
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009
9

INVITED PAPER Special Section on Networking Technologies for Dependable Networks

On Applicability of Formal Methods and Tools to Dependable
Services

Fuyuki ISHIKAWA†a), Member and Shinichi HONIDEN†b), Nonmember

SUMMARY As a variety of digital services are provided through net-
works, more and more efforts are made to ensure dependability of soft-
ware behavior implementing services. Formal methods and tools have been
considered as promising means to support dependability in complex soft-
ware systems during the development. On the other hand, there have been
serious doubts on practical applicability of formal methods. This paper
overviews the present state of formal methods and discusses their appli-
cability, especially focusing on two representative methods (SPIN and B
Method) and their recent industrial applications. This paper also discusses
applications of formal methods to dependable networked software.
key words: dependability, software engineering, formal methods

1. Introduction

Nowadays our daily lives rely more and more heavily on
computer systems. We cannot know how many computer
systems we use explicitly or implicitly in a day, as so many
essential activities are supported by them (banking, trans-
port, etc.). The notion of dependability has therefore at-
tracted considerable attention of both research and practice
communities. Dependability is defined as “the trustworthi-
ness of a computing system which allows reliance to be jus-
tifiably placed on the service (system functions) it delivers”
[1]. Dependability contains significant attributes such as
availability, reliability, safety, integrity and maintainability.

Efforts on dependability have investigated means to
avoid failures, where the delivered service deviates from
the “correct” one, even with existence of various kinds of
faults (e.g., hardware component breakdown) that can lead
to errors (parts of the system states that may lead to fail-
ures). Failures should be avoided, as many as possible,
by letting the system to prevent, tolerate, remove, and esti-
mate/predict faults. As one of the most significant areas for
dependability, dependable networking technology has been
investigated by many researcher, as most of computer sys-
tems today heavily rely on the Internet infrastructure. These
technologies include mechanisms for tolerance of multi-
ple node/link/switch faults, routing reconfiguration for QoS
guarantees, transaction protocols that can handle physical
faults, and so on [2]. In this way, availability and reliabil-
ity, or readiness and continuity of “correct” services, even
under physical faults, are typically focused on as significant

Manuscript received April 25, 2008.
Manuscript revised August 25, 2008.
†The authors are with National Institute of Informatics, Tokyo,

101-8430 Japan.
a) E-mail: f-ishikawa@nii.ac.jp
b) E-mail: honiden@nii.ac.jp

DOI: 10.1587/transcom.E92.B.9

aspects of dependability.
It is now well-known that it is very difficult to im-

plement “correct” services, preventing or removing design
faults while engineering the system. This aspect of depend-
ability has been discussed in the Software Engineering area.
Here it should be noted that the “correctness” of services
(or software behavior) is relative to the specifications de-
scribing requirements or intentions about them. There can
be (and have been) incidences due to design faults (not due
to physical faults). Such incidences are often very critical
because design faults can lead to not only unavailability of
the services but also their harmful behaviors. Dependabil-
ity of any networked applications thus requires developers
to tackle the problem of ensuring correctness of software
implementing the networked services.

Among various approaches to the problem in the Soft-
ware Engineering area, this paper overviews and discusses
formal methods. Formal methods are mathematically-based
techniques for the specification, development and verifica-
tion of software and hardware systems [3]–[5]. This paper
discusses formal methods for the following reasons.

• Formal methods have been believed to be effective
when high dependability is required. Formal methods
are therefore getting widespread attention as a possible
measure for preventing design faults and resulting ser-
vice failures, whose criticality has been recognized and
often emphasized recently.
• On the other hand, formal methods are not known

well. Especially, it is difficult to find hints to exam-
ine their practical applicability, while generally they
are believed to be too costly.
• Formal methods are relevant to the dependability com-

munity, as they can be used to support approaches to
dependable mechanisms, protocols, and so on (e.g.,
verification of Byzantine consensus protocols [6]).

The purpose of this paper is to introduce formal meth-
ods to people who are not engaged in formal methods, fo-
cusing on practical tools rather than theoretical foundations.
Section 2 first overviews some tools to describe what for-
mal methods are about. Sections 3 and 4 then summarize
two representative methods/tools, SPIN and B Method, cit-
ing statistics from their recent industrial applications. SPIN
is an illustrative example of model checking to find possi-
ble deficiencies by exhaustive exploration of possible state
transitions. SPIN has been used for verification of network
protocols and networked software. B Method is one of for-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

10
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

mal specification to increase confidence in earlier phases by
clarifying and verifying functional specifications. A varia-
tion of B Method, called Event B [7], is attracting more and
more attentions in Europe to handle event-based distributed
systems based on B Method. Section 5 finally discusses ap-
plicability of formal methods in general, as well as their ap-
plications to dependable networked software.

