
1650
IEICE TRANS. COMMUN., VOL.E96–B, NO.7 JULY 2013

INVITED PAPER Special Section on Internet Architectures, Protocols, and Management Methods that Enable Sustainable Development

A Node Design and a Framework for Development and
Experimentation for an Information-Centric Network

George PARISIS†∗, Dirk TROSSEN†∗, Nonmembers, and Hitoshi ASAEDA††a), Senior Member

SUMMARY Information-centric networking has been touted as an al-
ternative to the current Internet architecture. Our work addresses a crucial
part of such a proposal, namely the design of a network node within an
information-centric networking architecture. Special attention is given in
providing a platform for development and experimentation in an emerging
network research area; an area that questions many starting points of the
current Internet. In this paper, we describe the service model exposed to
applications and provide background on the operation of the platform. For
illustration, we present current efforts in deployment and experimentation
with demo applications presented, too.
key words: information-centric networking, click router, publish-
subscribe, future Internet

1. Introduction

Information-Centric Networking (ICN) is increasingly at-
tracting attention in the networking community. Several
technological solutions within a range of architectures have
been proposed, such as in [1]–[4], with differences but also
commonalities that stretch across the approaches.

One important aspect is the design of a network node
within such architecture(s). One strategy is to evolve the
current IP-centric design with its socket abstraction through
information-centric extensions. This may result in overlay-
ing on top of IP, a potentially desirable outcome since it al-
lows for gradual evolution of the node design, in the face of
a network-wide paradigm shift towards information dissem-
ination.

Another strategy is a clean-slate design of network
nodes without the historical baggage of the IP stack. This
strategy could, for instance, play a role in deployments in
which access as well as fixed and mobile end nodes are re-
placed first. The questions arise as to what advantages such
re-thinking could bring as well as how feasible such a design
would be today. Following this strategy, this paper presents
the design and implementation of an ICN stack. Our archi-
tectural starting point is the one presented in [1] and elab-
orated in [2]. This work argues and lays the ground for a
clean-slate information-centric architecture in which infor-
mation is the first principle. Individual information items

Manuscript received December 10, 2012.
Manuscript revised February 21, 2013.
†The authors are with the Computer Laboratory, University of

Cambridge, UK.
††The author is with the Network Architecture Laboratory,

NICT, Koganei-shi, 184-8795 Japan.
∗Their work is supported by the EU FP7 project PURSUIT.

a) E-mail: asaeda@nict.go.jp
DOI: 10.1587/transcom.E96.B.1650

represent anything useful within a computational context,
and they are identified through labels, effectively replac-
ing the role of IP addresses in today’s Internet. Informa-
tion items are organized through scopes, each again iden-
tified through its own label. This allows for building di-
rected acyclic graphs of information, manipulated through a
publish-subscribe service model.

This service model is realized through three core func-
tions. The first one, rendezvous, matches supply of infor-
mation to demand for it. This process results in some form
of (location) information that is used for binding the infor-
mation delivery to a network location by the second func-
tion, topology management and formation, to determine a
suitable delivery relationship for the information transfer.
This transfer is finally executed by the forwarding function.
With this control and data plane separation, routing and for-
warding are decoupled, enabling to trade off options in state
management between various network components. For in-
stance, in our prototype, we remove flow-dependent state
from forwarding nodes in favour of route computation dur-
ing topology formation, inserting the state into the packet
header. The architecture in [2] also allows for different real-
izations of the core functions through dissemination strate-
gies. Hence, the core functions can be optimized within a
given strategy, e.g., for catering to varying requirements of
the underlying networks.

Any attempt to design a network node for such an en-
vironment needs to align with these architectural starting
points. In addition, the network node design needs to ac-
commodate the requirement to serve as a platform for an
emerging and likely evolving area of research. Hence, any
platform design needs to enable experimentation and devel-
opment across a growing research community. Specifically,
it is crucial to support experiments in real high-speed net-
works as well as in emulated environments in order to en-
able experimenting with solutions, such as inter-domain or
global rendezvous solutions, for which real deployments at
scale will be missing. Furthermore, with ICN penetrating a
variety of environments that range from high-speed core net-
working over mobile to delay-tolerant environments, sup-
porting various device platforms is crucial, too.

To present our contribution, we structure the paper as
follows: We outline related research work (Sect. 2) before
we delve into the network design aspects (Sect. 3). We then
present an overview of our implementation (Sect. 4). Fi-
nally, we present several deployments in real-world testbeds
and an experimental evaluation in an international testbed

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

PARISIS et al.: A NODE DESIGN AND A FRAMEWORK FOR DEVELOPMENT AND EXPERIMENTATION FOR AN INFORMATION-CENTRIC NETWORK
1651

(Sect. 5), before concluding the paper.

2. Related Work

Since the inception of the IP node architecture, there have
been many attempts to rethink the design of a network node.
In the area of content-centric architectures, Haggle [5] and
CCN [3] stand out. Haggle provides manipulations of a
linked information graph based on publish/subscribe opera-
tions. The Haggle component wheel logically separates core
functions for information dissemination in a plug-and-play
manner. However, Haggle does not provide a layering struc-
ture but resides between the application and the network (in
the model of a network that can include many functional-
ities of today’s protocol stacks, such as at TCP/IP level).
CCN extends the IP node design with a forwarding informa-
tion database for a hierarchical naming system (based on the
DNS). It also introduces a forwarding function that can be
configured based on some strategy for selecting particular
interfaces for given named data. However, the function of
routing, i.e., the population of the forwarding table based on
availability of named data in different domains, is currently
undefined. Only a broadcast strategy has been presented so
far which is not suitable for most communication scenarios.
Any progress of this aspect is likely to have an impact on
the overall node design. Furthermore, CCN aims to provide
a shim layer between a DNS-based naming at application
level and the IP substrate.

