
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009
445

INVITED SURVEY PAPER

Trend of Autonomous Decentralized System Technologies and Their
Application in IC Card Ticket System

Kinji MORI†a), Fellow and Akio SHIIBASHI††b), Member

SUMMARY The advancement of technology is ensured by step-by-
step innovation and its implementation into society. Autonomous Decen-
tralized Systems (ADSs) have been growing since first proposed in 1977.
Since then, the ADS technologies and their implementations have inter-
acted with the evolving markets, sciences, and technologies. The ADS
concept is proposed on biological analogy, and its technologies have been
advanced according to changing and expanding requirements. These tech-
nologies are now categorized into six generations on the basis of require-
ments and system structures, but the ADS concept and its system archi-
tecture have not changed. The requirements for the system can be divided
in operation-oriented, mass service-oriented, and personal service-oriented
categories. Moreover, these technologies have been realized in homo-
geneous system structure and, as the next step, in heterogeneous system
structure. These technologies have been widely applied in manufacturing,
telecommunications, information provision/utilization, data centers, trans-
portation, and so on. They have been operating successfully throughout the
world. In particular, ADS technologies have been applied in Suica, the IC
card ticket system (ICCTS) for fare collection and e-commerce. This sys-
tem is not only expanding in size and functionality but also its components
are being modified almost every day without stopping its operation. This
system and its technologies are shown here. Finally, the future direction of
ADS is discussed, and one of its technologies is presented.
key words: autonomous decentralized system, on-line property, assurance,
IC card ticket system

1. Introduction

As computing and communication resources have been
gradually decreasing in cost, their roles in the society and
business have become more important. Moreover, accord-
ing to the continuous growth of practical applications and
the networking of systems on a large scale, the systems have
expanded and become more and more complicated. There-
fore, the replacement of an entire system at once is impossi-
ble, and thus step-by-step construction without stopping its
operation is required. In a large and complex system, it is
not permitted to stop operation at any time. Even if a part
of the system may fail or be repaired, the application has to
keep performing its functions. Less restriction on the com-
puting and communication resource results in more require-
ments for on-line property consisting of on-line expansion,
on-line maintenance, and fault-tolerance.

Manuscript received September 3, 2007.
Manuscript revised August 26, 2008.
†The author is with Tokyo Institute of Technology, Tokyo, 152-

8552 Japan.
††The author is with East Japan Railway Company, Tokyo, 151-

8578 Japan.
a) E-mail: mori@cs.titech.ac.jp
b) E-mail: shiibashi@jreast.co.jp

DOI: 10.1587/transcom.E92.B.445

Conventional computing technologies have been devel-
oped under a centralized system concept. Even a hierarchi-
cal and functionally-distributed system is based on the view-
point that the total system structure and the functions have
to be determined in advance [1]–[8]. This viewpoint itself is
inconsistent with the system; the structure and the functions
change continuously in the system although the hardware
and software structures are fixed and have little flexibility.

To achieve on-line property, Autonomous Decentral-
ized System (ADS) concept and architecture was proposed
in 1977 on the basis of biological analogy [9]–[11]. Since
then the ADS concept has been applied to various fields
of technology such as networks, including the Internet,
communications, multi-computers, software, control, and
robotics [12]–[18]. Also, its architecture and technolo-
gies have been developed and applied in various fields such
as factory automation, transportation, information systems,
telecommunications, e-commerce, and so on. In these appli-
cations, ADS has improved lifecycle-cost efficiency, soft-
ware productivity, flexibility, and adaptability. In the last
30 years, the market and users’ requirements have been
changed and diversified. At the same time, the ADS tech-
nologies have also advanced according to these evolving
situations. Thanks to its wide range of applications, some
of the ADS technologies have been approved as de-facto
standard in many consortiums (ODVA, BAS, and OMG)
[19]–[21], after which the International Symposium on Au-
tonomous Decentralized Systems (ISADS) was founded
(1993) under the sponsorship of IEEE, IEICE, IPSJ, and
SICE. It has since been held every two years. As a result, re-
search and development of ADS has advanced in the world
not only for the control systems [22]–[28] but also for the in-
formation systems [29]–[36]. Recently, researches of ADS
have been accelerated in the IT industry. The Autonomic
Computing project, which is initiated by IBM in 2001, is an
example [37], [38].

In this paper, the trend of ADS is discussed from the
viewpoint of the requirements and the system structure.
Then, as one application, the Suica system is explained. It
is an IC card ticket system (ICCTS) [39]–[44] developed by
East Japan Railway Company (JR East) for fare collection
of transportation and e-commerce. Finally, the future direc-
tion of the ADS will be discussed.

2. Autonomous Decentralized System

Constraints due to cost in computing resources have been

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

446
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

reduced, therefore, the focus is moving from utilization ef-
ficiency to ease of use and construction. For these reasons,
ADS’ objective is to meet the requirements of on-line prop-
erty. In the following subsections, the ADS concept and its
architecture are described.

2.1 Concept

Opportunities and challenges for realizing highly complex,
efficient, and dependable business-and-control systems have
been steadily increasing. They are driven by continuous
growth in the power, intelligence, adaptivity, and open-
ness of technologies applied in computing, communication,
and control systems. Dynamic changes in social and eco-
nomic situations demand the next-generation systems to be
based on adaptive and reusable technologies and applica-
tions. Such systems are expected to have the characteris-
tics of living systems composed of largely autonomous and
decentralized components. Such systems are called Au-
tonomous Decentralized Systems (ADSs). Such a system
is characterized as follows:
(1) The system is the result of integration of subsystems.
(2) In the system, being faulty is normal.

First, a subsystem exists, and the system is the integra-
tion of the subsystems. The objectives, structure, and func-
tions of each subsystem should be clearly defined, but the
total system cannot be clarified ahead of time. Some of the
subsystems may be faulty and need to undergo repair and
construction.

On this standpoint, a system is defined as an ADS if the
following two properties are satisfied:
(1) Autonomous Controllability: Even if one subsystem
fails, is repaired, and/or is newly added, the other subsys-
tems can continue to manage themselves and perform their
own functions.
(2) Autonomous Coordinability: Even if one subsystem
fails, is repaired, and/or is newly added, the other subsys-
tems can coordinate their individual objectives among them-
selves, and can operate in a coordinated fashion.

These two properties assure on-line property consist-
ing of on-line expansion, fault tolerance, and on-line main-
tenance. They suggest that every “autonomous” subsystem
requires an intelligence to manage itself without directing to
or being directed from the other subsystems and to coordi-
nate with the other subsystems [9], [45].

The ADS is realized with autonomous controllability
and autonomous coordinability, and for that purpose, each
subsystem is required to satisfy the following three condi-
tions:
(1) Uniformity (in structure): Each subsystem is uniform in
structure and self-contained, so that it manages itself and
coordinates with others.
(2) Locality (in information): Each subsystem manages it-
self and coordinates with the others based only on local in-
formation.
(3) Equality (in function): Each subsystem is equal in func-
tion. No master-slave relation exists among subsystems.

Fig. 1 Data Field architecture and message format.