2. Brief Review of Formal Methods

This section overviews formal methods. The purpose of this
section is not to cover many available formal methods but to
give intuitions about formal methods in general.

Formal methods target development of systems, es-
pecially software, and provide solid, scientific foundation
based on mathematical logic. Formal methods use lan-
guages with clear and strict semantics to model the tar-
gets (typically designs), as well as techniques (e.g., theorem
proving) based on the languages. Through such languages
and techniques, formal methods provide systematic means
to verify correctness of the formalized models, which leads
to high dependability of the systems.

The term “formal methods” is very general, and there
are a variety of its instances. The differences come from
different targets and purposes, such as characteristics of tar-
get systems (e.g., concurrency) and properties to be ensured
(e.g., deadlock-freeness), development phases to be covered
(e.g., the design phase), underlying theories, and so on.

Table 1 illustrates several tools for formal methods. Al-
though they are only a small part of available tools, they
illustrate how formal methods vary, as described below.

Modeling Target Each method has its modeling target.
VDM and B Method target sequential processing of
data structures such as lists, while SPIN and FDR dis-
cuss concurrent processes. SPIN and FDR differ in
their abstraction level: SPIN discusses state transition
in terms of variable values while FDR rather focuses
on observable interactions. Although both B Method
and FDR mention the term“refinement,” they actually
refer to different aspects: roughly speaking, B Method
discusses removal of nondeterministic behavior while
FDR discusses component decomposition.

Verified Properties SPIN allows for verification of tem-
poral properties (such as safety and liveness) through

Table 1 Differences in tools for formal methods.

Tool Name Modeling Target Verified Properties Techniques

VDMTools (Vienna De-
velopment Method) [8]

system structures (data structures of vari-
ables and operations on them)

invariants and operation pre- and post-
conditions

specification test-
ing

B4Free/Atelier B (for B
Method) [9]

system structures and their stepwise refine-
ment

invariants and operation pre-conditions as
well as refinement relationships

theorem proving

SPIN (Simple PROMELA
Interpreter) [10]

state transitions of concurrent processes
through their interactions

temporal properties model checking

FDR (Failures-Divergences
Refinement) [11]

observable interactions between concurrent
processes

refinement relationships and determinism model checking

Java PathFinder [12] control structures of Java programs deadlocks, unhandled exceptions and other
properties defined as classes

model checking

state transition, while VDM discusses effects of opera-
tion execution.

Techniques In broad terms, there are two approaches to
verification, namely, model checking and theorem
proving. Model checking examines all the possible (fi-
nite) state transitions in a defined model to see whether
given properties are satisfied. So it tries to gather ob-
servations enough to give confidence in desired prop-
erties. For example, model checking tools can explore
all the possible state transitions to see whether there
can be deadlock. On the other hand, theorem prov-
ing derives properties from not observations but prop-
erties that are already known to hold. For example,
from hypotheses x > 0 and y = x + 1, a property
y > 0 can be derived by using axioms about num-
bers. In any case, completeness is often emphasized
as an advantage of formal methods compared to tradi-
tional testing. Sometimes lightweight usages are ad-
ditionally considered: VDM allows for execution and
(incomplete) testing of formal specifications to verify
and validate specifications in early phases. It is notable
language models may provide foundations for several
techniques: VDMTools primarily support specification
execution but the underlying VDM languages allow for
proof as well.

Target Phases Java PathFinder targets verification of im-
plementation codes, while SPIN targets design models.
Such classification is not strict, for example, it is possi-
ble to use additional tools to extract SPIN models from
implementation codes. B Method is quite different as
it targets a process of stepwise refinement from early
design to implementation.

The most popular usage of formal methods is verifi-
cation of useful properties, or finding possible causes of
bugs, that are difficult to handle by program testing. Typ-
ically models of concurrent/distributed systems are verified
by means of model checking, as they include complex state
transitions depending on the order in which actions and
events occur in multiple threads/processes. As it is usually
not possible to control such an execution order in actual im-
plementation, program testing fail to provide confidence in
absence of bugs. Model checking is thus popular, providing
focused solution to the limitation of testing methods.