Another area of development is that of data-center net-
working (DCN). An example here is RipCord [6]. Based
on the IP abstractions provided to applications, the node de-
sign separates core functions for topology management and
forwarding for separate optimization. As a shim layer in
existing nodes, it does not provide any particular layering
structure that is different to that of IP.

Finally, we note the design of IP end nodes today.
Endpoint-based abstractions are provided instead of infor-
mation flow ones. The authors in [7], however, argue for
HTTP and the DNS as the effective waist of the Inter-
net. This lifts the IP node design onto the level of efforts
like CCN or RipCord, providing manipulations of hierar-
chically named data. IP node designs separate functions like
name resolution (DNS lookup), routing and fast-forwarding.
However, layering within an IP-based node design is rigid
with its transport functionality being directly exposed to ap-
plications. Overlaying enables introducting shim layers but
often with significant performance penalties.

3. Network Node Design

The principles of our ICN architecture are now mapped to
a node design. Along with the architectural principles, we
take into account the following design considerations that
must be met by our node design. Firstly, we aim to support
dissemination strategies, enabling to change such strategies
during system runtime. For example, an application could
adapt the strategy for an information graph after its creation

Fig. 1 Network Node Design: Software components implementing the
architectural core functions and enabling the interaction of applications
with the network through the service model, as explained in Sect. 3.3.

in order to extend the information from being node-local
towards an entire network domain. Secondly, we want to
preserve the modularity of the core functions as introduced
in [1]. For example, as we design new forwarding mecha-
nisms, the network node must be able to incorporate such
new mechanisms without breaking existing deployments
and affecting any previous functionality. This is achieved
by assigning a different dissemination strategy to a part of
the information structure that utilizes the new functionality.
Thirdly, managing the information about available informa-
tion, e.g., its suppliers and consumers, is a crucial task of
our network node; therefore, our design should provide an
approach to managing this information that is independent
from the particular choices for its realization. Hence, our
design needs to afford extensibility and flexibility.

These considerations lead us to a modular design for
our network node, illustrated in Fig. 1. Here, various soft-
ware components implement the core functions of the un-
derlying architecture, i.e., rendezvous for matching the de-
mand and supply of information among publishers and sub-
scribers, formation of a topology for information dissemina-
tion, and forwarding information in the network.

In a manner reminiscent of early IP nodes, an impor-
tant design aspect is the ability for a node to assume any
role in the network. For instance, the same network node
that realizes all three core network functions can take the
role of a rendezvous node that, in cooperation with other
nodes in a network, provides information resolution among
publishers and subscribers. Other nodes could assume mere
forwarding functionality. Forwarding could be offloaded in
hardware, while missing all other node components such as
topology formation. This enables considerable flexibility in
experimental deployments, particularly in an early phase of
development.

The component-based node design also drives our im-
plementation approach with the goal to develop a unified
framework for deployment and experimentation that spans
from experimentation in dedicated networks over overlays
to emulated as well as large-scale networks.

1652
IEICE TRANS. COMMUN., VOL.E96–B, NO.7 JULY 2013

Fig. 2 An example information structure.

3.1 Information Structure and Semantics

The fundamental change compared to an IP-based architec-
ture is that information is at the core of our network archi-
tecture. Therefore, the management of information is a very
important task that is undertaken by the rendezvous network
function. Depending on the assigned dissemination strat-
egy, the rendezvous function can be implemented in differ-
ent ways: (1) locally to a network node to manage informa-
tion across applications running within the same node, (2)
in a centralized network node for small-scale networks, (3)
in a distributed, potentially hierarchical, fashion for man-
aging large information spaces across one or more network
domains (e.g., as the one presented in [8]).

Aligned with [1], [2], information items are the central
principle in our architecture. These represent any informa-
tion pertaining to the computational task that is executed via
the network (e.g., delivering a video from a sender to many
receivers). Each information item is identified through its
own statistically unique fixed size label. Furthermore, any
number of information items can be nested under a scope,
which is again identified through its own label (see Fig. 2
for an example of a resulting information structure). Labels
carry no semantics and are meaningless to most network
components and applications. Their meaning is restricted to
the entities that produce and consume the information items,
while the network entities merely transfer the information.
Global uniqueness of labels within the overall structure is
not a prerequisite although it may be enforced in specific
sub-graphs by the rendezvous function. Information can be
identified in the context of a scope using a fixed size label,
and the absolute path from a root of the graph (with possi-
bly more than one path that may exist) must be used when
accessing the service model (see Sect. 3.3).

Figure 2 depicts an information graph that is managed
by the rendezvous function. We observe that an informa-
tion item can be published under multiple scopes. Scopes
and information items are identified using one or more full
identifiers starting from a root scope. With that, the item
with label 000A is identified using the following identifiers:
/0000/2222/3333/000A, /0001/3333/000A and /0001/000A. A
publisher or subscriber can use any of these identifiers, de-
pending on its potentially partial knowledge of the infor-
mation structure, to advertise or subscribe to this informa-

tion item using the service model exported by our network
node. As an example, the information item with identifier
/0000/1111/0000 has the same label as the root scope /0000
and scope /0000/0000. As long as all full identifiers of a
scope or information item are unique, they are legitimate.

