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Estimation of Drone Payloads Using Millimeter-Wave
Fast-Chirp-Modulation MIMO Radar
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SUMMARY With the development of drone technology, concerns have
arisen about the possibility of drones being equipped with threat payloads
for terrorism and other crimes. A drone detection system that can detect
drones carrying payloads is needed. A drone’s propeller rotation frequency
increases with payload weight. Therefore, a method for estimating pro-
peller rotation frequency will effectively detect the presence or absence of
a payload and its weight. In this paper, we propose a method for classifying
the payload weight of a drone by estimating its propeller rotation frequency
from radar images obtained using a millimeter-wave fast-chirp-modulation
multiple-input and multiple-output (MIMO) radar. For each drone model,
the proposed method requires a pre-prepared reference dataset that estab-
lishes the relationships between the payload weight and propeller rotation
frequency. Two experimental measurement cases were conducted to inves-
tigate the effectiveness of our proposal. In case 1, we assessed four drones
(DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and DJI Mavic Mini) to
determine whether the propeller rotation frequency of any drone could be
correctly estimated. In case 2, experiments were conducted on a hovering
Phantom 3 drone with several payloads in a stable position for calculating
the accuracy of the payload weight classification. The experimental results
indicated that the proposed method could estimate the propeller rotation
frequency of any drone and classify payloads in a 250 g step with high
accuracy.
key words: millimeter-wave MIMO radar, fast chirp, radar imaging, drone
detection, payload weight estimation

1. Introduction

Drones have advanced rapidly and are widely used in vari-
ous fields, such as security, surveying, delivery, photography,
disaster response, and agriculture in recent years [1]. How-
ever, along with their growing use, concerns have arisen
about the possibility that drones can be equipped with pay-
loads of explosives, biological and chemical weapons, and
illicitmaterials for terrorism and other crimes [2], [3]. There-
fore, antidrone systems must be able to detect the presence
or absence of payloads and deal with these drones on a prior-
ity basis. Drone detection technologies, including cameras,
microphones, and radars, are being actively studied and de-
veloped. Radars are attracting significant attention as an
effective drone detection technology because they are not
affected by weather conditions, unlike cameras and micro-
phones [4].

Most studies on drone detection using radars rely on
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the micro-Doppler signatures generated by the rotation of
drone propellers [5]–[9]; in these cited studies, drone mod-
els were classified based on differences in their micro-
Doppler signatures. In addition, several studies have been
conducted recently on detection of drones carrying pay-
loads using micro-Doppler signatures [10]–[13]. In [10],
the micro-Doppler signatures of two types of drones with
different payloads were obtained using W-band, C-band,
andS-band frequency-modulated continuous-wave (FMCW)
radars. Different micro-Doppler signatures were observed
with an increase in payload weight, and a payload weight
classification algorithm based on micro-Doppler signatures
was proposed. In particular, the W-band was found to be
the preferred frequency band for payload classification using
the FMCW radar. In [11], the micro-Doppler signatures of
a drone with a payload were obtained using an S-band mul-
tistatic pulsed Doppler radar. In [12], a convolutional neural
network was applied to the data acquired in [11], and payload
weights were classified well. Of particular interest is a study
about drones equipped with heavy payloads and dynamic
payloads generating inertial forces, such as guns [13]. In this
study, the micro-Doppler signatures of two types of drones
were obtained using a K-band FMCW radar and a W-band
continuous-wave radar. The authors discussed the effects of
payloads on micro-Doppler signatures and showed that these
signatures were inconsistent and not unique to the drones car-
rying the target payloads. [12] used micro-Doppler signa-
tures for achieving a highly accurate payload classification,
similar to [10] and [11]. Furthermore, [13] reported that no
unique micro-Doppler signatures could clearly distinguish
between drones with and without a payload. Hence, the
robust discrimination between payload and no payload is
challenging. These results show that depending on the radar
specifications and measurement environments, the payload
estimation using micro-Doppler signatures may be difficult.
Therefore, methods for estimating payload weights that do
not rely on micro-Doppler signatures should be explored.
[13] and [14] revealed that the rotation frequency of a pro-
peller increases with the payload weight due to the need for
additional thrust. The increase trend of the propeller rotation
frequency depends on the drone model. Therefore, com-
bined with existing algorithms for classifying drone models,
such trends can be used as a reference dataset for estimating
payload weights.