As another usage, formal specification is considered to

ISHIKAWA and HONIDEN: ON APPLICABILITY OF FORMAL METHODS AND TOOLS TO DEPENDABLE SERVICES
11

clarify and validate system specifications often for highly-
dependable systems. As requirements or specifications de-
scribed in natural languages or languages without formal se-
mantics (e.g., UML) can include ambiguity, incorrectness,
and incompleteness. Such informal specifications do not fa-
cilitate scientific validation and can lead to misunderstand-
ing based on personal interpretation, often causing costly fix
in later phases. Methods for formal specification thus pro-
vide rigorous approaches especially in earlier phases, some-
times supporting the process toward implementation in exe-
cutable codes.

To take a closer look at each of the two typical usages
of formal methods, the next section focuses on SPIN and B
Method respectively. Especially, in order to discuss applica-
bility of formal methods, statistics in their recent industrial
applications are cited.

3. Model Checking

This section focuses on one of tools for model checking,
SPIN, describing its essence and citing statistics in its recent
application to an industrial project.

3.1 Overview of SPIN

SPIN (Simple PROMELA Interpreter) [10] is a tool
for model checking of distributed systems. It has
been refined since its first release in 80’s and received
ACM Software System Award in 2001. In SPIN, con-
current processes are modeled in an abstract way us-
ing a dedicated language, PROMELA (PROcess MEta-
LAnguage). PROMELA facilitates modeling of signifi-
cant notions in concurrent/distributed systems, such as syn-
chronous/asynchronous communications and blocking be-
havior. Besides fundamental properties to be verified, such
as deadlock-freeness, SPIN allows for property definition in
LTL (Linear Temporal Logic). LTL provides temporal op-
erators to describe properties about execution paths such as
“some property eventually holds,” “some property always
holds,” and “some property holds until another property
holds.” Although the SPIN tool provides a variety of use-
ful functionalities, the primary functionality is generation of
C codes to efficiently run exhaustive verification of given
PROMELA and LTL descriptions. When the property turns
out not to hold, a counterexample is provided by the SPIN
tool to help users track the scenario (execution path) where
the property does not hold.

Figure 1 shows a simple example of description of con-
current processes in PROMELA. It models two simple pro-
cesses, producer and consumer. The producer produces
some resource and the consumer consumes it. After the pro-
ducer produces the resource, it is blocked until the consumer
consumes it. The consumer is blocked when the resource
has not been produced yet after the last consumption. For
simplicity, this example only considers one producer and
one consumer. As a result, they run one after the other. The
description starts with declaration of an enumeration type

Fig. 1 Example of process description in PROMELA.

(mtype) that takes one of the two values P and C (producer
and consumer). A variable turn is also declared to denote
which of the producer and the consumer can run. Two pro-
cesses corresponding to the producer and the consumer are
declared (active proctype is for definition of a process that
is instantiated automatically). The producer process has a
loop (the do . . . op statement). In this simple example, there
is only one execution sequence (defined with ::) inside the
loop. The execution sequence has a guard (turn == P), and
is only executed when the guard condition holds. When
the guard condition holds, the execution sequence produces
something (abstracted away in this model) and modifies the
variable turn to let the consumer execution sequence run.

As the space is limited, the above example only mod-
els concurrent processes with a shared variable and blocking
behavior. In realistic scenarios, each process has conditional
and non-deterministic behavior and multiple processes in-
teract with each other using synchronous/asynchronous
communication channels. PROMELA facilitates modeling
of such essential aspects in distributed systems.

Besides deadlock-freeness and inserted assertions,
properties to be verified are described in LTL and verified by
using SPIN. Typical properties are liveness, i.e., some event
will ultimately occur under certain condition, and safety,
i.e., some event never occurs under certain conditions. For
example, a liveness property “any request will ultimately be
satisfied” is described in LTL as follows.

[] (req => <> sat)
(req and sat are labels attached at execution points in
PROMELA)

The [] and <> operators mean “always” and “eventually,”
respectively. So the above formula means: at any state (al-
ways), if req holds at that state, then sat will hold at some
future state (eventually).