Our node design provides support for a wide range of
possible information semantics. Let us consider the case in
which individual information items are immutable. Here, an
application-specific item is identified with a (statistically)
unique label under a given scope, for instance by hashing
its content or a human readable and memorable name. As
an example, we could assume each version of a document
being labelled individually. For the application, there needs
to be an additional information exchange that disseminates
the version identifiers. We also consider mutable informa-
tion, with any item carrying the same identifier. Hence, the
application needs to take care of any issues arising from this
mutability, without having the capability to rely on (statis-
tically) unique labels. Mutable items are important when
realizing, e.g., live video delivery, in which video chunks
are published using the same identifier. Finally, determining
the identifiers through an algorithmic function represents a
hybrid of the previous approaches. For instance, a sequence
number scheme could be included into the hashing function
that creates an individual identifier. Assuming that publish-
ers and subscribers are aware of this relation, the seemingly
random identifiers can be associated with each other, e.g.,
when re-assembling the received fragments.

3.2 Network Functions

The Rendezvous Component receives and processes all re-
quests that are published by applications running locally or
in other nodes. Upon receiving such requests, it matches
potential publishers and subscribers in order to facilitate the
exchange of information between them. Realizations of the
rendezvous component are defined through the dissemina-
tion strategy that underlies (parts of) the information struc-
ture. Such realizations may entail enforcing global identi-
fier uniqueness, node-local visibility of information or infor-
mation accessibility across one or more network domains.
Moreover, a dissemination strategy could minimize the re-
alization of the rendezvous module.

The Topology Management and Formation (TM) Com-
ponent realizes the overall delivery topology management
and the formation of delivery graphs for pub/sub relations.
For that, the TM updates the topology information when
network nodes join or leave the network and creates the
necessary forwarding information (and the necessary state
in the network) when requested. In a typical scenario, the
rendezvous component may request such forwarding infor-
mation after successfully matching a publish/subscribe re-
quest. Specific dissemination strategies may be reflected in
the way forwarding information is created. For instance,
multicast trees from a publisher to a set of subscribers may
be created using a shortest-path approach, while topology
formation is reduced to finding the interested applications

PARISIS et al.: A NODE DESIGN AND A FRAMEWORK FOR DEVELOPMENT AND EXPERIMENTATION FOR AN INFORMATION-CENTRIC NETWORK
1653

in this node when disseminating information purely within
the boundaries of a single network node.

The Forwarding Component receives publications and
forwards them to the network and/or to node-local compo-
nents. For this, it maintains necessary state and may coordi-
nate with the TM component, e.g., when new nodes attach.
Optimized network nodes may only realize the forwarding
function using, e.g., hardware-optimized mechanisms.

3.3 Service Model

Applications as well as node components interact with each
other and with the network through the service model, ex-
posed as an internal API. This service model enables the
manipulation of information in a publish/subscribe fashion.
While the manipulation through the service model is similar
to many existing event-based pub/sub systems, our descrip-
tion outlines these operations in the context of utilizing the
core functions of the architecture.

3.3.1 Publish/Subscribe Semantics

When scopes are published or un-published, subscribers of
their parent scopes are notified about new or deleted scopes
by the rendezvous network function. Such notifications are
published to a well-known scope to which all nodes in the
network are subscribed. When a publication reaches a desti-
nation, according to the forwarding function, the interested
application running in that node is notified by an up-call no-
tification as described later in this section.

When new information items are advertised, the ren-
dezvous function matches all publishers (including pre-
existing ones) with any subscribers and publishes a topology
formation request to the topology management function.
Respectively, when information items are un-published, ren-
dezvous takes place and if there are any publishers left,
a topology formation request is published to the topology
management function. The topology management function,
upon receiving such requests, calculates forwarding infor-
mation that is published to one more publishers. For in-
stance, our implementation of the intra-domain forwarding
assumes LIPSIN [9] identifiers. Therefore, the topology
management function calculates an identifier that defines a
source-based multicast tree from a publisher to a number of
subscribers and publishes it to the respective publisher.

A subscription to a scope triggers the rendezvous func-
tion to look for any scopes or information items that are pub-
lished under that scope and acts as follows: for any scope, it
publishes a notification about its existence to the subscriber.
For all information items, one or more publishers that previ-
ously advertised the item are notified to publish the respec-
tive data after the topology management function creates the
forwarding information.

Un-subscribing removes the subscriber from the
scope’s subscriber list. If there are no other publishers and
subscribers as well any items or sub-scopes, the scope is
deleted from the information graph. After receiving a sub-

scription to an information item, the rendezvous component
matches all publishers with this subscriber and any other
previously subscribed one and publishes a topology forma-
tion request. Then, the necessary forwarding information is
calculated and published to one or more publishers. When
un-subscribing, the subscriber is removed from the infor-
mation item and if there are no other publishers and sub-
scribers, the rendezvous component deletes the item from
the information graph. Otherwise, rendezvous takes place
again and one or more publishers are notified to publish
data for the specific piece of information. A publisher pub-
lishes data for a specific information item using as a ref-
erence one of the potentially many identifiers of the pub-
lished item. A publisher issues such request if rendezvous
has already taken place, i.e., it is already known by the net-
work node how to forward data for the identified informa-
tion item. There can also be cases where a publisher requests
to immediately forward data. In such cases, it is assumed
that the publisher itself is able to construct the forwarding
information. An example of such operation is when the TM
publishes data (i.e., responses to previous requests) to the
rendezvous component.