In this paper, we propose a method for classifying the
payload weight of a drone by estimating its propeller rotation
frequency from radar images obtained using a millimeter-
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wave fast-chirp-modulation multiple-input and multiple-
output (mmW FCM MIMO) radar. The proposed method
requires a pre-prepared reference dataset that relates the pay-
loadweight to the propeller rotation frequency for each drone
model. To the best of our knowledge, the proposed method
is the first report of a payload estimation method that does
not rely on micro-Doppler signatures when investigating the
radar-based payload classification. We studied the radar
imaging of a drone using an mmW FCM MIMO radar in
[15]. The results showed that the propeller rotation pro-
duced periodic variations in the signal intensity of the pixels
corresponding to the propeller in radar images. The sam-
pling period of an mmW FCM MIMO radar is fast enough
for observing a drone’s propeller rotation. The use of the
millimeter-wave radar in W-band is the preferred choice for
the payload estimation, as revealed in [10], and the radar
is considered to reflect off small components, such as drone
propellers, due to itswavelength characteristics. The rotation
frequency of a propeller can be estimated by applying fast
Fourier transform (FFT) to the signal intensity variations.
To demonstrate the estimation of the rotation frequency of
propellers, we conducted measurement experiments on four
drones: DJIMatrice 600, DJI Phantom 3, DJIMavic Pro, and
DJIMavicMini. Additionally, we performed experiments on
a drone with several payloads in a stable position to investi-
gate the effectiveness of the proposed method for estimating
payload weights from estimated rotation frequencies.

The rest of this paper is organized as follows. Sec-
tion 2 is an explanation of the mmW FCM MIMO radar,
radar imaging, and the payload weight estimation method.
Section 3 shows our measurement results and a discussion
of the effectiveness of our proposal. Finally, we summarize
this paper in Sect. 4.

2. Payload Weight Estimation

2.1 mmW FCMMIMO Radar

Figure 1 shows a diagram of the mmW FCM MIMO radar.
The FCM radar transmits and receives a sinusoidal signal
called chirp, whose frequency is modulated over an ultraw-
ide bandwidth with time. The modulation and observation
times of a chirp are called fast and slow times, respectively.
A received chirp is mixed with a transmitted chirp to mea-
sure the intermediate-frequency (IF) signal. The IF signal is
sampled using an analog-to-digital converter for each receive
antenna and stored in memory as multiple-input, multiple-
output (MIMO) channel data. The MIMO channel data,
consisting of the IF signals of the radio channels between
the transmit and receive antennas, are reconstructed into
single-input, multiple-output channel data of a contiguous
virtual array (MIMO virtual array) [16]. The received ma-
trix R(n,m, l) obtained using the radar is a 3D data matrix
(MIMO virtual array × fast time × slow time) that includes
the propagation delay time, direction of arrival (DOA), and
Doppler frequency. Here N(n = 1,2, · · · ,N) is the number
of fast-time samples, M(m = 1,2, · · · ,M) is the number of

Fig. 1 mmW FCMMIMO radar.

Fig. 2 Flow of digital signal processing.

MIMO virtual array elements, and L(l = 1,2, · · · , L) is the
number of slow-time samples.

2.2 Radar Imaging Procedure

Figure 2 shows the signal processing flow for 2D radar image
generation. A 2D FFT process is performed on the received
matrix R(n,m, l) to generate a 2D radar image (range-angle
map). The distance from the radar to the object is estimated
by performing FFT (range FFT) on the IF signal obtained by
each element constituting the MIMO virtual array. The data
matrix Rrange(r,m, l) after range FFT is as follows:

Rrange(r,m, l) =
1
N

N∑
n=1

R(n,m, l)e−j2π fn
2r
c , (1)

where r and c are the range bin and the speed of light,
respectively. fn represents the frequency of the kernel of the
Fourier transform.