2.2 Architecture

ADS is realized based on Data Field (DF) architecture with-
out any central operating or coordinating system. The DF
architecture is composed of two technologies: content-code
communication for autonomous coordinability and data-
driven mechanism for autonomous controllability. Each
subsystem has its own management system, namely Au-
tonomous Control Processor (ACP) to manage itself and co-
ordinate with the others. Each subsystem, called an “Atom,”
consists of application software modules and ACP. The DF
in the Atom is called the Atom Data Field (ADF).
(1) Content-code communication

All subsystems are connected only through the DF with
a uniform interface (Fig. 1); all data are broadcast into the
DF as messages. Individual datum includes a content-code
defined uniquely by content. A subsystem selects to receive
a message on the basis of its content code (Content-code
communication). The sender does not need to indicate the
receiver’s address. This content-code communication en-
ables each subsystem to be autonomous in sending and re-
ceiving data. That is, subsystems do not need to know the
relationship among the sources and the destinations. This
feature of the content-code communication ensures the lo-
cality of information which is necessary for each subsystem
[9], [45].

In the conventional systems applied in P2P communi-
cation, the number of messages grows with the number of
receivers increased. However, under DF architecture, all
nodes can receive the broadcast message in one commu-
nication. Compared to the P2P communication, the num-
ber of messages can be reduced in the condition of multiple
receivers. Moreover, with the increase of subsystems and
communication traffic, the system can be divided into small
DF structures as described in Sect. 3.2.3.
(2) Data-driven mechanism

Each application software module in the subsystem
starts performing after all necessary data is received (Data-
driven mechanism). This mechanism loosely couples mod-
ules. Each subsystem independently judges and controls its
own action. Required content codes for application soft-

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
447

ware modules are pre-registered in the ACP, which can dy-
namically assign content codes based on changes in appli-
cation software modules. The subsystem does not need to
inform other subsystems if the content codes assigned to the
ACP are changed. Each ACP has functions of managing the
data, checking the data, and supporting the test and diagno-
sis (Fig. 1). The function of the application software module
is characterized by the relation between the content codes of
the input data and the output data.

In the conventional systems, data flow architecture is
based on a centralized controller, such as a distribution net-
work [46]. In those systems, the sequence and time of soft-
ware execution are determined ahead of time. In ADS, each
subsystem autonomously implements the software accord-
ing to the content-code data in the DF.

3. Trends in ADS

3.1 The Evolution of Requirements and Technologies

From the view of the total system, conventional systems
were required to achieve high performance, be highly reli-
able, efficient, and so on. However, with the scale of the sys-
tem increasing so rapidly, the total system cannot be deter-
mined ahead of time, and the system structure itself is also
changing constantly. As a breakthrough in systems, ADS
was proposed to achieve on-line property.

Along with advanced information technology and
changing demands, the technologies based on ADS’ concept
and architecture are also evolving gradually. In Table 1, the
trend of ADS is seen from the viewpoint of system require-
ment and system structure.
(1) Requirement: From Operation to Service

Requirement has changed from system operation to
user services. As the users’ requirements have become more
and more diversified, it is difficult to achieve user satisfac-
tion even if the system operation is guaranteed. Therefore,
the system’s service itself has to be evaluated.
(2) Structure: Homogeneity to Heterogeneity

The system structure composition has been changed
from homogeneous components to heterogeneous compo-
nents. To meet users’ increasing demands, businesses in
various fields have to provide new services. In this busi-
ness innovation, the systems have to treat the diverse kinds,
quality, and quantity of the components and functions. As a
result, the heterogeneous requirements can coexist, and the
systems should adapt to changing situations.
(3) Trends

In homogeneous systems, the ADS architecture and
technologies are applied to deal with continuous operation at
system level. Moreover, with the advancement of informa-
tion technology, ADS has focused on the integration of het-
erogeneous systems to assure the system operation. How-
ever, in the 90s, along with changing requirements, ADS
was extended to the information service level to provide
fair service and customized service in different applications.
Currently, the ADS architecture and technologies have been

evolving in the service infrastructure to improve the end-
users’ quality of life. It is expected that, in the near future,
the users not only get services but also actively create the
services. Then, the ADS concept will play a more and more
important role in the paradigm shift.

3.2 On-Line Property

3.2.1 Background

With globalization in the 1980s, intensity in competition in-
creased. Therefore, it was not sufficient for companies to
win a place in a highly competitive market simply by reduc-
ing costs and improving quality. For example, in the steel
production process control system, it is necessary to meet
the various types and quantities of production demands in
global scale. Moreover, in the systems which dealt in seam-
less manufacturing processes, from raw material to the fi-
nal product, non-stop system operation was required. The
ADS technologies were originally proposed to achieve on-
line property. The consumer requirements, technologies,
and application shown in Table 1 are described below.

3.2.2 Requirements

A system may need to change according to user require-
ments. However, its operation cannot be stopped anytime
since the system becomes economically and socially impor-
tant. As a result, the role of on-line property of on-line ex-
pansion, on-line maintenance, and fault tolerance in a sys-
tem, meaning that a system can continue operation during
partial expansion, maintenance, and failure, became more
and more important.

3.2.3 Architecture and Technologies

In the 1980s, as shown in Table 1, the ADS was targetted to
be applied in the area of control. The structure of the control
system was composed of homogeneous components. There-
fore, the structure of DF(s) was also homogeneous. On-line
property is attained by this DF architecture, in which all data
are broadcast, and each subsystem selects to receive the data
necessary for its application modules on the basis of the con-
tent codes (Fig. 2). This feature makes the modules loosely
coupled. Even if some subsystems are under construction or
fail, the system can continue its operation. On-line expan-
sion, on-line maintenance, and fault tolerance technologies
were thus proposed.
(1) On-line expansion

There are three levels of on-line expansion: module,
subsystem, and system. In module level expansion, the ap-
plication software module and database in one Atom are
newly installed into or moved to another Atom. Then they
need only to register their necessary content codes into their
own ACPs and do not need to inform the others. In subsys-
tem level expansion, a subsystem can be constructed, mod-
ified, added, and deleted during operation of the other sub-

448
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

Table 1 Trends in ADS.

systems. The subsystems do not need to know the direct re-
lation with others and need not inform others upon their ad-
dition to or deletion from the system. In the system level ex-
pansion, different ADSs are integrated into one. Two types
of the systems integration are designed. In the first design,
the DFs of different systems are combined into one DF. In
the second design, the different systems are connected by a
gateway, and two different DFs are combined through the
gateway.
(2) On-line maintenance

DF architecture makes it easier for application software
modules to be tested while the system is operating. There
are two kinds of modes for each module: on-line mode and
test mode. On-line data and test data coexist in the DF.
There are two kinds of approaches for an on-line test. In
the first approach, the module with on-line mode uses the
test data to do the test. In the second approach, the module
with the test mode uses the on-line data to make the test.
Online test is supported by a BIT (Built-In Tester module)
in each ACP and by an EXT (External Tester module) which
is an application software module. The BIT module in the
subsystem sets its application software module in the test
mode, and then it generates test data, and checks the test
result. The application software module in test mode re-
ceives data from the DF and processes it. Then it broadcasts
test result data with a test flag to the DF. The BIT of the
system in test mode prevents the signal from being sent to
output devices such as controllers. The EXT monitors test
data and test result data in the DF. By correlating test data
with test result data, the EXT checks fault occurrence in the
application software module in the test mode and broadcasts
fault detection. The BIT independently decides whether to
change the test mode to on-line mode based on test results.

Fig. 2 DF architecture (1).