3.3.2 Asynchronous Upcalls

In most cases, requests sent by an application to the net-
work stack will result in further actions taken by the ren-
dezvous and topology management functions. These actions
may result to one or more notifications towards the network
node that issued the request, which in turn may notify one
or more applications. These notifications are asynchronous.
A new and deleted scope notification, along with the scope
identifier, is sent to an application when a scope is created
or deleted under a scope to which the application is sub-
scribed. The start publish notification is sent to an applica-
tion, which previously advertised an information item, the
first time the network stack receives a respective notifica-
tion from the rendezvous component. A publisher does not
receive notifications when the set of subscribers changes, al-
though the network stack at the publisher’s node internally
updates the forwarding information. A start publish notifi-
cation contains the identifier of the item to be published. A
stop publish notification is sent to an application whenever
there are no more subscribers to an information item, for
which a start publish notification was previously sent. Fi-
nally, a published data notification is sent to an application
(subscriber) when data has arrived for a specific publication.
This notification contains the information identifier as well
as the received data.

Let us now present a simple example where informa-
tion is disseminated within a single network domain running
a single rendezvous node (RV) and topology manager (TM),
as shown in Fig. 3. Let us also assume that the forwarding
function is realized by a number of forwarding nodes (FW)
using LIPSIN identifiers. Subscribers S1, S2 and S3 have
already subscribed to an information item that is later ad-
vertised by publisher 1 (message 1). The advertisement is

1654
IEICE TRANS. COMMUN., VOL.E96–B, NO.7 JULY 2013

Fig. 3 Intra-domain information dissemination.

forwarded to the RV node. Note that all nodes in the do-
main are assigned with at least one LIPSIN identifier that
is used to forward pub/sub requests to the RV node during
each node’s bootstrapping. The RV node then matches the
availability of information with the interest for it and pub-
lishes a topology formation request to the TM (message 2),
using a pre-configured LIPSIN identifier. The TM creates
a LIPSIN identifier from P1 to S1, S2 and S3 (the last two
running in the same host) and publishes it to P1 (message 3).
P1’s network stack maps the received forwarding identifier
to the advertised information item and notifies the applica-
tion about the existence of subscribers. Finally, it is up to
the application to publish data using this information identi-
fier (message 4). For instance, in a live TV scenario, P1 can
constantly publish video chunks until no subscribers exist
for the information identifier (at this point a similar message
sequence causes P1’s network stack to notify the application
that no more subscribers exist).

3.4 Core Component

This component has three major roles. First, it receives
all publish/subscribe requests sent by applications and other
node components and, according to the dissemination strat-
egy, stores them locally, forwards them to the local ren-
dezvous component or publishes them to the network.
Moreover, it receives publications from the network and dis-
patches them to subscribed software entities. Finally, it re-
ceives notifications from the network and notifies all inter-
ested applications. Note that these notifications are sent as
publications using a predefined information identifier.

3.5 Interfacing Network and Applications

All publications are sent to the network via the network in-
terface component. This component abstracts the physical
network through a unified API for sending and receiving
publications. We foresee interfaces for Ethernet or Blue-
tooth as well as overlays on top of IP, TCP or even HTTP.
The Application Interface Component provides the means
for an application to interact with our network stack.

4. Node Implementation

We now describe the current implementation of our network
node, which is aligned with the component-based node de-
sign, presented in Fig. 1.

4.1 Platform Choice

Our node implementation is based on the Click modular
router [10] platform and is publicly available under GNU
GPL2 license [11]. All node components, presented in
Sect. 3, are implemented as Click components. Click com-
plements our efforts because (a) its communication compo-
nents support a variety of transport mediums, ideal for ex-
perimenting with IP replacements, (b) it allows for different
application-facing interface techniques, and (c) the notion
of Click components enables the development of our main
node components in a way that eases portability between
kernel and user space as well as across operating systems.

Currently, we run our prototype in Linux (user/kernel
space), FreeBSD (user/kernel space), Mac OS X (user
space), Android (user space) and integrated into ns-3 [12],
enabling emulation environments. A user space deployment
supports quick prototyping as well as experimenting in en-
vironments where throughput is not the primary metric. On
the other hand, a kernel space deployment is more efficient
in terms of performance. Note that most of the core network
node functionality is independent of the mode in which our
node is running. Only some operating system dependent
functionality varies across different operating systems. The
integration with ns-3 allows for moving between real de-
ployments and emulations, using one or more powerful ma-
chines or even simulations of the same functionality with
virtually no programming overhead. Only minor changes to
publish/subscribe applications are required to run the same
deployment in emulated or simulated mode.

4.2 Interfacing Applications

In this subsection, we elaborate on the implementation de-
tails of our network node. We present how communica-
tion among different network entities is achieved and how
network publications look like. The Application Interface
Component (see Fig. 1) interfaces our network stack towards
applications. Usually, applications interact with the net-
working software of an operating system via system calls. In
modern Linux kernels, adding system calls requires kernel
recompilation, hindering quick experimentation. For that
reason, we choose Netlink sockets to interact with applica-
tions. All applications need to open such a socket and then
interact with the network stack using existing system calls.
This comes closest to introducing a new set of system calls.
Netlink sockets provide two further advantages. First, appli-
cations use (almost) the same API for accessing the network
stack regardless of the mode in which the implementation

PARISIS et al.: A NODE DESIGN AND A FRAMEWORK FOR DEVELOPMENT AND EXPERIMENTATION FOR AN INFORMATION-CENTRIC NETWORK
1655

Fig. 4 Publish/subscribe request format.

runs. Second, in kernel space, Netlink sockets are Click-
friendly since the network stack receives socket buffers that
are wrapped into Click packets with no extra memory cost.