A drone has many scattering points from its compo-
nents, such as its body and propellers. The spatial reso-
lution must be improved to obtain clear radar images. As
shown in Fig. 2, we apply the Khatri-Rao (KR) product vir-
tual array processing to the MIMO virtual array elements in
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each range bin [17]–[19] to improve the angular resolution.
Here, assuming that K waves are observed using M uniform
linear array (ULA) elements, the MIMO virtual array data
Rrange(rb,m, l) in a certain range bin rb are as follows:

Rrange(rb,m, l) =
K∑
k=1

a(θk)sk(l) + n(l)

= As(l) + n(l) (2)
A = [a(θ1), a(θ2), · · · , a(θk)] (3)
s(l) = [s1(l), s2(l), · · · , sk(l)]T , (4)

where a(θk) ∈ C
M and sk(l) denote the mode vector

and complex amplitude of the k-th wave, respectively;
A ∈ CM×K is the mode matrix; and n(l) is the noise vector.
The correlation matrix RC of the MIMO virtual array data
Rrange(rb,m, l) is as follows:

RC = E[Rrange(rb,m, l)RH
range(rb,m, l)]

= ASAH + RN , (5)

where E[] and H denote ensemble averaging and the complex
conjugate transpose, respectively; S is the source correlation
matrix; and RN is the noise correlation matrix. We also
apply spatial smoothing processing (SSP) to this correlation
matrix before the KR product virtual array processing to sup-
press the signal coherence of incident waves [20] because the
correlation of incident waves leads to errors in virtual array
signals [21]. The vectorization y of the spatially smoothed
correlation matrix RC is as follows:

y = vec[RC]

= vec[AS̄AH ] + vec[R̄N ]

= (A∗ � A)s′ + vec[R̄N ], (6)

where vec[] and ∗ are the vectorization operator and the
complex conjugate, respectively; � denotes the KR product
operator; s′ ∈ CK is the diagonal element of S̄; (A∗ � A) ∈

CM2×K is the KR product virtual array response matrix; and
the vector y contains repeated elements that do not help
increase the aperture length. The nonrepeating elements of
vector y are extracted to obtain the KR virtual array data of
2M−1 elements, so the aperture length is virtually increased.

The DOA of reflected signals is estimated by perform-
ing a second FFT (angle FFT) over the indexes of the KR
virtual array elements on all range bins of the data matrix
RKR(r,m′, l) after KR product virtual array processing. The
radar image at the l-th slow time Image(r,a, l) generated
after angle FFT is as follows:

Image(r,a, l) =
1

2M − 1

2M−1∑
m′=1

RKR(r,m′, l)e−j
2π(m′−1)

2M−1 a,

(7)

where a is the angle bin and m′(= 1,2, · · · ,2M − 1) is the
index of the virtual antennas after KR product virtual array
processing.

2.3 Proposed Method

We investigated the effect of payload weight on the propeller
rotation frequency of a drone (Sect. 2.3.1) and developed a
payload weight estimation method using the results of this
investigation (Sect. 2.3.2).

2.3.1 Reference Dataset for Payload Weight Estimation

The proposed method requires a reference dataset of the
relationship between payload weight and propeller rotation
frequency. Therefore, to show an example, we created a
reference dataset for a hovering Phantom 3.

Figure 3 shows the environment for measuring the rota-
tion frequency of the drone’s propeller. The hovering Phan-
tom 3 drone was suspended in the air using guide ropes and
connected to a spring scale. A payload weight was applied to
the drone because the tension between a drone and a spring
scale increases with the drone’s propeller rotation frequency.
Wemeasured the rotation frequency of the drone using a dig-
ital tachometer for 10 s when the spring scale showed values
of 0, 250, 500, 750, and 1000 g. In this study, we consider
that it is sufficient to detect a threatening payload by esti-
mating rough weight. Therefore, measurement data were
collected in a 250 g step.