3.2 Recent Case: Groupware Protocols

There have been many applications of SPIN, typically to
network protocols and networked software. In the case
of SPIN, or model checking tools in general, the primary

12
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

advantage is discovery of possible deficiencies in concur-
rent/distributed systems, which cannot be explored by pro-
gram testing in a controllable way. On the other hand, size
of the problem that could be verified is discussed as model
checking use exhaustive exploration of possible state tran-
sitions. Below describes one of the recent studies, reported
in 2005, using SPIN for verification of groupware protocols
[13].

3.2.1 Process

The study considers introduction of publish/subscribe pro-
tocols into a groupware. The protocols define user oper-
ations and their concurrency control, e.g., a user conducts
a “checkin” operation (commit a modified file) and inter-
ested users are notified of the event. SPIN is used to validate
the protocol design before actual implementation in order to
avoid costly fix in implementation.

The protocols are modeled carefully in PROMELA to
avoid state explosion. For example, the constructed model
only includes one file at any moment. Message loss and
blocking of notification operations are modeled not to hap-
pen. The following properties are described by using LTL
with 2-4 processes corresponding to users.

concurrency control e.g., every lock on a file must eventu-
ally be released.

expected functionality e.g., every checkout must eventu-
ally lead to a notify to all (and only those) users that
are registered for the checked out file.

denial of service No user can be denied a service forever.

3.2.2 Statistics

Below describes statistics about full state space searches for
deadlock. In any cases, no deadlock was found.

Users State Depth Memory Run-
Vector Reached Used time

2 84 byte 4423 37Mb 1 sec.
3 108 byte 434033 114 Mb 3 min.
4 132 byte 10484899 916 Mb 8 hour

Verification of LTL properties was conducted for 3
users. It took about 40 min. at the most. Two of nine proper-
ties were found not to hold. One of the two properties shown
not to hold is the example of properties about the concur-
rency control described above. The property is not satisfied
when there is a user that keeps a lock forever. It was de-
termined to make the property hold not by protocols but by
user guidelines. The other of the two properties shown not
to hold is the property about denial of service. It is possible
that a user never get his turn when other users keep the con-
troller busy. This problem was determined to be solved in
future extensions using reservation.

4. Formal Specification

This section focuses on one of methods for formal specifi-
cation, B Method, describing its essence and citing statistics

in its recent application to an industrial project.

4.1 Overview of B Method

B Method [9] is a formal method to derive executable codes
from requirement documents. It was introduced in the late
80s’, and established for a large industrial project in late
90’s [14]. In B Method, the data structure of system states
is modeled as a set of variables and operations on them,
which typically appear in many kinds of information sys-
tems. In addition, invariants, properties expected to always
hold through state transitions caused by operation execu-
tions, are described by means of first order logic and set-
theoretic constructs.

Tools such as B4Free and Atelier B [9] provide func-
tionality to generate properties that need to be verified, as
proof obligations. Proof obligations include the following
properties.

• There is at least one set of variable values that satisfy
the invariants (the invariants do not contain inconsis-
tency).
• The initial values of the variables satisfy the invariants.
• For each operation, if the precondition of the operation

and the invariants hold before execution of the opera-
tion, the invariants still hold after the execution.

The tools also provide (semi-)automated proof functional-
ity. They can conduct automated proof in most cases, but
developers sometimes need to help the tool with interactive
proof interfaces.

In addition, B Method considers to derive accurate, de-
tailed models gradually, while starting with a simple, ab-
stract model. B Method allows for such stepwise refinement
of models until executable codes are obtained (Fig. 2). In B
Method, details of the problem are first extracted from the
requirement documents, gradually through stepwise refine-
ment, and formalized as Abstract Models in the B language.
The obtained Abstract Models are then transformed into
Concrete Models, again gradually through stepwise refine-
ment. Abstract Models may contain nondeterministic be-
haviors or abstract operations, which are excluded through
the stepwise refinement toward Concrete models. In Con-
crete Models, transitions are completely deterministic and
data are in a one-to-one correspondence with computeriz-
able objects (scalar, arrays, etc.). Finally, the Concrete Mod-
els are transformed into executable codes by using transla-
tors.

In each refinement step, proof obligations are examined
about the correctness of the refinement, that is, the obtained
model does not invalidate the properties proved in the pre-
vious model. In this way, B Method involves verification
of correctness of each model as well as correctness of each
refinement into a more concrete model. B Method does not
expect testing of the generated codes, as it conducts verifi-
cation by theorem proving throughout the process.