The network stack receives application requests in the
process context, which immediately unblocks each process
by placing the received data buffer in a FIFO queue. The
buffer process is deferred to a separate Click task. Af-
ter wrapping each received buffer, the Application Interface
component annotates the packet using the Netlink port at
which the sender application expects all events.

4.3 Core Component

The Core Component is at the heart of the node design. All
Click packets received by the Application Interface Com-
ponent are annotated with an application identifier. Click
packets received by other Click components are annotated
with the Click port with which the core component is con-
nected. A further role is that of providing a proxy function
to all publishers and subscribers. Rendezvous nodes (even
the one running in the same node) do not know about in-
dividual application identifiers or Click components in the
network. Instead, a statistically unique node label that iden-
tifies the network node from which a request is sent is (self-)
assigned by the Core Component. The memory buffer for-
mat (wrapped in a Click packet) expected by our network
node from applications is shown in Fig. 4. Note that this
Click packet never traverses the network. It is only pushed
from applications or Click components like the rendezvous
and topology manager ones to the Core component.

All different types of publish/subscribe requests are de-
scribed in the next subsections. The Prefix ID is the identi-
fier of the scope under which the identified (with ID) scope
or information item resides. Its length, which is not con-
stant, is denoted in the byte before the Prefix ID. Moreover,
ID is a variable length identifier that can be a single scope
or information item label or a full identifier when a scope
or item is published under multiple scopes. The strategy
is a single byte identifier of the dissemination strategy that
the scope or information item is assigned with. Strategy op-
tions are arbitrary data required by a dissemination strategy.
This data can be interpreted by one or more network core
functions according to the specified dissemination strategy.
For instance, we implement an Implicit Rendezvous strategy
with which a publisher can publish data directly to a sub-
scriber without separate rendezvous. The strategy option,
in this case, is a LIPSIN [9] identifier that will be used to
forward the data in the network. Finally, the data field is
included only in publish data requests.

Figure 5 presents the format of a Click packet that is

Fig. 5 Upcall format.

sent from the Core component to interested applications or
other Click components as described in Sect. 3.3. The type
of the notification (e.g., start publish) is the first byte. The
variable length identifier of the information item (for start
and stop publish notifications) or scope (for new or deleted
scope) notifications follows. Finally, when the notification
is about published data by a publisher, the actual data reside
at the end of the buffer.

Processing Publish & Unpublish Requests. When-
ever the Core component receives such request, it checks if
any other application or Click component has previously ad-
vertised the same scope or item. In the former case, it creates
a publication with the initial request as the data. Then, ac-
cording to the dissemination strategy, it publishes the data to
the appropriate rendezvous component. In case that another
application or Click component does advertise the same in-
formation, the Core component simply adds the publisher to
its local index. The rendezvous component already stores
the node label as a publisher, since another application run-
ning in the same node has previously published the scope
or the information item. When requests are published to the
rendezvous node via the network, the Core component uses
the /RVSCOPE/nodeID as the information identifier, where
RVSCOPE is a well-known scope to which the rendezvous
component of all nodes subscribes. The rendezvous node
receives this publication, extracts the node label from the
information identifier and stores it as the publisher of the
requested scope or information item.

Processing Subscribe & Unsubscribe Requests.
When a subscribe request is first received, the Core com-
ponent publishes a subscription request on behalf of the ap-
plication to the rendezvous node according to the dissemi-
nation strategy. Further requests for the same scope or in-
formation item are stored locally. Un-subscribe requests are
published to the rendezvous node when no further applica-
tions are subscribed to a scope or information item.

Processing Publish Data Requests. The Core compo-
nent publishes data on behalf of an application or a Click
component only when the information item has been pre-
viously advertised and rendezvous has taken place, i.e. if
the Core component holds a forwarding identifier to one
or more subscribers. Applications are notified by the Core
component when such a forwarding identifier is assigned to
an information item (see Sect. 3.3).

Handling Network Publications. The Core compo-
nent receives all publications destined to this node from the
forwarding component. It then looks up its local index to
find potential subscribers. A Published Data notification
(along with the data) is sent to all interested applications
and Click components. The Core component does not pro-

1656
IEICE TRANS. COMMUN., VOL.E96–B, NO.7 JULY 2013

Fig. 6 Network publication format.

cess the data of received publications — this is left to the
receiver. All packets that cross the network are publications
that have the format presented in Fig. 6. Note that a net-
work publication may have more than one information or
scope identifiers, since, as described in Sect. 3.1, a scope or
an information item can be identified by multiple identifiers,
starting from a root of the information graph. Anything that
can be published in the network must, therefore, have one
or more identifiers and is always included in the data. All
publications include forwarding information as a trailer. For
instance, our intra-domain implementation utilizes LIPSIN
identifiers for efficient forwarding in a single domain. Let
us assume that a network node needs to forward a subscrip-
tion to a rendezvous network node. For this, the subscribe
message (Fig. 4) will be included in the data of a network
publication (Fig. 6). The LIPSIN identifier that will be used
is one (of potentially many) acquired by the publishing net-
work node during its attachment to the network. This identi-
fier will be used to forward the publication to the rendezvous
node.