Figure 4 shows the measured relationship between the
payload weight and rotation frequency of the Phantom 3.

Fig. 3 Measurement environment for generating reference dataset.

Fig. 4 Relationship between payload weight and rotation frequency of
Phantom 3.
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Fig. 5 Flowchart of payload weight estimation method.

The figure indicates an increase in the propeller rotation fre-
quency with the payload. When focused on each payload,
it is clear that the frequency is not constant and varies be-
tween 16 and 17Hz due to the drone’s attitude control. The
frequency variations do not overlap for payloads with 250 g
steps, indicating that the payload can be uniquely determined
if the rotation frequency is estimated using the radar. How-
ever, these frequency variations overlap for steps below 250 g
and may cause errors in the payload estimation. The mea-
surement results obtained with 250 g steps were defined as
the reference dataset for the payload weight estimation in this
study.

2.3.2 Signal Processing

Figure 5 shows a flowchart of our proposed payload weight
estimation method. The basis of this method is to find a pixel
in a drone’s radar image that corresponds to the propeller and
analyze the temporal variation of its signal intensity.

First, a 2D radar image of a drone is acquired by the
mmW FCM MIMO radar. As an example, the 2D radar im-
age of the Phantom 3 is shown in Fig. 6. The characteristic
shape of the drone could be imaged; specifically, the maxi-
mum peak at (0.1, 1.8m) was an echo from the drone’s body,
and the peaks at (−0.2, 1.7m) and (0.15, 1.6m) were the
echoes from the left and right propellers, respectively. Thus,
a drone’s propeller is the reflection point with the largest re-
flection intensity after that of the body. Therefore, the initial
sampling point (rp,ap) for the propeller is the pixel of the
peak of the second-largest reflection intensity in the radar
image. The second and subsequent sampling points were
obtained from the same coordinates. Since the reflection in-
tensity of the pixel corresponding to the propeller fluctuates
periodicallywith the propeller rotation, the propeller rotation

Fig. 6 Example of 2D radar image of Phantom 3.

frequency is estimated by performing FFT on the reflection
intensity fluctuation. With the propeller position coordinates
in the radar image denoted as (rp,ap), the propeller rotation
frequency F(rp,ap, f ) is as follows:

F(rp,ap, f ) =
1
L

L∑
l=1

Image(rp,ap, l)e−j
2π(l−1)

L f , (8)

where f is frequency. The propeller rotation frequency
should exceed a certain threshold for a drone to take off.
A frequency gate is set for the FFT-calculated frequency
spectrum to estimate the propeller rotation frequency. The
propeller rotation frequency at takeoff is different for differ-
ent drones due to differences in their specifications, such as
drone weight and motor power. Therefore, the frequency
gate depends on the drone model and should be adjusted
appropriately for each drone. For example, in the case of the
Phantom 3, the frequency gate was set to 150Hz or higher
because its takeoff requires a propeller rotation frequency of
150Hz or higher. In this gate, the dominant frequency is due
to propeller rotation and the peak frequency is sequentially
stored in memory as a provisional estimation result of the
propeller rotation frequency. Next, since the propeller rota-
tion frequency varies with time due to disturbance, these pro-
visional estimation results are evaluated using a histogram
of 300 samples, and the frequency with the mode is used as
the final estimation result of the drone’s propeller rotation
frequency. A small sample size is preferred for the histogram
since a large number of samples may affect the distribution
because of disturbances due to long observation time. There-
fore, the sample size was set to empirically derived value of
300. Finally, the payload weight is estimated by comparing
the estimated propeller rotation frequency with the reference
dataset.