Figure 3 shows a simple example of B models. It de-
scribes a system that manages points (or coupons) given to

ISHIKAWA and HONIDEN: ON APPLICABILITY OF FORMAL METHODS AND TOOLS TO DEPENDABLE SERVICES
13

Fig. 2 Overview of B method.

Fig. 3 Example of B abstract model.

and used by the users (e.g., a point is given when a user buys
something, and later can be exchanged with some gift.). The
model defines the name of the model, and then variables
that define the system state: the number of granted points
and used ones (granted and used, respectively). Invariants,
properties expected to always hold, are then declared. In the
figure, the first and second properties (separated by the log-
ical AND operator &) denote type constraints. The last one
denotes an expected property that the number of used points
cannot be more than that of granted points. The model also
defines the initial state where both the variable values are
0. Finally the model defines two operations. The oper-
ation use a point has an output variable sp, preconditions
that need to hold before its execution, and the operation it-
self where the output variable sp and the variable used are
both updated to the new value of used + 1 (grant a point
is defined similarly). In this way, invariants and operation
preconditions are clarified for rigorous understanding and
verification.

In the case of this simple model, the tools generate
5 proof obligations in addition to trivial (quite obvious)
ones, which can then be proved automatically. For exam-
ple, one of the generated proof obligations is “if the precon-
dition of the use a point operation holds, then execution of

the operation always leads to states that satisfy the invari-
ants.” This can be proved easily: intuitively, as we have
used < granted as the precondition, we still have the invari-
ant used ≤ granted after increment of the used variable.

4.2 Recent Case: Airline Shuttles

B Method was applied to development of airline shuttle
management system [15] (presented in 2005). Below de-
scribes the development process and notable statistics in
their experience.

4.2.1 Process

Before applying B Method, requirements were examined in
the develop process. Here activities of the following were
involved in the requirements phase and construction of the
initial B models.

• In the requirements phase, data flow diagrams and
pseudo codes were used to discuss essential parts in
order to reduce gaps between the requirements descrip-
tion and the B models following them.
• Many ambiguous points were found through formal-

ization into B models, and resolved by questions.
• Review process was introduced because construction

of the initial B models fully relies on human develop-
ers.
• As it was not always clear how to formalize desired

properties, provisional properties were defined and
then polished by trying to prove them. Through this
process, errors in the property descriptions, errors in
specifications, and unrealizable requirements were dis-
covered and corrected.

The process after these activities is defined in B Method,
as described in Sect. 4.1. A notable point in this application
case is that tools for (semi-)automatic refinement were intro-
duced, which were not used in the previous application case
[14]. The tools handled refinement of abstract set-theoretic
data into computerizable objects.

4.2.2 Statistics

The project provides some interesting statistics. The project
had finally about 180,000 lines of B models, including the
following.

Abstract Model manual 28,000 lines
generated 10,000 lines

Concrete Model manual 28,000 lines
generated 118,000 lines

Tools were used to generate typical Abstract Models as well
as to obtain refined Concrete Models. Approximately, 30%
of the B models were constructed manually.

These B models required proof of about 43,000 lem-
mas generated by the tools. About 1,400 lemmas (3%)
required manual, interactive proof while the others (97%)
were proven automatically. Manual proof was conducted

14
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

with an average rate of 15 lemmas by man-day.
The number of ADA code lines generated finally was

about 160,000. The number was so large due to use of
safety-enhanced version of ADA, duplicated codes, and so
on. The number of “optimal” ADA code lines was estimated
at 60,000.

Manpower cost rate was given as follows.
Abstract Model 55%

- questions/answers 18%
and document analysis

- inspections 5%
- proof 16%

Concrete Model 24%
- proof 11%

Others (project management, 21%
documentation, etc.)

Many efforts were put on construction of the Abstract Mod-
els (55%), most of which were on their verification and val-
idation (39% in total, about 70% of the efforts put on Ab-
stract Models).

5. Discussion

5.1 Applicability of Formal Methods

Generally, advantages of development using formal meth-
ods are believed as follows.

• The process of formalization helps understanding of
the problem, leading to discovery of ambiguity, incor-
rectness, and inconsistency typically in informal re-
quirements or specifications.
• Obtained formal models allow for tool verification

of system behavior and desirable properties, typically
providing completeness for defined criteria.