This test mechanism makes it possible for both on-line and
test modes to coexist in the same system, at the same time.
(3) Fault tolerance

The ADS architecture and its data-driven mechanism
makes it possible for the subsystems and application soft-
ware modules to run freely and asynchronously. The sub-
systems and application software modules are replicated ac-
cording to the requirements and their level of importance.
Replicated application software modules run independently
and send out processed data with the same content code to
the DF. Faulty data are also sent out to the DF. The ACP
in each subsystem receives all data with the same content
code from replicated modules and selects the correct data
from them. Here, the data consistency management mod-
ule in the ACP identifies the same data both by content code
and event number induced with the data. Correct data are
selected from the same data through majority voting logic,
which is flexibly adapted to the predetermined time interval
or the total number of received data.

In the conventional k-out-of-N redundant system, the

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
449

redundancy is only in the subsystem level, and the voter de-
tects the fault as a centralized controller. In the ADS, the
redundancy is not only in the subsystem level but also in the
module level. Each module autonomously detects the fault
based on majority voting logic according to relative redun-
dancy. Under this logic, fault occurrence is detected, and
each application software module avoids being affected by
fault propagation. A subsystem with a replicated module
can intercept any data broadcast from other replicated mod-
ules. If the subsystem includes a faulty application software
module, it detects the internal faults via this interception. As
the results, even if an application software module is faulty,
the subsystem continues operation by using correct data re-
ceived from other replicated application software modules
and recovers this fault by itself.

3.2.4 Application

As one application of ADS, a steel production process con-
trol system was proposed. To improve steel quality and to
reduce cost, the software needed constant modification, re-
vision, and testing. In this system, on-line expansion, on-
line maintenance, and fault tolerance technologies were ef-
fectively utilized not only for the hardware system but also
for the software system.

Production schedule data, broadcast into the DF from
the steel production scheduling module, are received by real
time In/Out Control (I/O CTL) subsystems. Each I/O CTL
has its own responsible control region, and it autonomously
adjusts its own schedule according to the situation by com-
municating with other I/O CTLs through the DF, as shown
in Fig. 2. In this system, the application software modules
are replicated according to their level of importance. Each
module is driven only by the correct and necessary data
received by the ACP. This autonomous data-driven mech-
anism makes it possible to expand, test, and repair the com-
ponent during operation [47]–[49].

3.3 Assurance

3.3.1 Background

By the 1990s, non-stop control system operation had al-
ready reached high levels of efficiency. However, mainte-
nance was manual and not yet automated. Moreover, labor
costs had risen drastically. Therefore, not only the cost of
operation but also the life-cycle cost, mainly consisting of
maintenance cost, became a major consideration. Informa-
tion systems to assist maintenance personnel required more
and more details. It then became necessary to construct a
heterogeneous system in which the facility’s control system
and maintenance information system were integrated. This
structural shift brought about the trend from homogeneous
to heterogeneous operation system, as shown in Table 1(a).
For example, the Autonomous Decentralized Transport Op-
eration Control System (ATOS) for Tokyo metropolitan area
railway system is such a heterogeneous system in which

Fig. 3 DF architecture (2).

train control system and information system are integrated.

3.3.2 Requirements

An integrated system consisting of heterogeneous systems is
required to keep operations safe and stable under heteroge-
neous properties and evolving conditions. This requirement
is called assurance, which includes heterogeneity and adapt-
ability [50].

3.3.3 Architecture and Technologies

The main feature of this architecture is not only that the
structures of the DFs are heterogeneous, but also that var-
ious kinds of data of different quality levels are flowing
through the DF simultaneously (Fig. 3). The heterogeneous
data in the DF need to coordinate with other systems to
achieve non-stop operation. Thus, autonomous heteroge-
neous integration technology and autonomous data filtering
technology were proposed.
(1) Heterogeneous integration

Heterogeneous systems and content-code data coex-
ist in the same DF. In this situation, to meet assurance
requirements, especially for a mission-critical application
in the integrated control and information systems, atom-
icity of the transaction process must be realized. Hetero-
geneous integration technology was proposed to guaran-
tee atomicity by making coordination between heteroge-
neous subsystems both in control system and information
system. When performing a transaction process, each con-
trol/information subsystem autonomously checks the atom-
icity of the processed data by cooperating with other cor-
related control/information subsystems. Based on trans-
action data flowing in the DF, each subsystem judges the
completion of the transaction and commits the process au-
tonomously [22].
(2) Autonomous data filtering

Autonomous data filtering technology is for assuring
the different response time requirements in the integrated
control and information systems, and not interference by
each other in situations of change. In message suppres-
sion technology, the gateway monitors both DFs and judges
whether or not to pass on the message based on the system’s
workload [23]. When the gateway receives transaction data,

450
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

it calculates the estimated response time based on both sys-
tems’ workload, and compares it with the requirement. If
the gateway decides not to pass it on, it sends suppressed
data to the DF. In function filtering technology, to avoid the
data function of control system violated by the data of infor-
mation system, each gateway runs autonomously to avoid
passing through unnecessary information messages to the
control system.

3.3.4 Application

As shown in Fig. 3, ATOS is an application of ADS for in-
tegrating two heterogeneous systems: control systems such
as route and traffic control, and information systems such as
schedule and passenger information [24]–[27]. This system
has been in development over the past 10 years, and some
of the current parts will gradually be replaced even before
the entire system construction is completed. Therefore, the
inherited system, test system, and new system coexist at the
same time. This system must be constructed step-by-step
without stopping train service and disrupting operation of
the currently installed parts of the system.

The system is composed of different regional DF struc-
tures. Each train line is composed of station subsystems,
train-line traffic schedule management subsystem, and a
train-line information service management subsystem. The
network connecting both the station subsystems in the train
line and the train lines are utilized for both control infor-
mation missions. The control system is for real-time ap-
plication, while the information system is required for high
performance. In the station subsystem, the computers for
control and those for information are divided and connected
according to their own mission-oriented networks: namely,
the control Ethernet and the information Ethernet through
the gateway [28], [51].

In this system, the control system should use the train
schedule and train delay data, which is generated by the in-
formation system. However, the control system is running in
real time and has to assure the safe train operation. By using
the autonomous data filtering technology, the control system
can autonomously judge when and how to utilize data from
the information system. Meanwhile, the information system
can utilize control data for monitoring the train condition
and rescheduling at any time.

3.4 Fair Service

3.4.1 Background

By the late 90s, on-line property of system operation was
achieved. In addition, the Internet became an attractive al-
ternate source of information. The advent of the Internet has
generated new requirements for services from users [52].
Therefore, the concept of requirement has shifted from as
operation of systems to the user services, as shown in Ta-
ble 1(b). Moreover, the access from the users cannot be
predicted. Each of service providers has a different service

Fig. 4 DF architecture (3).

level, and the transactions change rapidly, and are unpre-
dictable. Such a dynamic and heterogeneous environment
has made it difficult for each service provider to manage
computer systems independently. As a result, the data center
comes forth to provide outsourcing of computers and man-
agement service to service providers. The task of a data
center is to manage many computing resources for various
service providers.

3.4.2 Requirements

A service provider must provide fair service, which means
it must keep the same service level for all users with the
same SLA (Service Level Agreement) without stopping its
operation under evolving situations.

