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SUMMARY With maturation of 5G technology in recent years, multi-
media services such as live video streaming and online games on the Internet
have flourished. These multimedia services frequently require low latency,
which pose a significant challenge to compute the high latency requirements
multimedia tasks. Mobile edge computing (MEC), is considered a key tech-
nology solution to address the above challenges. It offloads computation-
intensive tasks to edge servers by sinking mobile nodes, which reduces task
execution latency and relieves computing pressure on multimedia devices.
In order to use MEC paradigm reasonably and efficiently, resource alloca-
tion has become a new challenge. In this paper, we focus on the multimedia
tasks which need to be uploaded and processed in the network. We set the
optimization problem with the goal of minimizing the latency and energy
consumption required to perform tasks in multimedia devices. To solve the
complex and non-convex problem, we formulate the optimization problem
as a distributed deep reinforcement learning (DRL) problem and propose a
federated Dueling deep Q-network (DDQN) based multimedia task offload-
ing and resource allocation algorithm (FDRL-DDQN). In the algorithm,
DRL is trained on the local device, while federated learning (FL) is respon-
sible for aggregating and updating the parameters from the trained local
models. Further, in order to solve the not identically and independently
distributed (non-IID) data problem of multimedia devices, we develop a
method for selecting participating federated devices. The simulation re-
sults show that the FDRL-DDQN algorithm can reduce the total cost by
31.3% compared to the DQN algorithm when the task data is 1000 kbit, and
the maximum reduction can be 35.3% compared to the traditional baseline
algorithm.
key words: multimedia transmission, computing offloading, resource allo-
cation, federated learning, deep reinforcement learning

1. Introduction

In recent years, with the continuous development of 5G net-
works, the number of multimedia services and smart termi-
nals in mobile networks has increased rapidly, leading to a
significant increase in mobile data volume [1]. According to
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Cisco’s latest forecast report [2], much of the new significant
trafficwill originate frommobilemultimedia services, which
will rapidly increase as a percentage of total traffic due to the
sheer volume of data. In 2017, mobile multimedia services
accounted for 59% of all mobile data traffic. By 2023, this
figure will jump to 79%.

Ultra-low latency, intensive computing and massive
transmission are the distinctive features of most mobile mul-
timedia services, for example, webcasting, virtual reality
services (VR), augmented reality services (AR), cloud com-
puters, and online games. These mobile multimedia services
often have high requirements on network latency, bandwidth
and computing power. Meanwhile, due to the amount of traf-
fic and computing on mobile users and devices increasing
dramatically, multimedia devices need to handle many in-
tensive mobile multimedia tasks such as video compression
and transcoding [3], [4]. The huge amount of computation
caused by intensive computing tasks puts a lot of pressure
on users. However, due to the limited computing resources
and storage capacity of multimedia devices, these devices
cannot handle tasks locally with low latency as well as low
power consumption.

In view of these problems, Mobile Cloud Computing
(MCC) has been proposed as a solution, where large amounts
of data are centralized in cloud servers to alleviate the burden
on local devices [5]. However, traditional cloud computing
suffers from problems such as high latency, high load, and
core network congestion, as cloud servers are typically de-
ployed at a distance from multimedia devices. In contrast,
Mobile Edge Computing (MEC) offers a promising approach
by deploying edge servers at edge nodes or base stations.
This enables mobile terminals to offload their computing
tasks to nearby edge nodes for processing, using wireless
channels to reduce task processing delays, improve network
utilization efficiency, and enhance Quality of Service [6].
Nevertheless, compared to cloud computing, edge comput-
ing is limited by offload decisions, wireless resources and
computing resources. Wireless resources mainly include
bandwidth and transmitting power. Computational resources
generally refer to the CPU frequency of local mobile devices
and edge servers. To fully leverage the advantages of the
MEC paradigm, there is a need for joint optimization of
offloading decisions, communication, and computational re-
sources. This presents a major problem in wireless networks
between user devices and MEC servers.