These are about increasing confidence in the output of (a)
certain phase(s). It will prevent discovery of some errors
in later steps (after implementation and testing, or even af-
ter deployment), which has recently been recognized to be
very costly. With these advantages, formal methods seem
promising especially when successful applications such as
the ones presented in Sects. 3.2 and 4.2 are focused on.

On the other hand, limitations of formal methods are
generally believed as follows.

• Formal methods are too costly unless the target system
requires very high dependability.
• They are very theoretical, too difficult for common de-

velopers to understand and use.
• They provide little support for practical use.

Below these disadvantages are discussed further, citing the
application case presented in Sect. 4.2, recent studies on B
Method,

5.1.1 Too Costly?

Regarding the first limitation mentioned above, i.e., costs,

it is necessary to clarify what kinds of costs are discussed.
In the case of model checking, it is often thought adequate
to take additional cost to explore deficiencies that cannot be
revealed by program testing. In the case of formal spec-
ification, which makes the development process rigorous,
costs are difficult to examine. The advantages mentioned
at the beginning of this section mention decrease in costs
in later phases, but implicitly mentioning increase in costs
in earlier phases. In the case of B Method presented in
Sect. 4.2, most efforts were put on the initial construction
of B Abstract Models from requirement documents, while
later phases (implementation and testing) did not basically
require any efforts.

Regarding this point, there was a study that compared
cases where B Method is used with a case where an infor-
mal method (SDL) is used [16]. It reported decrease in over-
all development time in 30–50% (depending on the way B
Method is used) due to remodelling work required to coun-
teract errors due to misspecification in the SDL case. There
has also been studies to examine systematic ways to bal-
ance effectiveness and cost in introduction of formal meth-
ods, e.g., by using metrics to find out complex part of the
system [17].

Even if formal methods provide overall cost-efficiency
in some situations, there is a problem that it is difficult for
developers (or rather managers) to learn cost-efficiency of
formal methods. It is necessary to learn involved trade-
offs in order to use formal methods, as it changes the way
of thinking, e.g., exclusion of the testing phase. In other
words, the problem is unavailability of reference method-
ologies/guidelines about incorporation of formal methods
into development processes and about selection of formal
methods, in order to allow for meaningful discussion on in-
troduction of some formal methods.

5.1.2 Too Difficult?

Regarding the second limitation, i.e., difficulty, it depends
on whether it is necessary to know the inside of the tools.
Readers might find the example SPIN and B models easy to
read. SPIN requires understanding of automata theory and
temporal logic. B Method requires basic mathematics, first
order logic and set theory. In the case of SPIN, develop-
ers can rely much on the automated verification by the tool.
In the case of B Method, developers need to help the tool
through interactive proof, which is not so easy for common
developers. It is notable that anyway it is still necessary to
know the underlying theory to deal with troubles, to make
more use of the tools, and be confident of what are being
done by the tools.

Besides theoretical foundations it is absolutely neces-
sary to carefully understand practical ways of thinking for
each of formal methods and tools. For example, the pre-
sented application of SPIN (Sect. 3.2) considered abstrac-
tion (simplification, or approximation) of the targeted sys-
tem in order to reduce the number of states to be explored.
It is up to human developers to define problems that are han-

ISHIKAWA and HONIDEN: ON APPLICABILITY OF FORMAL METHODS AND TOOLS TO DEPENDABLE SERVICES
15

dled by formal methods and tools, as well as to interpret
obtained results.

It is not so reasonable not to learn difficult things with-
out discussion of its effectiveness. In this sense, formal
methods are believed to be worth learning. Formal methods
and their underlying theories are being incorporated into ed-
ucation programs, such as an emerging standard curriculum
for teaching Software Engineering in universities [18].

Another point is that it is not necessary for all the de-
velopers to know details of the applied formal methods. In
development of a transport system in New York using B
Method, only one of four developers knew underlying theo-
ries of B Method while two of them had not joined develop-
ment using B Method [19].

Despite the above discussion, it should be noted that,
again, it is necessary to have some guidelines regarding
teaching or managing development using formal methods.

5.1.3 Little Support for Practical Use?

Regarding the third limitation, i.e., lack of practical, user-
friendly tools, it is often true though some tools such as
SPIN are very sophisticated. For example, B4Free, the free
version of the B tools, is based on XEmacs and not so user-
friendly (though the commercial version is sophisticated).