3.4.3 Architecture and Technologies

The homogeneous structure of DFs is constructed for the
data center system so that the information system may pro-
vide fair service to users. In this system, the same service
level, especially response time, is required for each com-
puter. Therefore, each computer needs data to be able to
grasp the situation of other computers. The characteris-
tic of this system is that not only data but also informa-
tion on the situation of each subsystem is broadcast into the
DF. The subsystem exchanges its load information with the
other subsystems and decides whether or not the subsystem
should join the group to process requests for service (Fig. 4).
(1) Autonomous resource allocation

Autonomous resource allocation technology was pro-
posed to provide and utilize fair service. To assure response
satisfaction and avoid measurement delay, the load differ-
ence of each subsystem, which is the difference of necessary
computing resource and actual deployed resource, is shared
in the DF. Each subsystem works asynchronously and makes
a decision autonomously according to the different sets of
load differences. Autonomous load tracking measurement
and control achieve quick response time by communicating
load difference among subsystems and estimating total load
using limited information gathered within a limited period
[28], [29].
(2) Autonomous stabilization

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
451

As situations change frequently, measurement and de-
cision would not be accurate. To raise the level of response
satisfaction, it is more effective to track load change. How-
ever, frequent change of subsystems makes the system un-
stable. A tradeoff relationship exists between response satis-
faction and stability. The system can be stable despite such
errors since autonomous stabilization technology converges
them according to feedback information [31], [32].

3.4.4 Application

In a conventional data center, it is possible to schedule
computing resource allocation because load is predictable.
Nowadays, however, many online applications on the inter-
net, such as electronic ticket selling systems, have difficulty
in predicting the users’ requests in advance.

The size of data centers has been increasing due to
growing number of customers. Thus, a more efficient uti-
lization of computing resources is required. Moreover, the
customers demand many different service levels, with many
users at each service level. However, transactions cannot be
predicted in the internet environment. Unpredictable peaks
can arise within a short time. Autonomous load tracking
technology is effective to distribute the load of the system
among subsystems autonomously, and fair service can be
achieved.

3.5 Unconscious Service

3.5.1 Background

By the beginning of the 21st century, services that are to
be provided, should not only take user convenience in ac-
count, but also their quality of life as well. Service providers
should offer appropriate service to users according to their
situations. To realize this purpose, a heterogeneous system
with heterogeneous requirement levels became necessary.
This has made a change from homogeneous mass service to
heterogeneous unconscious service, as shown in Table 1(c).

3.5.2 Requirements

In this system, a large number of the users utilize the sys-
tem. The unconscious service, which means the users take
for granted services unconsciously according to their own
situations, is required for improving the quality of life.

3.5.3 Architecture and Technologies

Because there are different service contents, the process lev-
els are also different. To meet different service process re-
quirements, it is required to divide DF into heterogeneous
levels and adapt different service processes (Fig. 5). In ad-
dition, it is difficult to implement the DF with high response
and reliability at the same time. Therefore, different lev-
els of heterogeneous timed DFs are constructed for different

Fig. 5 DF architecture (4).

process levels such as high-response low-reliability and low-
response high-reliability. To achieve high-performance and
highly-reliable processes, different functions are distributed
into heterogeneous DFs. Each DF autonomously executes
the functions and coordinates with other DFs to continue its
own operation even if data inconsistency occurs.

3.5.4 Application

This architecture and technologies have been applied in
Suica, the ICCTS, introduced by JR East in November 2001,
and can be regarded as the second infrastructure to com-
bine transportation with e-commerce. The contactless IC
card has made it possible to integrate smooth passenger flow
(through real-time control of gate devices) with reliable in-
formation processing of fare calculation. The architecture
and technologies of the Suica system are presented in the
next chapter.

3.6 Customized Service

3.6.1 Background

Recently, advanced computer and communication technolo-
gies have made many services available to anyone, anytime,
and anywhere. Conventional information systems, such as
the internet, provide the same service to all users. However,
users have a specific tendency to utilize information services
with different preferences. Moreover, users’ preferences di-
versify and change [53]. Therefore, the focus is evolving
from provision of uniform services to offering personalized
service according to preference, as shown in Table 1(d).

3.6.2 Requirements

The system is required to provide customized services, that
is, services with various levels according to users’ prefer-
ences. This is to cope with rapidly changing user demands,
network status, and information content.

452
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

Fig. 6 DF architecture (5).

3.6.3 Architecture and Technologies

Service utilization varies in quantity and quality, and con-
sequently the complete service offering is generally irrele-
vant to individual users. Usually, most users request a small
part of available information, and few users request most
of available information. As a result, the main feature of
this architecture is that the service providers construct the
DFs with different information service levels to satisfy the
heterogeneous requirements of users (Fig. 6). However, the
characteristic of each DF is homogeneous.
(1) FIF architecture

The “Faded Information Field” (FIF) was proposed to
guarantee the heterogeneous requirements of providing and
utilizing information service. Service providers trace in-
formation demand trend and send information to adjacent
nodes. The nodes store the most accessed segment of in-
formation services, remove the less popular information in
a recursive pruning process, and then send the remainder to
other nodes. In this process, the DF is gradually constructed
from large-data volume to small-data volume (Fig. 6). As
a result, an area for multi-level distributed information ser-
vices is created, called FIF. Users with different information
requirements can be satisfied at different levels in the FIF.
Consequently, the cost of service utilization (access time)
and provision (update) are balanced by allocating the most
accessed part of the information services closer to the ma-
jority of the users [33], [34].
(2) Autonomous agents

The SP generates Push-MAs and delegates to them the
task of “information fading” Push-MA is responsible for
allocating information based on the SP’s requirements for
timeliness and reliability. Push-MAs autonomously coordi-
nate with nodes for fading and selecting appropriate infor-
mation according to the requirement of the node and impor-
tance level of the information. A user who requires informa-
tion transmits a customized Pull-MA into the network. Pull-
MA autonomously navigates through the distributed nodes
in FIF to find more relevant information in a step-by-step
fashion [35], [36].

Fig. 7 DF architecture (6).

3.6.4 Application

This system is effective for applications in which the pro-
vision and utilization of large information volume are re-
quired. A simple prototype was developed based on the
autonomous agents model to provide on demand streaming
information with different qualities. It is effective to reduce
the total storage volume and improve the response time. But
still there are many areas in which the current model can be
applied.

3.7 Community Service

3.7.1 Background

In the near future, users will require more mutual coordina-
tion in services. This requirement arises from unexpected
situations and emergent events in the complex environment
of modern society. This marks a shift from “service utiliza-
tion” to “service creation” implemented by the input of users
who share preferences and/or similar situations, as shown in
Table 1(e).

3.7.2 Requirements

This requirement differs from the Internet requirement,
which provides services to anyone, anytime, and anywhere.
Under rapidly evolving situation, users with similar pref-
erence cooperate with each other not only sharing the ser-
vices but also creating the services. Such services are char-
acterized by “right me,” “right here,” and “right now” and
are provided/utilized in accordance with the cooperation of
users.

3.7.3 Architecture and Technologies

To meet these requirements, users with similar preferences
organize a community. Each user can autonomously and
actively form a local community with other users based on
physical locations, time, and the kind of service. This com-
munication field constructed by community users is called
active DF, in which each user broadcasts information into
it and shares information with other users (Fig. 7). More-
over, users create services through the cooperating with each
other based on the shared information. The DF changes by
time and place, and the members of the community also in-
terchange.