3. Experimental Setup and Results

3.1 Experimental Setup

We measured propeller rotation frequencies in two exper-
imental measurement cases using an mmW FCM MIMO
radar module. Case 1 involved four drones (Matrice 600,
Phantom 3, Mavic Pro, and Mavic Mini) without payloads.
Case 2 involved a Phantom 3 with several payload weights.
Table 1 shows the specifications of the mmW FCM MIMO
radar module. The MIMO radar, which is composed of a
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3×4 ULA as shown in Fig. 7, presents a MIMO virtual ar-
ray of 12 elements. Subarrays of 10 elements (= M) were
selected from the MIMO virtual array and used for SSP to
suppress the coherence of the echoes from each target. The
application of KR product virtual array processing increased
the number of virtual elements to 19 elements (= 2M − 1),
so the angular resolution was 6.0 degrees. The frequency
bandwidth was 3.44GHz, resulting in a range resolution of
4.4 cm. The number of slow-time samples was 256 (0.25 s),
causing a frequency resolution of 4Hz. The pulse recep-
tion interval was set to 0.97ms, which was fast enough for
observing the propeller rotation.

In case 1, we assessed four drones with different shapes,
sizes, numbers of rotors, and propeller geometries, as shown
in Table 2, and investigated whether the propeller rotation
frequency of any drone could be estimated correctly. Each
target was placed on a low-density styrofoam cylinder with

Table 1 Specifications of mmW FCMMIMO radar module.

Fig. 7 MIMO radar.

its propeller rotating, as shown in Fig. 8(a). The antenna
height was set to the height of the drone body. The distance
between the radar and the target was adjusted for each drone
so that the entire drone, including its propellers, would be
covered by the antenna beam. Each drone was positioned so
that one propeller was the closest to the radar to observe the
echoes from the propeller in a manner that maximizes the
signal-to-noise ratio.

In case 2, we tested the Phantom 3 with several payload
weightsW (= 0, 250, 500, 750, 1000 g) using the spring scale
(Sect. 2.3.1) to investigate the effectiveness of the proposed
payload weight estimation approach. The hovering target
was suspended in the air using guide ropes to prevent it
from flying outside the antenna beam, as shown in Fig. 8(b).
The target was positioned so that the camera faced its front,
as seen in Fig. 3. Since drones were expected to enter the
radar coverage area at various flight altitudes, we evaluated
the accuracy of the payload weight estimation method at
different antenna elevation angles θ (=0◦, 10◦, 20◦, and 30◦).

Fig. 8 Measurement environments.

Table 2 Tested drones.
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Fig. 9 Phantom 3 measurement results.

3.2 Experimental Results and Discussion

3.2.1 Case 1

Figure 9 shows the Phantom 3 measurement results. Several
strong echoes are seen in Fig. 9(a). The strong peak at (0,
1.2m) is an echo from the body, and the peaks at (0, 1.0m),
(−0.30, 1.1m), and (0.25, 1.2m) are the echoes from the
propellers. Since the rear propeller was obscured by the
body, no echo from the rear propeller is observed. Fig. 9(b)
shows the waveform of the signal intensity fluctuation due to
a propeller. This waveform was generated through the time-
series sampling of the signal intensity of the (0, 1.0m) pixel,
which corresponds to a propeller in the 2D radar image. The
DC component of the waveform was removed. The wave-
form amplitude fluctuates due to changes in the radar cross
section during propeller rotation. The fluctuation period is
related to the propeller rotation speed, and similar periodic
fluctuations are observed in the other tested drones.

Figure 10 shows the frequency spectrum of the time
waveform of each drone. The frequency corresponding to
the maximum value in the frequency spectrum is denoted
as H in the figure, which is the estimated propeller rotation
frequency. The true value of the propeller rotation frequency
was measured using a digital tachometer. Figures 10(a), (c),
and (d) show strong peaks in the low-frequency component
(under 50 Hz). These peaks may have been caused by the
vibration of the drone arms due to propeller rotation; each

Fig. 10 Examples of propeller rotation frequency spectra.