It is well known that tools for B methods have been so-
phisticated through application to actual, industrial projects,
by strong collaboration of a tool company and a trans-
port company. It is necessary for formal methods to have
user-friendly, practical tools in order to become widespread,
matching technical seeds with practical needs typically
through collaboration of the academic and the industry.

5.2 Toward Dependability in Highly Networked Society

As a variety of digital services are provided through net-
works, more and more efforts are required to ensure depend-
ability of software behavior implementing services. Diffi-
culty in networked software primarily comes from auton-
omy and concurrency. Each process acts autonomously
while interacting with one another. The resulting sys-
tem consists of non-deterministic, complex state transitions,
which cannot be controllably explored in actual implemen-
tation. As described in the previous sections, model check-
ing tools such as SPIN can deal with this difficulty directly.
So model checking has been made use of for verification of
networked software, especially essential protocols to coor-
dinate distributed processes. Network faults are sometimes
modeled when targeted protocols essentially handle reliabil-
ity, or message reachability properties.

This paper has discussed another approach, formal
specifications such as B Method. As formal specifications
typically focus on data structures and functional aspects of
systems, existence of networks is often abstracted away. So
they can be still used to increase confidence in the essential
functionalities exchanged via networks. In addition, recent
studies have considered adaption of formal specifications to

concurrent or distributed systems. It is notable that a varia-
tion of B Method, called Event B [7], is attracting more and
more attentions in Europe to handle event-based distributed
systems based on B Method.

This paper has only focused on formal methods and
tools that are used before implementation. There is another
approach to extract models to analyze or verify from exe-
cutable codes. The approach is getting popular because it
can enhance the testing phase without changing much of the
development process. For networked software, it is neces-
sary to use dedicated mechanisms to extract models to be
analyzed, as programs are constructed so that they are only
connected indirectly through RPC or RMI. Recently there
have been studies on such mechanisms to gather distributed
programs, which are specified to run with existence of net-
works, and construct an adequate model of concurrent pro-
cesses combined with a model that denotes network faults
[20].

It is also notable that specific tools have been devel-
oped to adopt formal methods to popular application ar-
eas in networked software. Recently, formal methods for
Web Services, or Service-Oriented Architecture, are repre-
sentative. For example, a sophisticated tool has been pro-
vided for verification and analysis of business processes
and service choreographies [21]. Business processes de-
note local behavior of each participant while service chore-
ographies denote expected collaboration protocols from the
global viewpoint. They are specified by standard languages
called BPEL and WS-CDL, respectively. The tool allows for
verification and analysis of descriptions in these languages,
on the basis of a formal model, Labeled Transition System.
Such tools facilitate to make use of formal methods, as they
provide fine support for the target area and eliminate the ne-
cessity to construct models from scratch, which is required
when general-purpose tools are used.

6. Conclusion

This paper has overviewed and discussed the present state of
formal methods, citing their recent industrial applications.
The essence of formal methods should provide great effec-
tiveness when the scope of their contributions are clarified
and properly positioned in the development process. How-
ever, there have still been obstacles, primarily unavailability
of reference methodologies/guidelines about incorporation
of formal methods into development processes, about se-
lection of formal methods, and about education of formal
methods. There has also been the problem of limitation in
practical applicability of tools. These issues need to be tack-
led through collaboration of the academic and the industry,
matching technical seeds with practical needs, for complex
but dependable software systems that provide the basis of
our lives in highly networked society.

References

[1] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE

16
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

Trans. Dependable and Secure Computing, vol.1, no.1, pp.11–33,
2004.

[2] D.R. Avresky, J. Bruck, and D.E. Culler, “Introduction to the special
section on dependable network computing,” IEEE Trans. Depend-
able and Secure Computing, vol.12, no.2, pp.97–98, 2001.

[3] H.C. Michael, “Why engineers should consider formal methods,”
16th DASC. AIAA/IEEE Digital Avionics Systems Conference,
pp.16–22, 1997.

[4] “Formal Methods Europe,” http://www.fmeurope.org/, April 2008
(Last Access).

[5] S. Nakajima, “Formal methods as software engineering tools — An
exile in FM wonderland,” Tech. Rep. NII-2007-007J, National Insti-
tute of Informatics, 2007.

[6] P. Zielinski, “Automatic verification and discovery of byzantine con-
sensus protocols,” 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’07), pp.72–81, 2007.