To address this challenge, several studies have inves-
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tigated the joint allocation of wireless and computational
resources in MEC systems [7]–[11]. The Lyapunov op-
timization methods, online dynamic task scheduling, and
game theory has been proposed to solve the problems of
joint wireless resources, computational resources, and of-
floading decisions. The authors in Ref. [7] proposed a local
compressed offload model to solve the resource allocation
problem of multi-user mobile edge computing offload sys-
tems. In Ref. [8], the authors proposed a Lyapunov optimiza-
tion based approach to study the task assignment schedul-
ing scheme for maximum power consumption and execution
delay in MEC systems with energy harvesting capability.
The authors in Ref. [9] considered a heuristic algorithm for
solving joint resource allocation decisions to minimize the
time delay. The authors in Ref. [10] investigated a compu-
tational resource allocation scheme based on potential game
theory to reduce the energy consumption of MEC networks
and improve the efficiency of computational resources. In
Ref. [11], the paper proposed a suboptimal resource alloca-
tion algorithm that generates priorities for users based on
their channel gain and locally calculated energy consump-
tion, and implements different offloading schemes for dif-
ferent priorities to minimize the weighted sum of delay and
energy consumption. However, these algorithms are usually
time-consuming and computationally intensive in complex
MEC networks because they need to constantly resolve the
problem in a time-varying MEC network environment.

Deep reinforcement learning has become a trend as an
approach in solving optimization problems in MEC systems,
in recent years [12]–[17]. DRL can adjust its strategy in
unstable environments and can adapt to complex MEC sce-
narios by making different actions with its intelligences. The
DRL agents can make adaptive offloading decisions and re-
source allocation through the different actions it makes. In
Ref. [12], the authors proposed a distributed machine learn-
ing approach that makes it possible for DRL to perform
online offloading in an MEC environment. The authors
in Ref. [13] considered a DRL-based video offload scheme
to maximize its long-term performance. The authors in
Ref. [14] studied a temporal attentional deterministic policy
gradient based on a deep reinforcement learning algorithm
called Deep Deterministic Policy Gradient (DDPG) to solve
the joint optimization problem of computational offloading
and resource allocation in MEC. Ref. [15], this paper pro-
posed a DRL-based offloading scheme to enhance the utility
of multimedia devices in dynamic MEC. Simulation results
demonstrate that the DRL scheme reduces energy consump-
tion, computational experiments and task failure rate. The
authors in Ref. [16] proposed aDRL-based offloading frame-
work that can be adaptive to the common patterns behind
various applications to infer the optimal offloading strat-
egy for different scenarios. Ref. [17], the authors propose
an advanced deep learning based computational offloading
algorithm for multistage vehicle edge cloud computing net-
works tominimize the total time and energy cost of thewhole
system. Although DRL is very resilient in complex MEC
networks, because most DRL learn in a centralized manner,

the required action space and configuration of parameters
explode when multimedia devices are added, which directly
leads to less efficient training and easier privacy disclosure.
To solve this problem, Federated learning (FL) is proposed
to optimize MEC networks [18].

Federated learning is a distributed machine learn-
ing that enables distributed multiple device nodes to co-
communicate and participate in the aggregation of global
models. Different devices can perform local model training
separately, communicate with each other through federated
learning and upload model parameters from local model
training for global model aggregation. Federated learning
allows the exchange of model parameters without sharing
raw data and enhances the collaboration capability of multi-
ple distributed devices and protects the privacy and security
of the devices.

Several studies have investigated the resource alloca-
tion and computational offloading problems involved in FL
for two optimization objectives based on system latency and
energy consumption minimization [19], [20]. The authors
in Ref. [19] minimized the value of the FL loss function
by optimizing the joint resource allocation and UE selec-
tion, and satisfied both the latency and energy consumption
requirements for performing FL. The authors in Ref. [20]
proposed an alternative directional algorithm formulating
the joint optimization of CPU frequency and power control
as a nonlinear programming (NLP) problem to solve the
problem of minimizing the energy consumption of all mul-
timedia devices subject to federated learning time require-
ments. References [21]–[23] focus on the combined learning
of federation learning and deep reinforcement learning, i.e.,
training local DRL models and then integrating them to-
gether to develop a comprehensive global DRL model. The
authors in Ref. [21] proposed a joint optimization scheme for
optimal path selection and power allocation based on the fed-
eral deep Q-network learning algorithm, which maximizes
network throughput while ensuring power constraints and
mobility constraints, taking into account communication re-
sources, but without considering a reasonable allocation of
computational resources. In [22], this paper considered a
multimodal deep reinforcement learning framework based
on hybrid policies and proposes an online joint collabora-
tion algorithm in combination with FL and validates the
performance of the algorithm, however, the intelligent body
agent in this work does not undertake some resource alloca-
tion operations such as allocation of power, computational
offloading of tasks. The authors in [23] proposed a federate
cooperative caching framework based on deep reinforcement
learning but the work did not take into account task offload-
ing.

We compare the objectives and resource optimization
of ourstudy with some related work in the MEC systems,
the resultsof which are shown in Table 1. It is obvious that
our study can overcome the shortcomings of many previous
works.

