fig. 10 The cumulative distribution functions of the absolute values of the measured subject’s angle
information.

Fig. 11 The results of the traced trail for one subject walking along routes D and E.

subject walking along routes D and E. The results show that
the tracking trail is still rather precise, even if the proposed
method quickly detects the subject’s approximate location
and sends it to the motor.

The RPM of a subject walking along route D2 and the
optimal range bin results achieved by the IARBS method are
shown in Fig. 12(a) and (b). The phases extracted from the
optimal range bins are then stitched together along the slow
time dimension to calculate the x(t) of the subject, as shown
in Fig. 12(c).

Next, x(t) was decomposed into a finite number of
IMFs using the ICEEMDAN method. FFT processing is

performed on them to select the heart IMF among IMFs.
The analysis was performed with a 30 s observation win-
dow. The results after decomposition by ICEEMDAN are
shown in Fig. 13, with the time and frequency domains of
each IMF on the left and right, respectively. According to
the frequency domain analysis, the heart IMF and breathing
IMF were IMF3 and IMF5. This study focused on the heart-
beat signal because the breathing signal is a low-frequency
component that is simple to extract. Finally, the heartbeat
signal was reconstructed. Finally, IMF3 was used to recon-
struct the heartbeat signal and estimate the heart rate.

In addition, the phase change data and low-frequency
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Fig. 12 The RPM (a) of a subject walking along route D2, the optimal
range bin results (b) achieved by the IARBS method, and the stitched phase
change information (c) are shown in this figure.

IMFs demonstrate that walking causes the x(t) signal to vary
more than when the subject is motionless [28].

Figure 14(a) shows a frequency domain comparison of
the reconstructed heartbeat signal and ECG signal. These
measurement data were obtained using route D2. The
heart rates obtained by the proposed method and ECG were
1.767 Hz and 1.833 Hz, respectively, with an absolute error
of approximately 3.96 beats per minute (bpm), and the ac-
curacy was approximately 96.4%.

The spectrum of the measurements is wider than that
of the ECG. The following are some of the possible reasons
for this phenomenon. Firstly, there is a fundamental dif-
ference between ECG, an electrical signal, and radar-based
heart rate measurement, measured by a displacement signal
from the skin. Secondly, the human chest skin is not plane,
and the skin displacement caused by the heartbeat is slightly
different at each location. Thirdly, the subject was walking,
and there was inevitably a small amount of noise compared
to stationary. The ICEEMDAN method has minimized the

Fig. 13 Results of ICEEMDAN decomposition. The left and right sides
are the time domain and frequency domain, respectively.

Fig. 14 (a) The frequency domain comparison of the reconstructed heart-
beat signal and the ECG signal. (b) The time domain comparison of the
reconstructed heartbeat waveforms and the ECG waveform.
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Table 4 Accuracy of heart rate measurement [%].

Fig. 15 The correlation of the RR interval measured by radar with ECG
data.

amplitude of the interference term as much as possible. In
this research field, the most attention is paid to the accuracy
of heart rate and RR interval measurements. Therefore, the
practicality of the proposed method is not affected.

Table 4 lists the average heart rate measurement ac-
curacy for each route. The accuracy increased with prox-
imity to the radar or slower speeds, and route A1 had the
highest measurement accuracy at 98.42%. The results of
routes F and G show that swinging the arm while walk-
ing decreases the accuracy of the heart rate measurement
by approximately 0.3% to 0.56%. The accuracy of the heart
rate measurements decreased by 0.53%, while other people
interfered. The overall average measurement accuracy, in-
cluding the random route, was above 96%, thus maintaining
a high level of accuracy.

To better observe the details, a portion of the recon-
structed heartbeat waveform is compared with its corre-
sponding ECG waveform in the time domain, as shown in
Fig. 14(b). The results showed a higher correlation between
the measured heartbeat waveform’s RR interval (spacing be-
tween rhombuses) and the ECG data. Meanwhile, Fig. 15
depicts the correlation between the mean RR interval time
of all measurements of the fixed route experiment, random
route experiment, and the corresponding ECG. The radar
and ECG data were the horizontal and vertical coordinates,
respectively. The correlation coefficient γ of the two datasets
was calculated using (16), and their correlation coefficient
was 0.9905, indicating a high correlation between them.

γ =
1

P − 1

P∑
i=1

(Fi − µF
σF

) (Ei − µE
σE

)
, (16)

where P and i are the total number of data and their indices,
respectively. F is the data measured by the radar and E is
the ECG data used as a reference. The means of the two data
are µF and µE and their standard deviations are σF and σE.
Figure 16 shows the CDF of the absolute error of all fixed

Fig. 16 The cumulative distribution functions of the absolute error of
heart rate measurement.

Table 5 The RMSE of heart rate measurement (the fixed and random
route experiment) [BPM].

and random route experiment measurements. In 80% of the
measurements, the absolute error was under 2.9 bpm. There
were no instances when the absolute error exceeded 6 bpm,
even when the random route results were considered.