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
453

By using autonomous construction technology, the size
of the community is determined based on the required
service level. Other technologies are proposed for au-
tonomously reconstructing, integrating and dividing sub-
communities according to different service level requests,
and holding resources of community members under chang-
ing situations. However, community system still includes
many research topics.

4. Suica: IC Card Ticket System

ICCTS is explained here as a typical example of uncon-
scious service by ADS. It was developed by JR East and
called “Suica.” Suica has been utilized not only for fare col-
lection by JR East and the private railways, but also for e-
commerce.

It is difficult to meet heterogeneous requirements, such
as high response and reliability for fare collection and e-
commerce, in the DF simultaneously. To meet the time con-
straints in different service process requirements, the DF is
divided into different time levels. Therefore, the heteroge-
neous timed DFs are constructed in the Suica system.

4.1 System Structure

ICCTS consists of IC cards, terminals (Automatic Fare Col-
lection Gates, Ticket Vending Machines, and Fare Adjusting
Machines), station servers, and a center server. Each station
has several terminals and a station server, all of which are
connected to each other via LAN within one station. Station
servers are connected to the center server via WAN.

Here, there are three DFs among the subsystems
(Fig. 8): (1) DF1 between an IC card and a terminal, (2)
DF2 among terminals and a station server within a station,
and (3) DF3 among station servers and the center server
throughout stations.

These three DFs have different transmission methods
with the respective time ranges determined by the needs of
the subsystems. The subsystems attached to DF1 have func-
tions for payment, fare collection, and gate control. It is
required for them to achieve real-time processing in order
to avoid congestion. Thus, the total processing time in DF1

Fig. 8 IC card ticket system.

is designed to be under 0.2 second. DF2 and DF3 trans-
mit the data through wired network hourly and daily. The
station servers and the center server do not serve the hurry-
ing passengers directly but deal with their accounts. Hence,
the wired network and the longer data storage periods have
been adopted to assure reliability of the data as information
systems.

In addition, a “virtual data field” is applied to the sys-
tem. This “virtual data field” is the field of the IC cards that
are actually carried by the passengers. Here, an IC card is
regarded as a method of data transmission, and the data are
accessed when needed at the terminals.

These DFs have different characteristics and are named
“Heterogeneous DFs,” and the total structure is named “Het-
erogeneous ADS Structure.” This structure is one of the
properties in the ICCTS. The reason the heterogeneous DFs
are introduced is to assure (1) high performance (real-time
operation) and (2) fault-tolerance. Two technologies, which
are necessary for the properties of real-time processing and
transactions, are described below.

4.2 Autonomous Cooperative Processing Technology

Under the heterogeneous timed DFs architecture, each sub-
system cooperates with other subsystems, and distributes
processes autonomously based on the local information.
Autonomous Cooperative Processing Technology was pro-
posed to guarantee high-speed process of each subsystem by
making cooperation among them according to the character-
istic of each transaction.

4.2.1 Technology

Processing time at terminals in DF1 is required to be under
0.2 second. In this short time, they need to detect, authenti-
cate, read, judge, write, and verify IC cards [40] in addition
to fare calculation, which takes the most of the time of all
processes.

There are two problems with fare calculation. The first
problem is the highly complicated fare system in Japan,
in which the fares are subject to distance in kilometers,
while they are fixed at flat rates or based on simple zones
in other countries. There are so many fare combinations
equal to the number of combinations of stations. Moreover,
some passengers hold “commuter passes” which allow un-
limited rides within the passenger’s predetermined commut-
ing zone. The fare calculations must take the passes into
consideration if it is less expensive.

The second problem is that the passengers’ destinations
are unpredictable. In a conventional magnetized ticket sys-
tem, passengers have to check the fare table, buy their own
tickets, and pay additional fare upon exiting if they did not
pay enough for their original tickets. In the ICCTS, the pas-
sengers no longer need to buy tickets in advance — it is very
convenient for them, but the terminals at the entrances have
no way to know their destination. It takes a long time if fare
calculation is done entirely at the exit; the terminals must

454
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

Fig. 9 Autonomous cooperative processing technology.

scan the complete fare list including the fares from the en-
trance station to the exit station.

Autonomous cooperative processing technology was
proposed to resolve these two problems, using virtual DF
[41]. In this technology, the fare calculations are divided
into two steps (upon entrance and exit), and the necessary
information is transmitted by cards carried by passengers
who move within the virtual DF. The procedure is shown in
Fig. 9. In this case, a passenger has a commuter pass, which
is valid from station J to station K, and travels from station
A to station B, both of which are outside of the valid com-
muter pass area. Within the commuter pass area, station J is
the nearest station to station A, and station K is the nearest
to station B. There are two possible fares: (1) the direct fare
from station A to station B or (2) the sum of the fares from
station A to station J and from station K to station B.

When the passenger enters the station A, the terminal
determines that it is out of the valid commuter pass zone and
selects station J, the nearest within the valid commuter pass
area. Then, it writes on the IC card that the cardholder gets
on at station A, and that the temporary fare to the nearest
station J is FAJ (pre-boarding process).

When the cardholder exits from station B, the terminal
judges that it is also out of the valid commuter pass zone and
selects station K, the nearest within the valid commuter pass
area (post-boarding process). Then it calculates the fare be-
tween station K and station B (FKB) and compares two pos-
sible fares: (1) the direct fare between station A and station
B (FAB) and (2) the sum of FAJ and FKB. The less expensive
fare is deducted from the IC card (autonomous cooperative
process).

4.2.2 Evaluation

The effectiveness of this technology is shown in Fig. 10 and
Fig. 11. These are the results from simulations comparing
the calculating time and the process time with autonomous
cooperative processing technology to the ones without it.
With the technology, the fare calculations are divided into
two stages: upon entrance at A and upon exit at B. Without

Fig. 10 Comparison by number of stations.

Fig. 11 Comparison by number of transactions.

it, all the fare calculations are done upon exit from station
B. The “calculating time” is the simple calculating time, and
“process time” is the total time for a passenger to go through
a gate, including both “calculating time” and waiting time at
gates. Each station is supposed to have 10 gates.

Figure 10 shows the times in relation to the number of
stations. Autonomous cooperative processing technology is
superior (spending less time in calculating and processing)
when the number of stations exceeds 43. Figure 11 shows
the times as the number of the transactions. The autonomous
cooperative processing technology is superior when there
are over 42,700 transactions per day.

According to these results, the higher the number of
stations and transactions, the more effective the autonomous
cooperative processing technology is.

The number of stations in the Suica system is 647, and
the number of the transactions is approaching 20 million per
day. Thus, autonomous cooperative processing technology
is most effective in the situation that the number of stations

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
455

Fig. 12 Data processing at the R/W.

and transactions are high [41].

4.3 Autonomous Decentralized Data Consistency Tech-
nology (ADDCT)

The main objective of Suica is to assure the fluidity of pas-
sengers. To guarantee real-time process under high transac-
tion, incomplete data is passed and coexists with complete
data in DFs. ADDCT was proposed to make data consis-
tency under the heterogeneous timed DFs architecture by
cooperating with each other and determining residence time
of data in each DF autonomously according to the data dis-
tribution.

4.3.1 Technology

The ICCTS uses wireless communications at DF1. It is
very convenient for passengers, but it is prone to instability
in communication due to improper card use. This section
introduces the autonomous decentralized data consistency
technology (ADDCT), which recovers missing data caused
by such unstable communication [40]. This technology has
two derivatives: Single-layered data consistency technology
[42] and Multi-layered data consistency technology [43],
[44].