drone was placed on the styrofoam cylinder, so the drone
body could not have caused vibration. Arm vibration is a
unique characteristic of drones that have separate bodies and
arms, such as the Matrice 600, Mavic Pro, and Mavic Mini.
These peaks can be removed through filter processing using
a high-pass filter or by setting a frequency gate. Figure 11
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Fig. 11 Estimation results of the propeller rotation frequency for each
drone.

shows the estimated and measured rotation frequencies for
each drone. Measurements were obtained for 556 slow-
time samples. Subsequently, a total of 300 estimates of the
propeller rotation frequency were obtained by performing
FFT on the measured data while shifting the FFT window
length of 256 samples by one sample at a time. From Fig. 11,
in Case 1, where there are almost no fluctuations other than
that caused by the propeller, the propeller rotation frequency
can be estimated with an error of less than a few hertz for
all tested drones. The main factor that causes the estimated
value to vary more than the true value is the estimation error
caused by the FFT.

3.2.2 Case 2

Measurements were obtained for 556 slow-time samples.
Further, a total of 300 propeller rotation frequency estimates
were obtained by applying FFT on the measured data while
shifting the FFT window length of 256 samples by one sam-
ple at a time. Figure 12 shows an example of the signal
intensity waveform in Case 2, in which an increase is ob-
served in the irregular fluctuation components compared to
that exhibited by the waveform of Case 1 shown in Fig. 9(b).
This irregularity is attributed to the shaking and vibration of
the drone’s body during hovering. The frequency spectrum
of the waveform in Fig. 12 is shown in Fig. 13, along with its
corresponding estimated propeller rotation frequency (H).
In addition to the peak representing the propeller rotation
frequency (Fig. 10(b)), the spectrum has a large peak in the
low-frequency region, attributed to the shaking and vibration
of the drone body. However, the propeller rotation frequency
can be estimated by performing a peak search after passing
the frequency spectrum through a frequency gate, similar to
Case 1. Figure 14 shows the provisional estimates of the
propeller rotation frequency at each payload weight. The
blue circles (◦) and red crosses (×) in the graphs denote the
correct and incorrect estimates, respectively, compared with
the reference dataset. Figure 14 indicates that the estimates
increase with the payload weight, as shown in Fig. 4. In

Fig. 12 An example of the signal intensity waveform in Case 2.

Fig. 13 An example for the estimation result of the propeller rotation
frequency in Case 2.

addition, the correct estimates (blue circles) at each payload
weight vary due to temporal changes in the propeller rotation
frequency caused by drone attitude control. The incorrect es-
timates (red crosses) are insufficient or excessive frequencies
for maintaining the drone’s hovering state. These misesti-
mates may have been caused by random disturbances, such
as body sway due to attitude control or body vibration due
to propeller rotation.

The histogram of provisional estimates was evaluated
to determine the final estimate of the propeller rotation fre-
quency, thus avoiding the abovementioned misestimates.
When the propeller rotates at a rotation frequency closer
to the frequency boundary in the reference dataset, the esti-
mation accuracy of the propeller rotation frequency would
be affected by the bin size of the histogram. In this study,
the bin size was set to 1 Hz to align with the measurement
resolution of the digital tachometer. For example, Fig. 15
shows the histogram of the provisional estimates at an ele-
vation angle θ = 20◦ and a payload weight W = 250 g. Most
of the provisional estimates are at approximately 197 Hz,
which is within the frequency range of the reference dataset
at W = 250 g. However, approximately 30% of the estimates
are outside the frequency range, leading to payload weight
misestimation. Therefore, 197 Hz, which has the highest
occurrence probability, is the propeller rotation frequency in
our experiment. Final estimates presented in Fig. 14 corre-
spond to the propeller rotation frequency determined using
the mode in their histograms.

Each payload weight is classified by comparing the pro-
peller rotation frequency determined from the histogram
with the corresponding value in the reference dataset in
Fig. 4. Table 3 shows the payloadweight classification results
at each antenna elevation angle. Each column (row) in the ta-
ble represents the instances of the estimated (actual) payload
weights. “Other” means that the payload weight could not be
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Fig. 14 Provisional estimates of propeller rotation frequency vs. payload
weight.

estimated because the estimated propeller rotation frequency
was outside the range of the reference dataset. To evaluate
the accuracy of the payload classification, we performed 100
classification runs by taking a 54-second (55600 samples in

Fig. 15 Histogram of provisional estimates (θ = 20◦,W = 250 g).