To further quantitatively analyze the proposed method’s
heart rate measurement results, 60 s streaming data were an-
alyzed with a 30 s observation window and a 1 s sliding step.
Then, the heart rate for each observation window is calcu-
lated and contrasted with the ECG data to determine the root
mean square error (RMSE), as shown in (17).

RMSE =

√√√
1
Q

Q∑
i=1

(HRRi − HREi)2, (17)

where Q and i are the total number of observation windows
and their index numbers, respectively. HRR and HRE are
the heart rates measured by each observation window and
reference heart rate (ECG data), respectively.

Table 5 presents the RMSE of the heart rate measure-
ments of the fixed and random route experiments. The re-
sults demonstrate that as the distance and speed increase, the
RMSE of the heart rate estimation also increases. Accord-
ing to the average RMSE value for each route, the RMSE
is approximately 1.2 bpm lower when the subject walks at
0.5 m/s as opposed to 1 m/s. We speculate that precision
may be affected because the stepping motor rotates more
frequently, causing the fixed plate to vibrate and generate
noise. Meanwhile, the experimental results of [24] demon-
strated that the speed of the subject can affect how accu-
rately the IARBS method chooses the optimal range bin.
Additionally, the positive association between RMSE and
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Table 6 The RMSE of heart rate measurement (the arm swing compari-
son experiment) [BPM].

distance will rise less quickly or stop being significant if
the subject’s distance from the radar exceeds 1 m. Likewise,
when the subject moves at a speed of 1 m/s, the rate at which
the RMSE increases with distance will decrease. Therefore,
the experimental results showed that the RMSE values of
the proposed method for heart rate estimation converged to
a particular value and were stable.

The heart rate estimates are highly accurate even when
the subject’s angle information changes significantly, as ev-
idenced by the mean RMSEs of 2.45 bpm and 3.68 bpm for
routes D1 and D2, respectively. The results for each vol-
unteer in the random route experiment varied significantly.
However, the RMSEs were all below 6.9 bpm, with a mean
value of 4.35 bpm. Some of the larger RMSEs are caused by
spending extended periods with the side of the body facing
the radar, which decreases the measurement accuracy.

Table 6 presents the RMSE of the arm swing compari-
son experiment’s heart rate measurements. Notwithstanding
individual variations, swinging of the subject’s arm through-
out the measurement process can affect the measurement ac-
curacy. During the arm swing, the average RMSE of routes
F and G decreased by 0.49 bpm and 0.25 bpm, respectively.
This influence is caused by the left anterior thoracic muscle
movement when the arm is swung, and the movement of the
upper arm also causes a change in the phase of the IF signal.

Figure 17(a), (b), and (c) depict the RPM of the multi-
subject scenario experiment, the RDM of a certain frame
during the measurement, and the optimal range bin results
of the target subject achieved by the IARBS method, respec-
tively. The target subject was within the measurement range
at all times and the rotation of the radar module was not
disturbed by other people. Figure 17(b) shows the RDM
when the target subject and other subjects overlapped on the
RPM. The IARBS method can adaptively adjust the peak-
seeking range based on the velocity of the target subject in
the previous time. It is robust to other subjects suddenly
entering its peak-seeking range. Even if other subjects are
at the same range bin as the target subject for an extended
time, their heart rates can be separated by the ICEEMDAN
method. Figure 17(c) shows that the IARBS method can ac-
curately select the optimal range bin of the target subject in
the multi-subject scenario. However, there are many inter-
ference factors in this case, such as the possible presence of
multiple subjects’ arm swings and body shaking simultane-
ously in one range bin cell.

As discussed in Sect. 3, longer observation windows re-

Fig. 17 The RPM (a) of the multi-subject scenario experiment, the RDM
(b) of a certain frame during the measurement, and the optimal range bin
results (c) of the target subject achieved by the IARBS method are shown
in this figure.

sult in better interference immunity. Figure 18 compares
the heart IMF and ECG data in the frequency domain for
each observation window in the multi-subject scenario ex-
periment. The ECG data showed that the mean heart rate
during the measurement period was 1.402 Hz. No signifi-
cant peaks in the heart IMF made it challenging to estimate
the heart rate, whether the observation window was 30, 40,
or 50 s. The peak frequency is 1.417 Hz when the observa-
tion window is 60 s, and the absolute error is about 0.9 bpm
compared to the ECG data, with an accuracy of 98.93%. The
measurement accuracies of the six subjects were 95.37%,
98.93%, 95.55%, 96.28%, 95.49%, and 95.69%, respec-
tively, with a mean value of 96.22%. The measurement ac-
curacy of this experiment was also influenced by the random
movements of the non-target subjects, which were similar
to the random route experiment. The experimental results
show that the heart rate measurement for the target subject
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Fig. 18 Comparison of heart IMF and ECG data in the frequency domain
for each observation window in the multi-subject scenario experiment.