Processing Rendezvous Notifications. Such notifi-
cations are published in response to publish/subscribe re-
quests. Notifications about the creation or deletion of scopes
are matched with possible subscribers, forwarded to them
as the respective events. When a forwarding identifier is
received for a previously advertised information item, the
Core component may notify a publisher. Initially, the core
component assigns a null identifier when an information
item is advertised. Upon the reception of a non-null iden-
tifier, a start publish notification is forwarded to one of the
potentially many publishers of the item. Whenever new for-
warding identifiers are received, the Core component does
not notify the publisher as long as the received identifier is
not null. In the case of a null identifier being received, a stop
publish notification is forwarded to the application that has
previously received the start publish notification.

4.4 Forwarding Component

The Forwarding component currently implements the
LIPSIN mechanism [9] for forwarding within single do-
mains. For this, it maintains a forwarding table that maps
link identifiers (LIDs) to Click ports that point to a Click
component that can access the network (e.g., a ToDevice
component for Ethernet networks). Another LID is used
to “connect” the Forwarding with the Core component. If
such a LID is included in a LIPSIN identifier, the forward-
ing component will push the packet to its Core component.
In this way a network node is instructed to process a network
publication rather than merely forwarding it.

4.5 Interfacing the Network

We utilize Click components for communicating with other
network nodes, supporting Ethernet via the FromDevice and
ToDevice Click components as well as communication over
raw IP sockets. The former can be used when experiment-
ing in a LAN or VPN, while the latter is appropriate when
overlaying on top of IP. Nodes (especially forwarders) may
have multiple instantiations of the aforementioned compo-
nents. The Forwarding component also allows for running
our network stack in a mixed mode where a node may bridge
LANs over an IP network, with individual LANs running
the network stack over Ethernet. This allows for complex
deployments as well as experimentation.

4.6 Example Applications

Let us briefly present examples that show how diverse com-
putational tasks can use the exported service model and sat-
isfy their networking requirements.

Managed Caching. We have implemented an ap-
proach for content placement, which can directly be real-
ized on top of our node implementation [13]. Caches in the
network receive content by subscribing to the respective in-
formation items and make themselves available as replica
holders by republishing them. The topology manager uses a
shortest path algorithm in order to select the best publishers
for a specific set of subscribers.

Video Transmission. We have also implemented a
multicast-enabled video streaming application. Subscribers
subscribe to information items that represent channels in
which all video frames are sequentially published, i.e., in-
formation here is mutable. The identifiers for each video
channel are advertised by the publisher. When the first sub-
scriber joins a stream, the application is notified and starts
publishing the video data. When another subscriber joins
(or leaves) a channel by subscribing to or un-subscribing
from the information ID, the publisher’s node receives a new
forwarding identifier that defines the revised multicast tree.
The intra-domain multicast support results in a video de-
livery to multiple receivers at a reasonable speed with full
SD video resolution that is realized within the international
testbed described in Sect. 5.1.

Audio and Video Conference in Android. For
demonstrating our Android platform realization, we have
implemented an audio and/or video conference between
multiple mobile users. Each conference session is repre-
sented as a scope, published under the application’s root
scope. The video and audio streams are published as sep-
arate scopes under the session scope. A user can join a ses-
sion by publishing an audio and/or video information item
under the respective scopes. To receive streams from other
users in the session, a user simply needs to subscribe to the
respective scopes.

PARISIS et al.: A NODE DESIGN AND A FRAMEWORK FOR DEVELOPMENT AND EXPERIMENTATION FOR AN INFORMATION-CENTRIC NETWORK
1657

Fig. 7 International testbed.

5. Deployment, Feasibility and Experimentation

5.1 Deployed Testbeds

We have deployed our network node prototype in several
testbeds natively on top of Ethernet or as an overlay running
on top of IP. Our major testbed is an international one that
interconnects 10 major universities and institutions across
the world. Eight European sites are connected with one in
Japan (NICT) and another one in the US (MIT). All sites
are connected via OpenVPN, which exports a virtual Eth-
ernet device to all machines in the testbed. In total, we in-
terconnect 40 machines in a graph topology containing one
Topology Manager and one Rendezvous node that handle all
publish/subscribe and topology formation requests, respec-
tively. We have also performed tests in a high-performance
Ethernet network consisting of 15 machines. There, the de-
ployment runs in kernel space where we achieve line speed
performance when forwarding publications across the net-
work. Finally, we have deployed our prototype in overlay
topologies of more than 100 PlanetLab nodes.

5.2 Feasibility and Experimental Evaluation

Let us now present a preliminary evaluation of our node de-
sign in our international testbed, depicted in Fig. 7, show-
ing the feasibility of our network node design as well as its
performance characteristics. The physical topology of our
testbed is shown in the world map in Fig. 7. Each organi-
zation (listed on the right side of Fig. 7) hosts a number of
physical hosts that run one or more virtual machines. Note
that the numbering of the organizations corresponds to the
physical sites depicted in the world map, and is indepen-
dent of the numbering used in the ICN overlaid topology.
On top of this physical topology we have deployed an ICN
topology, depicted on the top left part of Fig. 7. Table 1
presents the ICN nodes in the overlaid topology for each
organization. This overlaid topology forms a full mesh of

Table 1 ICN topology nodes.