In the ICCTS, an IC card can communicate with a
Reader/Writer (R/W) on the gate while it is within the com-
munication area. The time of staying within the communi-
cation area depends on the holder’s behavior. According to
the statistics, the minimum required time is 0.2 second [40],
[54], [55], the time period which the autonomous coopera-
tive processing technology targets. However, some passen-
gers do not handle the cards properly, and the card thus can-
not be processed.

The way the ICCTS detects the end of process is shown
in Fig. 12. Each R/W unit updates its data when it receives
a “data-process completed” signal from the IC card. This
last signal is transmitted near the border of communications
area, so the process is not always completed successfully
when the passengers handle their IC cards improperly. In
this case, although the data in the IC card is updated, the
R/W has not received any signal indicating that the update
is complete. This is a problem called “data missing.” A
conventional magnetized ticket system would shut the gate,

Fig. 13 ADDCT application running at Layer 1.

Fig. 14 ADDCT application running at Layer 2.

which completely governed the contact signals, thus “data
missing” was practically unheard of. However, if ICCTS
did so, serious congestion would occur which could lead to
accidents. Opening gates even in case of failures has been a
problem with ICCTS.

ADDCT is a technology that recovers the data from
a failure, considering data consistency. Here, the data in
the Rs/Ws are treated as “temporary data” even when the
Rs/Ws cannot catch the “data-process completed” signal. If
the next process is completed normally, the ADDCT checks
the consistency of the data and revises the “temporary data”
as “definite data.”

Samples of ADDCT are shown in Figs. 13 to 15. Sub-
systems are classified into several layers. For example, the
ICCTS has three layers: (1) the gate at Layer 1, (2) the sta-
tion server at Layer 2, and (3) the center server at Layer
3. Since the ADDCT application runs at each subsystem,
“missing data” has only to meet the partner data to be re-
covered. If not, data will be broadcast to the lower layer,
where the ADDCT application runs again.

These three figures are summarized in Fig. 16. Here,
three data (Data 1, Data 2, and Data 3) are created first.
Then, they are stored at Gate11 in Layer 1 for time t1, and

456
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

then the ADDCT application runs for time t1p. While being
stored, Data 4 to match Data 1 catches up at Gate11 at Layer
1. Hence, the ADDCT application adjusts the data, and the
rest (Data 2 and Data 3) are broadcast to DF2. Data 5 from
Gate12 in Layer 1 joins them at Station Server21 at Layer 2
through DF2 to match Data 2. Those three data are stored
for the time t2, and then the ADDCT application runs for
the time t2p. Data 2 is adjusted, and the last one (Data 3)
is again broadcast to DF3 where Data 6 comes from Station
Server2x at Layer 2.

As there are fewer layers, the number of transactions
per node is greater; the processes at nodes are jammed, and
the total staying time lengthens.

How the ADDCT application recovers “missing data”
is shown in Figs. 17 to 19. This is an example of ADDCT
application running at Layer 3. A passenger has an IC card

Fig. 15 ADDCT application running at Layer 3.

Fig. 16 ADDCT model.

with the value of 1,000 yen and travels from station A to
station B. The possible fare of 130 yen is written at a gate in
station A. The gate broadcasts the data to the DFs as “def-
inite” with a sequential number (#14 in this sample) when
the process is successfully completed, and the R/W receives
“data-process completed” signal (Fig. 17).

Suppose that an R/W at station B fails to receive the
signal indicating the completion of data’s processing, al-
though it has actually been processed in the passenger’s IC
card itself. In this case, the gate autonomously broadcasts
the unconfirmed data to the DFs as “temporary” (sequential
number 15) (Fig. 18).

Fig. 17 ADDCT application at Layer 3 (1): complete process at R/W.

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
457

Fig. 18 ADDCT application at Layer 3 (2): incomplete process at R/W.

Fig. 19 ADDCT application at Layer 3 (3): another complete process at
R/W and data recovery.

If the passenger uses the same card and completes the
processes upon entrance at station C, the data numbered
16 is “definite.” The center server checks those sequences
and changes its status from “temporary” to “definite” if the
“temporary” record is surrounded by “definite” data without
inconsistency (Fig. 19).

With ADDCT, IC cards can escape from being voided
even if passengers have caused “data missing.” The data are
recovered before being blacklisted. That is, this technology
assures reliability of data with integration of autonomous
processes at the terminals and ones at the center server.

Fig. 20 Function reliability evaluation model.

Fig. 21 Consistency of data.

4.3.2 Evaluation

(1) Function reliability
ADS guarantees smooth operation even with partial

failure. Therefore, function reliability is more a suitable cri-
teria by which to evaluate the architecture since it evaluates
the functioning portion of subsystems with the ability to co-
operate and integrate with one another, while the conven-
tional method of reliability evaluation judges whether total
function is achieved or not [56]–[58].

A system model for evaluating function reliability is
shown in Fig. 20. It shows a system consisting of several
subsystems (or subsystem groups), and each subsystem has
certain functions. Each unit is valued by amount of function.

This section takes “function reliability” into consider-
ation for evaluation of ICCTS. The basic functions of the
ICCTS are to check for invalid cards and calculate fares.
Since these functions are related to data found in the cards,
each subsystem has “consistent data.” The achievement of
functionality in terms of ICCTS is defined as the “consis-
tency of data,” which means how much data the servers and
the cards have in common (Fig. 21).

Accordingly, ICCTS is modeled as seen in Fig. 22.
Each pellet shape seen within the subsystem represents one
piece of consistent data. In the actual ICCTS, servers save

458
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

Fig. 22 Model for evaluating function reliability.

Fig. 23 Function reliability with/without ADDCT.

the data simply as backup and use them to facilitate greater
reliability. This simulation focuses on modeling cards and
terminals since each terminal checks invalid cards and cal-
culates fares.
(2) Evaluation Results

The effectiveness of the ADDCT in enhancing data re-
liability is shown in Fig. 23, according to simulations based
on actual transactions. The amount of data which a card is
able to store is shown along the X axis, and the average func-
tion reliability is plotted along the Y axis. Function reliabil-
ity in the ICCTS is evaluated in terms of data consistency,
which defines stable operation of a system in terms of how
well it guarantees the provision of reliable data. In the simu-
lation, four cases are examined: one system each which runs
the ADDCT application once a day, twice a day, and three
times a day; and a centralized system without ADDCT.

ADDCT can make up for as much missing data as there
is available number of record space in the card. The more
records a card is able to store, the more “missing data” is ac-
cepted. The results from the simulations prove that if there is
sufficient data, the ADS structure is more reliable with AD-
DCT. However, it was found that there is no apparent merit
in increasing the number of records in one card to more than
20. Hence, it is very important to determine the appropriate
memory size. In the Suica system, each IC card is capable
of keeping 20 records at a time, and the ADDCT application

Fig. 24 Distribution rate of passengers’ traveling times.

Fig. 25 T1 vs. Texp in 2-layered models.

Fig. 26 T1 vs. Texp in 3-layered models.

runs three times a day. According to Fig. 23, the system on
the condition scores the highest function reliability among
all systems. This means that the effectiveness of the AD-
DCT is proven both practically and theoretically [42].

