Joint source-channel coding (JSCC) is a method to jointly allocate the given total transmission bitrate to the source coding and channel coding to maximize the video quality at the receiving end. In this paper, we propose a practical model for efficiently determining a near-optimal code rate for JSCC in real-time video communications. The conventional code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and typically employ the process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we introduce a very simple video quality model based on the playable bitrate which is defined as the total bit amount per unit time that is not affected by the channel loss during transmission including correctly recovered bits by the channel decoder. Because the video quality at the receiving end is clearly commensurate with the playable bitrate, we can easily determine the quality-oriented near-optimal code rate by finding the code rate that maximizes the playable bitrate at the sender side. The proposed playable bitrate model is very simple because it does not require the complex training procedure for obtaining model parameters, which is usually required in the conventional code rate decision method. It is shown by simulations that the proposed code rate decision scheme based on the playable bitrate model can efficiently determine the near-optimal code rate for JSCC in terms of high accuracy on the optimal code rate.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yo-Won JEONG, Kwang-Deok SEO, Kyu Ho PARK, "A Practical Code Rate Decision Scheme Based on Playable Bitrate Model for Error-Resilient Joint Source-Channel Coding" in IEICE TRANSACTIONS on Communications,
vol. E94-B, no. 3, pp. 676-685, March 2011, doi: 10.1587/transcom.E94.B.676.
Abstract: Joint source-channel coding (JSCC) is a method to jointly allocate the given total transmission bitrate to the source coding and channel coding to maximize the video quality at the receiving end. In this paper, we propose a practical model for efficiently determining a near-optimal code rate for JSCC in real-time video communications. The conventional code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and typically employ the process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we introduce a very simple video quality model based on the playable bitrate which is defined as the total bit amount per unit time that is not affected by the channel loss during transmission including correctly recovered bits by the channel decoder. Because the video quality at the receiving end is clearly commensurate with the playable bitrate, we can easily determine the quality-oriented near-optimal code rate by finding the code rate that maximizes the playable bitrate at the sender side. The proposed playable bitrate model is very simple because it does not require the complex training procedure for obtaining model parameters, which is usually required in the conventional code rate decision method. It is shown by simulations that the proposed code rate decision scheme based on the playable bitrate model can efficiently determine the near-optimal code rate for JSCC in terms of high accuracy on the optimal code rate.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E94.B.676/_p
Copy
@ARTICLE{e94-b_3_676,
author={Yo-Won JEONG, Kwang-Deok SEO, Kyu Ho PARK, },
journal={IEICE TRANSACTIONS on Communications},
title={A Practical Code Rate Decision Scheme Based on Playable Bitrate Model for Error-Resilient Joint Source-Channel Coding},
year={2011},
volume={E94-B},
number={3},
pages={676-685},
abstract={Joint source-channel coding (JSCC) is a method to jointly allocate the given total transmission bitrate to the source coding and channel coding to maximize the video quality at the receiving end. In this paper, we propose a practical model for efficiently determining a near-optimal code rate for JSCC in real-time video communications. The conventional code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and typically employ the process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we introduce a very simple video quality model based on the playable bitrate which is defined as the total bit amount per unit time that is not affected by the channel loss during transmission including correctly recovered bits by the channel decoder. Because the video quality at the receiving end is clearly commensurate with the playable bitrate, we can easily determine the quality-oriented near-optimal code rate by finding the code rate that maximizes the playable bitrate at the sender side. The proposed playable bitrate model is very simple because it does not require the complex training procedure for obtaining model parameters, which is usually required in the conventional code rate decision method. It is shown by simulations that the proposed code rate decision scheme based on the playable bitrate model can efficiently determine the near-optimal code rate for JSCC in terms of high accuracy on the optimal code rate.},
keywords={},
doi={10.1587/transcom.E94.B.676},
ISSN={1745-1345},
month={March},}
Copy
TY - JOUR
TI - A Practical Code Rate Decision Scheme Based on Playable Bitrate Model for Error-Resilient Joint Source-Channel Coding
T2 - IEICE TRANSACTIONS on Communications
SP - 676
EP - 685
AU - Yo-Won JEONG
AU - Kwang-Deok SEO
AU - Kyu Ho PARK
PY - 2011
DO - 10.1587/transcom.E94.B.676
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E94-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2011
AB - Joint source-channel coding (JSCC) is a method to jointly allocate the given total transmission bitrate to the source coding and channel coding to maximize the video quality at the receiving end. In this paper, we propose a practical model for efficiently determining a near-optimal code rate for JSCC in real-time video communications. The conventional code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and typically employ the process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we introduce a very simple video quality model based on the playable bitrate which is defined as the total bit amount per unit time that is not affected by the channel loss during transmission including correctly recovered bits by the channel decoder. Because the video quality at the receiving end is clearly commensurate with the playable bitrate, we can easily determine the quality-oriented near-optimal code rate by finding the code rate that maximizes the playable bitrate at the sender side. The proposed playable bitrate model is very simple because it does not require the complex training procedure for obtaining model parameters, which is usually required in the conventional code rate decision method. It is shown by simulations that the proposed code rate decision scheme based on the playable bitrate model can efficiently determine the near-optimal code rate for JSCC in terms of high accuracy on the optimal code rate.
ER -