Organization Nodes in ICN Topology

University of Essex 1, 9
Aachen University 2, 10, 18

Centre of Research and Technology 3, 11, 19, 20
AUEB 4, 12, 21, 22

Ericsson Finland 5
University of Cambridge 6, 13

CTVC 7, 14, 15, 23, 24, 25
NICT 8, 16, 17, 26, 27, 28-32

8 machines, one from each organization. The rest of the
machines from each site are attached to a node that is con-
nected to the core of the network. For overlaying purposes,
all nodes participate in the same OpenVPN, whose server
runs in Essex University, UK. Therefore, a direct ICN link,
e.g., between node 6 (Cambridge University) and node 8
(NICT), incurs propagation delays to and from the Open-
VPN server, with the OpenVPN server’s packet processing
capacity being the bandwidth bottleneck as observed by ICN
applications.

5.2.1 Fast Path Evaluation

Figure 8 presents the results regarding the fast path perfor-
mance of our network node, namely the forwarding perfor-
mance, as well as the capability of network nodes to lo-
cally process incoming network publications and dispatch
them to the interested applications. To do so, a number of
subscribers, running in one or more nodes, subscribe to a
known information item under a root scope. Then, a pub-
lisher advertises this item and, therefore, rendezvous takes
place. After the matching takes place, the topology man-
ager is notified to form a LIPSIN identifier that is published
to the publisher. After that, the publisher starts publishing
thousands of publications using the same information iden-
tifier, effectively creating a potentially multicast channel be-
tween itself and any interested subscribers. In our topology,
the Rendezvous and Topology Management and Formation
network functions run in node 6 (University of Cambridge).

1658
IEICE TRANS. COMMUN., VOL.E96–B, NO.7 JULY 2013

Fig. 8 Fast path evaluation ((a) 1 hop, (b) 5 hops, (c) 1 hop multiple subscribers).

Fig. 9 Slow Path Evaluation ((a) UK, (b) Europe and (c) Japan Response Times).

Figure 8(a) presents the average application throughput of
the subscriber application as the number of network nodes
that express interest in the same information item increases
with one subscriber per node. All subscribers run in ma-
chines residing at NICT. The publisher node also runs at
NICT (node 17). Although the publisher is only 1 hop away
from the subscribers, this logical hop traverses through the
OpenVPN server in the UK, which is the main reason for
the performance reduction, as mentioned later. As we ob-
serve in Fig. 8(a), the measured throughput for a single sub-
scriber is about 5.3 MB/sec, the maximum packet process-
ing speed of the OpenVPN server. As the number of sub-
scribers increases, the observed throughput decreases since
all publications run via the OpenVPN server, although the
ICN supports native multicasting. However, the total mea-
sured application throughput always stays at the maximum
level limited by the OpenVPN server.

We repeat the same experiment, but place the publisher
5 hops away (at node 22). The measured performance,
shown in Fig. 8(b), is much lower than in the previous exper-
iment, because of the shared nature of the OpenVPN virtual
network. Here, the maximum throughput for a single sub-
scriber is about 1.2 MB/sec. This happens because for each
ICN topology hop, all packets are sent via the OpenVPN
server, dividing the available bandwidth by 5. As more sub-
scribers join, the performance does not drop significantly.
This is because for all subscribers each network publication
is sent only once from node 22 to node 17 (always via the
OpenVPN server) and then it is multicast to the interested
nodes. For 5 subscribers, the total measured application
throughput approaches the maximum supported by Open-

VPN.
Finally, we repeat the experiment by having multiple

applications in a single node subscribing to the same infor-
mation item while placing the publisher 1 hop away. There-
fore, publications are sent only once to the subscriber node,
which in turn clones and dispatches them to multiple ap-
plications. In Fig. 8(c), we observe that the average per-
formance of each application is not affected by the num-
ber of local applications, effectively multiplying the total
application throughput by the number of applications. As
we mentioned before, preliminary experiments show that in
high-speed testbeds our network node can cope with multi-
ple subscribers or multiple forwarding links at Gigabit rates.

5.2.2 Slow Path Evaluation

Next, we present performance results regarding the slow
path operations as realized by the two core network func-
tions, rendezvous and topology management. In these ex-
periments, the involvement of the rendezvous and topol-
ogy management components is stress-tested, matching in-
formation in a structure such as the one depicted in Fig. 2
and calculating appropriate forwarding information. A pub-
lisher running in node 6 advertises 100,000 information
items under a root scope. Then, a number of subscribers
from each node randomly subscribe to a number of the ad-
vertised items. Each subscriber issues a subscription re-
quest every 100 ms. For each subscription, rendezvous takes
place and, subsequently, the topology manager is notified
to form a LIPSIN identifier from the publisher to the sub-
scriber. Both core network functions also run in node 6 in

PARISIS et al.: A NODE DESIGN AND A FRAMEWORK FOR DEVELOPMENT AND EXPERIMENTATION FOR AN INFORMATION-CENTRIC NETWORK
1659

order to minimize the propagation delay until the publisher
is notified to publish an information item. Upon such noti-
fication, the publisher publishes the minimum transfer unit
of data. Finally, the subscriber receives this data, calculates
and records the time difference since it issued the subscrip-
tion. We call this the response time.