Then, what if the ADDCT application runs in each sub-
system at each layer? To evaluate this, a sample distribu-
tion of the passengers’ traveling times is prepared as seen in
Fig. 24. The data in such distribution is divided into groups
based on T (0 < T < T1, T1 < T < T2, and so on), and each
group is assigned to a layer where it is recovered. The sim-
ulations are intended to find the most effective configuration
to deal with the transactions: the number of layers and the
time each layer holds the data.

Its effectiveness is shown in Fig. 25 and Fig. 26. Fig-

MORI and SHIIBASHI: TREND OF AUTONOMOUS DECENTRALIZED SYSTEM TECHNOLOGIES AND THEIR APPLICATION
459

Fig. 27 Texp in 2-, 3-, and 4-layered simulations.

ure 25 shows the result from a 2-layered model where T1
ranges from 1 minute to 59 minutes while T2 is fixed at 60
minutes. Texp, the expectation of recovery time, indicates
the minimum value of 33.82 when T1 = 31. This means, in
the most effective configuration of 2-layered structure, the
ADDCT application at Layer 1 should be set to run 31 min-
utes after the flow starts.

Figure 26 shows the result from the 3-layered model,
where T1 and T2 ranges from 1 minute to 59 minutes while
T3 is fixed at 60 minutes. Texp indicates a minimum value
of 29.72 when T1 = 26 and T2 = 34. According to these re-
sults, in the most effective configuration of 3-layered struc-
ture, the ADDCT application at Layer 1 should be set to run
26 minutes after the flow starts at Layer 1, and the ADDCT
application at Layer 2 should be set to run 34 minutes af-
ter. In addition, Texp is less in a 3-layered model than in a
2-layered model. That is, the 3-layered model is more effi-
cient in this input flow.

Texp depends on the number of the layers (indicated as
n) and the timing of the application (indicated as Tn). The
way to design the most efficient system is to find n and Tn to
minimize Texp. To compare the results from the simulations
more easily, Fig. 27 shows the most appropriate parameters
in each layered simulation. The minimum values of Texp
are 30.96 in the 2-layered model, 28.43 in the 3-layered, and
28.44 in the 4-layered. The 3-layered model performs better
than the 2-layered or the 4-layered. These results reveal two
facts; more layers work more efficiently but too many lay-
ers become useless because the nodes cannot gather enough
diffused data to match up [43], [44].

5. Conclusion

In this paper, the advancement of ADS technologies was
surveyed in accordance with the changing and growing re-
quirements and their corresponding system structures in the
last 30 years. The Suica system operated by JR East is one
of the most advanced implementations of ADS, and it has
been utilized not only for information transaction processing
in fare calculation and e-commerce but also for controlling
AFCG under 0.2 second.

These research activities of ADS extend to computer,
communications, and control technologies, and their inte-
gration. It is expected that ADS created in Japan will play
an active role in collaboration of academia, industry, and
government around the globe.

References

[1] “Special Issue on Large-scale Systems and Decentralized Control,”
IEEE Trans. Autom. Control, vol.AC-23, no.2, pp.105–371, 1978.

[2] W.D. Barritt, “Centralized control system for appliances,” IEEE
Trans. Ind. Appl., vol.24, no.2, pp.328–331, 1988.

[3] B. Ciciani, D.M. Dias, B.R. Iyer, and P.S. Yu, “A hybrid distributed
centralized system structure for transaction processing,” IEEE Trans.
Softw. Eng., vol.16, no.8, pp.791–806, 1990.

[4] M. Jeng and H.J. Siegel, “A distributed management scheme for par-
titionable parallel computers,” IEEE Trans. Parallel Distrib. Syst.,
vol.2, no.1, pp.120–126, 1990.

[5] “Special Issue on Distributed Computing Systems,” Computer,
vol.24, no.8, 1991.

[6] P. Jalote, Fault Tolerance in Distributed Systems, Prentice Hall, En-
glewood Cliffs, NJ, 1994.

[7] R. Adler, “Distributed coordination models for client/server comput-
ing,” Computer, vol.28, no.4, pp.14–22, 1995.

[8] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems,
Concepts and Design, Addison-Wesley, Wokingham, 2001.

[9] K. Mori, S. Miyamoto, and H. Ihara, “Proposition of autonomous
decentralized system concept,” IEEJ Trans. EIS, vol.104, no.12,
pp.303–340, 1984.

[10] K. Mori, “Autonomous decentralized software structure and its ap-
plication,” IEEE Proc. FJCC86, pp.1056–1063, 1986.

[11] K. Mori, Introduction of Autonomous Decentralized System,
Morikita Pub., 2006.

[12] S. Shenker, “An architecture for the future Internet,” IEEE Proc. Hot
Interconnects II Symposium Record, pp.261–267, 1994.

[13] H. Hultzsch, “Network evolution: Convergence of decentralised
information technology and telecommunications,” IEEE Proc.
ISADS97, pp.3–8, 1997.

[14] J. Kaiser, “Uncertain, dynamic, out of control? Coordination and
cooperation in next generation systems,” IEEE Proc. ISADS03,
pp.165–168, 2003.

[15] P. Bellavista, A. Corradi, and C. Stefanelli, “The ubiquitous pro-
visioning of Internet services to portable devices,” IEEE Pervasive
Computing, vol.1, no.3, pp.81–87, 2002.

[16] S. Yau and G.H. Oh, “An object-oriented approach to software
development for autonomous decentralized systems,” IEEE Proc.
ISADS93, pp.37–43, 1993.

[17] K.H. Kim and C. Subbaraman, “Interconnection schemes for RTO.k
objects in loosely coupled real-time distributed computer systems,”
IEEE Proc. COMPSAC97, pp.121–128, 1997.

[18] A.W. Scheide, “Robotics,” IEEE Trans. Ind. Appl., vol.IA-19, no.6,
pp.901–902, 1983.

[19] http://www.odva.org/default.aspx
[20] http://www.ieiej.or.jp/standard/index.html
[21] http://www.omg.org/docs/orbos/99-11-05.ppt
[22] I. Kaji, Y. Tan, and K. Mori, “Autonomous data synchronization

in heterogeneous systems to assure the transaction,” IEEE Proc.
HASE1999, pp.169–178, 1999.

[23] I. Kaji and K. Mori, “A gateway filtering technique to maximize
the transactions in heterogeneous systems,” IEICE Trans. Commun.,
vol.E84-B, no.10, pp.2759–2767, Oct. 2001.

[24] T. Kobayashi, O. Iba, H. Ebine, and S. Aoyagi, “Advanced train
administration and communication system based on ADS technolo-
gies,” IEEE Proc. ISADS1999, pp.388–391, 1999.

[25] K. Kera, K. Bekki, K. Fujiwara, F. Kitahara, and K. Kamijo, “As-
surance system technologies based on autonomous decentralized

460
IEICE TRANS. COMMUN., VOL.E92–B, NO.2 FEBRUARY 2009

system for large scale transport operation control systems,” IEICE
Trans. Commun., vol.E83-B, no.5, pp.1085–1093, May 2000.

[26] T. Aizono, K. Kawano, H. Wataya, and K. Mori, “Autonomous de-
centralized software structure for integration of information and con-
trol systems,” IEEE Proc. COMPSAC1997, pp.324–331, 1997.

[27] F. Kitahara, K. Kamijiou, Y. Kakurai, K. Bekki, K. Kare, and K.
Kawano, “Phased-in construction method of ATOS,” IEEE Proc.
ISADS1999, pp.415–424, 1999.