[7] “Rodin — Rigorous open development environment for complex
systems.” http://rodin.cs.ncl.ac.uk/, Aug. 2008 (Last Access).

[8] “VDM information web site.” http://www.vdmtools.jp/, April 2008
(Last Access).

[9] “Bmethod: Presentation of BMethod, B language, and formal meth-
ods.” http://www.bmethod.com/, April 2008 (Last Access).

[10] “SPIN — Formal verification.” http://spinroot.com/spin/whatispin.
html, April 2008 (Last Access).

[11] “Formal systems (Europe) Ltd.” http://www.fsel.com/index.html,
April 2008 (Last Access).

[12] “Java PathFinder.” http://javapathfinder.sourceforge.net/, April 2008
(Last Access).

[13] M.H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri,
and M. Sebastianis, “A case study on the automated verification of
groupware protocols,” ICSE’05, Proc. 27th International Conference
on Software Engineering, pp.596–603, New York, NY, USA, 2005.

[14] P. Behm, P. Benoit, A. Faivre, and J.M. Meynadier, “Météor: A suc-
cessful application of B in a large project,” World Congress on For-
mal Methods in the Development of Computing Systems (FM’99),
p.712, 1999.

[15] F. Badeau and A. Amelot, “Using B as a high level programming
language in an industrial project: Roissy VAL,” ZB 2005: Formal
Specification and Development in Z and B, pp.334–354, 2005.

[16] I. Oliver, “Experiences in using B and UML in industrial develop-
ment,” 7th International B Conference (B 2007), pp.248–251, 2006.

[17] Y. Zheng, J. Wang, K. Wang, and J. Xue, “Partially introducing
formal methods into object-oriented development: Case studies us-
ing a metrics-driven approach,” Formal Methods 2006 (FM 2006),
pp.190–204, 2007.

[18] “J07-BOK.” http://www.ipsj.or.jp/12kyoiku/J07/J07contents.html,
April 2008 (Last Access).

[19] D. Essamé and D. Dollé, “B in large-scale projects: The Canarsie
Line CBTC Experience,” 7th International B Conference (B 2007),
pp.252–254, 2007.

[20] C. Artho, C. Sommer, and S. Honiden, “Model checking net-
worked programs in the presence of transmission failures,” First
Joint IEEE/IFIP Symposium on Theoretical Aspects of Software En-
gineering (TASE), pp.219–228, 2007.

[21] H. Foster, “LTSA WS-Engineer — Implerial College London.”
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/, April 2008 (Last
Access).

Fuyuki Ishikawa received his Ph.D. degree
in Information Science and Technology from
The University of Tokyo, Japan, in 2007. Since
April 2007, he has been an assistant profes-
sor at Digital Content and Media Sciences Re-
search Division, National Institute of Informat-
ics, Japan. He is also an assistant professor at
Department of Informatics, School of Multidis-
ciplinary Sciences, The Graduate University for
Advanced Studies (Sokendai University), Japan.
His research interests include Service-Oriented

Computing, Multi-Agent Systems, Ubiquitous/Pervasive Computing and
Software Engineering. He is a member of the Association for Comput-
ing Machinery (ACM), Computer Society of the Institute of Electrical and
Electronics Engineers (IEEE), the Information Processing Society of Japan
(IPSJ), and Japan Society for Software Science and Technology (JSSST).

Shinichi Honiden received his Ph.D. degree
in electrical engineering from Waseda Univer-
sity, Tokyo, Japan, in 1986. From 1978 to 2000
he was with Toshiba Corporation. Since April
2000, he has been a professor and a director,
Information Systems Architecture Research Di-
vision, National Institute of Informatics, Japan.
He has also been a professor in the Graduate
School of Information Science and Technology,
The University of Tokyo since April 2001. He
has been a visiting professor of Waseda Univer-

sity since April 2006. He was a visiting researcher of University College
London and Imperial College, London, from 2002 to 2003. He was an in-
vited professor at Le Laboratoire d’Informatique de Paris 6, Pierre et Marie
Curie in 2006. His research interests include agent technology, pervasive
computing, and software engineering. Prof. Honiden is a member of the
Institute of Electrical and Electronics Engineers (IEEE), the Information
Processing Society of Japan (IPSJ), the Association for Computing Ma-
chinery (ACM), the Japanese Society for Artificial Intelligence (JSAI), the
Japan Society for Software Science and Technology (JSSST).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