Table 3 Payload weight classification results.

slow-time)measurement and dividing themeasured data into
100 segments (556 samples in slow-time per segment). Each
cell in the table represents the probability of 100 classifica-
tion runs corresponding to each measurement of the actual
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Fig. 16 Comparison of classification accuracy for different FFT window
lengths.

payload weight W . The blue cells in the table represent the
probability of correct classification, which is defined as the
classification accuracy. The average classification accuracy
of all blue cells, is more than 94.4% at each elevation angle.
The results show that the proposed method can accurately
classify most of the payload weights, and there is almost
no difference in the average classification accuracy between
elevation angles.

In Table 3(b), 22% are classified as “Other” at the ac-
tual payload weight W = 250 g. This is probably because
the case of W = 250 g caused more body shaking and vi-
bration than other cases, thereby affecting the original signal
intensity fluctuations of the propeller. Table 3(a), (c), and
(d) showmisclassifications where the payload is classified as
lighter or heavier than its actual weight. Misclassifications
occurred irregularly for anyweight at any elevation angle, in-
dicating the absence of a consistent error trend that depends
on the elevation angle. The main reasons of these misclas-
sifications are sudden random body shaking and frequency
estimation errors caused by the FFT. Further, we discuss the
FFT estimation error in detail.

We investigated the effect of the FFT window length
on estimation accuracy. Figure 16 shows the classification
accuracy for different FFT window lengths (LFT ), where ◦,
×, and + indicate the classification accuracy for θ = 0◦ and
W = 1000 g, for θ = 20◦ and W = 0 g, and for θ = 30◦ and W
= 500 g, respectively. Figure 16 confirms that the classifica-
tion accuracy improves with longer window lengths because
the frequency resolution increases with the window length.
Figure 17 shows the average classification accuracies at all
elevation angles and payload weights. The figure indicates
that the average classification accuracy degrades in the case
of LFT = 512 despite the improved frequency resolution
compared with that of LFT = 256. With longer window
lengths, the effects of drone body shaking and vibration are
more likely to show in the signal intensity waveform, which
is used to estimate the propeller rotation frequency. Since the
frequency components due to these disturbances became the
mode in the histogram, the average classification accuracy

Fig. 17 Average classification accuracy for different FFT window
lengths.

declined. Therefore, a trade-off exists between the effect
of disturbances and the frequency resolution, and setting a
window length that considers the effect of disturbances is
important for the proposed method.

4. Conclusions

In this paper, we propose amethod for classifying the payload
weight of a drone by estimating the propeller rotation fre-
quency from radar images obtained using an mmW FCM
MIMO radar. The proposed method necessitates a pre-
prepared reference dataset that can relate the payload weight
to the propeller rotation frequency for each drone model.
Two experimental measurement cases were conducted to in-
vestigate the effectiveness of our proposal. In case 1, we
tested four drones to determine whether the propeller rota-
tion frequency of any drone could be correctly estimated.
The experimental results showed that the propeller rotation
frequencies of all drones could be estimated. In case 2, mea-
surement experiments were conducted on a hovering drone
with five different payloads in a stable position to evalu-
ate the accuracy of payload weight classification. Results
revealed that the proposed method could classify the pay-
loads in a 250 g step with an average accuracy of more than
94.4%. However, as the FFT window length for estimating
the propeller rotation frequency increased, the classification
accuracy decreased due to the increased influence of distur-
bances. Therefore, an appropriate window length should be
set for accurate classification.

We plan to investigate the possibility of classification
of payloads in moving drones at far range in the future.
Moreover, we aim to implement algorithms that are robust
to disturbances, such as body shaking and vibration.
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