[28] M. Matsumoto, A. Hosokawa, S. Kitamura, D. Watanabe, and
A. Kawabata, “Development of the autonomous decentralized
train control system,” IEICE Trans. Commun., vol.E84-D, no.10,
pp.1333–1340, Oct. 2001.

[29] T. Masuishi, H. Kuriyama, Y. Ooki, and K. Mori, “Autonomous de-
centralized resource allocation for tracking dynamic load change,”
IEEE Proc. ISADS2005, pp.277–283, 2005.

[30] T. Masuishi, K. Shibata, Y. Ooki, and K. Mori, “Autonomous decen-
tralized load tracking techniques and evaluation,” IEEE Proc. 2nd
International Symposium on Dependable, Autonomic and Secure
Computing (DASC 2006), pp.69–76, 2006.

[31] T. Masuishi, K. Shibata, Y. Ooki, and K. Mori, “Techniques to im-
prove tracking ability in autonomous decentralized load tracking
system,” 4th International Conference on Computing, Communica-
tions and Control Technologies, 2006.

[32] T. Masuishi, K. Shibata, Y. Oki, and K. Mori, “Autonomous decen-
tralized load tracking systems and evaluation criteria for response
and stability,” IEEE Proc. ISADS2007, pp.255–262, 2007.

[33] K. Mori, “Autonomous fading and navigation for information allo-
cation and search under evolving service system,” Proc. IEEE Conf.
on APSITT, pp.326–330, 1999.

[34] H.F. Ahmad and K. Mori, “Autonomous information service sys-
tem: Basic concepts for evaluation,” IEICE Trans. Fundamentals,
vol.E83-A, no.11, pp.2228–2235, Nov. 2000.

[35] H. Arfaoui and K. Mori, “Autonomous navigation architecture for
load balancing user demands in distributed information systems,”
IEICE Trans. Commun., vol.E84-B, no.10, pp.1085–1093, Oct.
2001.

[36] X.D. Lu, H. Arfaoui, and K. Mori, “Autonomous information fading
and provision to achieve high response time in distributed informa-
tion systems,” IEEJ Trans. EIS, vol.125, no.4, pp.645–652, 2005.

[37] IBM, “Autonomic computing: IBM’s perspective on the state
of information technology,” http://www-1.ibm.com/industries/
government/doc/content/resource/thought/278606109.html

[38] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol.36, no.1, pp.41–50, 2003.

[39] Y. Shirakawa and A. Shiibashi, “JR East contact-less IC card au-
tomatic fare collection system “Suica”,” IEICE Trans. Inf. & Syst.,
vol.E86-D, no.10, pp.2070–2076, Oct. 2003.

[40] A. Shiibashi, “Autonomous decentralized high-speed processing
technology and the application in an integrated IC card fixed-line
and wireless system,” IEICE Trans. Inf. & Syst., vol.E88-D, no.12,
pp.2699–2707, Dec. 2005.

[41] A. Shiibashi, N. Mizoguchi, and K. Mori, “High-speed processing
in wired-and-wireless integrated autonomous decentralized system
and its application to IC card ticket system,” Innovations in Systems
and Software Engineering, vol.3, no.1, pp.53–60, March 2007.

[42] A. Shiibashi, T. Kuroda, M. Yamana, and K. Mori, “Research of re-
liability technology in heterogeneous autonomous decentralized as-
surance systems,” ISADS, pp.207–214, Sedona, US., March 2007.

[43] A. Shiibashi, M. Yamana, and K. Mori, “Multi-layered data consis-
tency technology in IC card ticket system,” Assurance Symposium,
pp.1–8, Yokohama, Japan, March 2007.

[44] A. Shiibashi, Y. Maruyama, M. Yamana, and K. Mori, “Multi-
layered data consistency technology in IC card ticket system,”
ADSN, p.58, Toronto, Canada, June 2007.

[45] K. Mori, “Autonomous decentralized systems: Concepts, data field
architecture and future trends,” IEEE Proc. ISADS93, pp.28–34,
March 1993.

[46] J. Dennis, “Data flow supercomputer,” Computer, vol.13, no.11,
pp.48–56, 1980.

[47] K. Mori and H. Ihara, “Autonomous decentralized loop network,”
COMPCON Spring, pp.192–195, 1982.

[48] H. Ihara and K. Mori, “Autonomous decentralized computer control
system,” Computer, vol.17, no.8, pp.57–66, 1984.

[49] K. Mori, H. Ihara, Y. Suzuki, K. Kawano, M. Koizumi, M. Orimo,
K. Nakai, and H. Nakanishi, “Autonomous decentralized software
structure and its application,” IEEE Proc. FJCC86, pp.1056–1063,
1986.

[50] I-Ling Yen, R. Paul, and K. Mori, “Toward integrated methods for
high-assurance systems,” Computer, vol.31, no.4, pp.32–34, 1998.

[51] K. Mori, “Trend of autonomous decentralized systems,” IEEE Proc.
FTDCS04, pp.213–216 May 2004.

[52] D. Oppenheimer and D.A. Patterson, “Architecture and dependabil-
ity of large-scale Internet services,” IEEE Internet Comput., vol.6,
no.5, pp.41–49, 2002.

[53] C.W. Bachman, “A personal chronicle: Creating better information
systems, with some guiding principles,” IEEE Trans. Knowl. Data
Eng., vol.1, no.1, pp.17–32, 1989.

[54] Y. Naka, “Study on complicated passenger flow in a railway station,”
Railway Technical Research Report, no.1079, 1978.

[55] A. Imai, “Examination of parameter of size of automatic fare collec-
tion gate,” Omron Technics, vol.12, no.1, pp.25–40, 1972.

[56] K. Mori, S. Miyamoto, and H. Ihara, “On evaluation of function and
reliability of distributed control system,” Society of Instrument and
Control Engineers Trans., vol.20, no.4, pp.314–321, 1984.

[57] K. Kera, K. Bekki, and K. Mori, “Step-by-step system construc-
tion technique with assurance technology — Evaluation measure for
step-by-step system construction,” 22nd International Conference on
Distributed Computing Systems Workshops, pp.101–106, Vienna,
Austria, July 2002.

[58] M. Matsumoto and K. Mori, “Assurance evaluation technology for
an autonomous decentralized ATC system,” IEICE Trans. Inf. &
Syst. (Japanese Edition), vol.J86-D-I, no.1, pp.14–22, Jan. 2003.

Kinji Mori received B.S., M.S. and
Ph.D. degrees in the Electrical Engineering from
Waseda University, Japan in 1969, 1971 and
1974, respectively. From 1974 to 1997 he was
in System Development Lab.; Hitachi, Ltd. In
1997 he joined Tokyo Institute of Technology;
Tokyo, Japan as a professor. His research inter-
ests include distributed computing, fault toler-
ant computing, and mobile agent. He proposed
Autonomous Decentralized Systems (ADS) in
1977 and since then he has been involved in re-

search and development of ADS. He is a Fellow of IEEE and a member of
IEEJ, IPSJ and SICE, Japan.

Akio Shiibashi graduated from Saitama
University and joined Japanese National Rail-
ways (JNR) in 1976. He was transferred to JR
East, one of the successors of JNR which was
divided and privatized in 1987. He has worked
for research and development of IC card ticket
system since 1994. He received Ph.D. from To-
kyo Institute of Technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