The testbed is spread across the world, therefore we
separate response times in three graphs in order to group ma-
chines with similar propagation delays from the publisher
(as well as the OpenVPN server). In Fig. 9(a), we observe
that as the number of subscribers per node increases, so
does the response time. Note that for 40 subscribers per
node, 1280 subscribers issue subscribe requests, stressing
both slow path network functions and the packet process-
ing capacity of the OpenVPN server. For a single subscriber
in each node the average response time for subscribers in
the UK, running one hop away from the publisher, is about
12 ms (and 60 ms for 40 subscribers per node). For nodes
2 or 3 hops away from the publisher the response time in-
creases only because every network publication is trans-
ferred via the OpenVPN server for each ICN hop. The val-
ues for the testbed nodes running in the rest of Europe are
higher because of the higher propagation delays involved
(61 ms for nodes 1 hop away from the publisher and for
a single subscriber per node and 304 ms for nodes 3 hops
away from the publisher and for 40 subscribers per node, see
Fig. 9(b)). Finally, the response time for the testbed nodes
running in Japan are even higher (see Fig. 9(c)) since the
propagation delay is much higher. For instance, for nodes 3
hops away from the publisher, a subscription and the pub-
lished data must travel multiple times, one per each ICN
hop, from a node in Japan to the OpenVPN server and vice
versa (leading to response times of more than 1 second).

6. Conclusion

Increasing interest in ICN creates the need for a flexible and
extensible development platform to allow research in the
area to progress. We address this need through the follow-
ing contributions in this paper. Firstly, we presented a node
design that allows for experimentation through its modular
design. Secondly, our work provided an insight on how to
design and build a network node that breaks with any his-
torical baggage of the IP world. These insights can prove
useful for other clean slate designs. Thirdly, we presented
results within a growing international testbed, outlining the
potential of our platform for experimentation and demon-
stration of key ICN developments.

References

[1] D. Trossen, M. Sarela, and K. Sollins, “Arguments for
an information-centric internetworking architecture,” SIGCOMM
Comput. Commun. Rev., vol.40, no.2, pp.26–33, April 2010.

[2] D. Trossen and G. Parisis, “Designing and realizing an information-
centric Internet,” IEEE Commun. Mag., vol.50, no.7, pp.60–67, July
2012.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Briggs, and

R. Braynard, “Networking named content,” Commun. ACM, vol.55,
no.1, pp.117–124, Jan. 2012.

[4] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” Proc. SIGCOMM’07, pp.181–192, 2007.

[5] J. Scott, P. Hui, J. Crowcroft, and C. Diot, “Haggle: A networking
architecture designed around mobile users,” Proc. IFIP WONS 2006,
2006.

[6] B. Heller, D. Erickson, N. McKeown, R. Griffith, I. Ganichev,
S. Whyte, K. Zarifis, D. Moon, S. Shenker, and S. Stuart, “Rip-
cord: A modular platform for data center networking,” SIGCOMM
Comput. Commun. Rev., vol.40, no.4, pp.457–458, Oct. 2010.

[7] L. Popa, A. Ghodsi, and I. Stoica, “HTTP as the narrow waist of the
future Internet,” Proc. Hotnets-IX, pp.6:1–6:6, 2010.

[8] K.V. Katsaros, N. Fotiou, X. Vasilakos, C.N. Ververidis,
C. Tsilopoulos, G. Xylomenos, and G.C. Polyzos, “On inter-domain
name resolution for information-centric networks,” Proc. IFIP Net-
working’12, pp.13–26, 2012.

[9] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar,
and P. Nikander, “LIPSIN: Line speed publish/subscribe inter-
networking,” Proc. ACM SIGCOMM 2009, pp.195–206, 2009.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol.18, no.3,
pp.263–297, Aug. 2000.

[11] PURSUIT EU Project, “Blackadder node implementation, avail-
able: https://github.com/fp7-pursuit/blackadder, last accessed:
17/02/2013.”

[12] “Ns3 network simulator, available: http://www.nsnam.org, last ac-
cessed: 17/02/2013.”

[13] P. Flegkas, V. Sourlas, G. Parisis, and D. Trossen, “Storage replica-
tion in information-centric networking,” Proc. ICNC’13, 2013.

George Parisis received a Ph.D. in Com-
puter Science from Athens University of Eco-
nomics and Business in 2009. He is now a Re-
search Associate in the Computer Laboratory at
Cambridge University. His research interests
include information-centric networking, pub-
lish/subscribe systems and high-performance
storage systems.

Dirk Trossen is a Senior Researcher in the
Computer Laboratory at Cambridge University.
He is the technical lead for the EU project PUR-
SUIT. He held prior positions as a Chief Re-
searcher at BT Research and as a Senior Prin-
cipal Scientist at Nokia Research. He is a Re-
search Affiliate with the Advanced Network Ar-
chitecture group at MIT CSAIL. He holds a
Ph.D. from the Aachen University in Germany
and published more than 65 papers and holds 27
international patents.

1660
IEICE TRANS. COMMUN., VOL.E96–B, NO.7 JULY 2013

Hitoshi Asaeda is a Research Manager
of Network Architecture Laboratory, National
Institute of Information and Communications
Technology (NICT). From 1991 to 2001, he was
with IBM Japan, Ltd. From 2001 to 2004, he
was a Research Engineer Specialist at INRIA
Sophia Antipolis research unit, France. He
was Project Associate Professor of Graduate
School of Media and Governance, Keio Univer-
sity, where he was during 2005-2012. He holds
a Ph.D. from Keio University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