still maintains a high accuracy in multiple people scenarios.
In addition, it is challenging to improve real-time per-

formance by shortening the observation window whenever
heart rate is measured using FFT-based time-frequency do-
main analysis, including the ICEEMDAN method. For ex-
ample, when the frame period is 0.05 s (typical), and the
observation window is below 10 s and 5 s, the spectrum’s
frequency resolution will be as low as 0.1 Hz and 0.2 Hz.
Meanwhile, the EMD-based algorithm (ICEEMDAN) is re-
quired for the data’s length, which is not sufficient to sepa-
rate the individual frequency components if it is too short.
[15], [28] using EMD-based algorithms to measure heart
rate with the subject at stationary have employed an obser-
vation window of at least 15 s. Since the subject in this study
was moving, the evaluation was attempted with an observa-
tion window of 30 s or more.

Figure 19 shows two spectrums of heart IMF mea-
sured with a 10-second observation window. As shown
in Fig. 19(a) and (b), the heart rate can be easily detected
when interference is low in the spectrum of the heart IMF.
However, the low frequency resolution of the spectrum re-

Fig. 19 In (a) and (c), the two spectrums of heart IMF were measured
with a 10-second observation window, and the ECG data corresponding to
them are shown in (b) and (d).

sulted in a measurement error of 0.2 Hz. Due to the short-
ness of the data, heart rate estimation will become difficult
when ICEEMDAN cannot efficiently extract high-quality,
low-interference heart IMF, as shown in Fig. 19(c) and (d).
Interference occurs randomly, and clearly, longer observa-
tion windows possess better robustness.

In order to trade off the real-time performance and sta-
bility of the measurement system, the following attempts are
considered in future work. One is to shorten the frame pe-
riod as much as possible to increase the data length, pro-
vided the radar hardware supports it. The other one is
that the application uses an overall delayed dynamic display
when displaying heartbeat waveforms. The next measure-
ment and processing are performed simultaneously during
the previous waveform display. When the previous wave-
form is just about finished, the next waveform is displayed
immediately afterward.
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Because this study is the first to estimate the heart rate
by adjusting the radar measurement range through stepping
motors, the measurement results are difficult to compare
quantitatively with other papers. Therefore, the main fo-
cus is the qualitative comparison and analysis of this exper-
iment’s results with those of other works’ measurements.

Most radar-based heart rate estimation methods, such
as those in [2]–[20], cannot perform tracking measurements
on moving targets, whereas the proposed method offers this
possibility.

In the experiment in [23], the subject moved slowly and
the heart rate was measured with 90% accuracy. In [21], the
subjects made only backward and forward movements with
a measurement error range of 0–8 bpm. By contrast, the
subjects in this experiment were faster, and the RMSEs of
the measurements were all below 7 bpm. Moreover, the av-
erage measurement accuracy for each route exceeded 96%.
The measurement accuracy in our previous study [24] was
95.88%. This is because the subject was consistently inside
the ideal measurement range in this experiment, which in-
creased the accuracy.

The six participants in [15] were in a stationary state.
At distances of 1 m, 1.5 m, 2 m, and 2.5 m from the radar, the
mean values of the RMSE for heart rate estimation were ap-
proximately 2.39 bpm, 2.57 bpm, 3.23 bpm, and 4.69 bpm,
respectively. Although the results for routes B and C were
higher than 2.39 and 2.57 bpm, the farthest distance in route
E was about 3.61 m, and the mean value of RMSE was only
3.67 bpm. In addition, the proposed method can change the
radar orientation to adjust the measurement range and es-
timate the heart rate of a moving person, making it more
advantageous for application.

5. Conclusion

In conclusion, this study proposes a novel radar-based adap-
tive tracking method for measuring the heart rate of a mov-
ing subject. The proposed algorithm is employed to deter-
mine the position of the subject to control a stepping motor
that adjusts the radar measurement range. The results of the
fixed-route experiments revealed that when the subject was
moving at a speed of 0.5 m/s, the mean values of RMSE for
heart rate measurements were all below 2.85 bpm, and when
moving at a speed of 1 m/s, they were all below 4.05 bpm.
When subjects walked at random routes and speeds, the
RMSE of the measurements were all below 6.85 bpm, with
a mean value of 4.35 bpm. In addition, this study not only
evaluated the potential effect of arm swing (more normal
walking motion) on heart rate measurement but also demon-
strated the ability of the proposed method to measure heart
rate in a multiple-person scenario.

Meanwhile, the overall measurement accuracy was
greater than 96%, when the random route was included.
Moreover, the RR intervals of the reconstructed heartbeat
signal and ECG data were highly correlated, with a correla-
tion coefficient of 0.9905. In the future, we plan to improve
the experimental platform to reduce the noise generated by

the radar as it rotates to improve the accuracy of the mea-
surements.
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