For mobile multimedia devices, their limited comput-
ing resources and battery capacity may hinder efficient task
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Table 1 Comparing with some related work.

completion. In such cases, offloading tasks to edge or cloud
servers becomes necessary. The offloading decision made
by the multimedia device plays a critical role in controlling
the overall MEC system overhead and ensuring a good user
experience. Additionally, task offloading consumes wire-
less channel resources, necessitating reasonable allocation of
these resources in MEC systems. In this paper, we propose
an adaptive offloading framework based on federated deep
reinforcement learning to jointly optimize transmit power,
computational resources, and offloading decisions, with the
aim of minimizing delay and energy consumption for mobile
multimedia devices in task completion. The contributions
of this paper can be summarized as follows:

1. We transform the optimization problem into a multi-
objective optimization problem with the objective of
minimizing the weighted sum of delay and energy con-
sumption required by the system to perform the task. To
solve this complex problem, we jointly allocate compu-
tational and communication resources and transform
the nonlinear planning problem into a federated deep
reinforcement learning problem for multiple intelligent
agents.

2. For multimedia devices, the changing location and dif-
ferent kinds of multimedia task of devices cause non-
IID data. To reduce the impact of non-IID data. In
this paper, we propose a mechanism for selection of
participating federal learning devices. To ensure the
communication overhead as well as convergence of FL
learning.

3. We design an adaptive offloading algorithm based on
FL and DRL, which jointly allocates computational re-
sources and task offloading, which not only increases
the overall scalability of the system but also accelerates
the learning speed of deep reinforcement learning. It
maintains relatively stable performance in the complex
MECnetwork environment and outperforms other DRL
algorithms.

The rest of this article is organized as follows: Section 2
describe the system model and the problem formulation is
described in Sect. 2. In Sect. 4, we present the design of
the FDRL-DDQN algorithm. Section 5 presents simulation
results. Finally, Sect. 6 shows the conclusion of this paper.

2. System Model

In this paper, we consider a MEC network configuration that
consists of aMEC server, anMCC server, aMECbase station
(BS) and a set of N = {1,2, . . . ,N} multimedia devices.
As depicted in Fig. 1, when a task is generated, the user’s
task request is initially submitted to a multimedia device.
Subsequently, the MEC BS receives offloading tasks from
the multimedia devices. The computing tasks offloaded to
the BS are processed by the BS server, and the results are
then returned to the terminal. Meanwhile, the remaining
multimedia tasks are executed locally. We make a diagram
to explain the function of each layer in Fig. 2, and some key
parameters are listed in Table 2.

We consider the time into consecutive time frames,
which are divided into T time slots denoted as a set of
T = {1,2, . . . ,T}. This article explores a ternary offloading
strategy. Specifically, the local offloading decision of device
i as xi , where xi = 1 signifies that the multimedia device
executes the tasks locally, and xi = 0 means the multime-
dia device offloads the multimedia tasks to the MEC server
or MCC server. Moreover, we use yi and zi to represent
the multimedia devices’ offloading of computing tasks to the
MCC server and MEC server, respectively. In this context,
zi = 1 denotes offloading to the MEC server, while yi = 1
implies offloading to the MCC server. Therefore, we have
the ternary offloading strategy as follows:

xi + yi + zi = 1, ∀i ∈ N. (1)

2.1 Computing Model

This section focuses on modeling the delay and energy con-
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Fig. 1 A MEC system model.

Fig. 2 The function of each layer.

Table 2 Key parameters.

sumption experienced by multimedia devices during the ex-
ecution of multimedia tasks. When multimedia device i
offloads its task to either the MEC server or MCC server,
various factors come into play, including the size of the mul-
timedia tasks, channel conditions, and transmitting power.
It’s important to note that the transmission of offloaded mul-
timedia tasks occurs over wireless channels, involving both
multimedia devices and base stations. Furthermore, the ex-
ecution of multimedia tasks requires the allocation of uplink
frequency resources for transmission. Therefore, the uplink
transmission rate of multimedia device i is determined by

ri = Blog2(1 +
pihi
σ2 ), (2)

where B and pi denote the operating bandwidth and transmit
power of the multimedia device, respectively, hi and σ2

denote the transmission link gain and channel noise between
the multimedia device and the base station, respectively.

The communication delay and the energy consumption
of mobile task offloading are respectively given by

Tibs =
Li

ri
, (3)

Ei
bs = piTibs, (4)

where Li is the size of task (in bit). Since the comput-
ing power of edge servers and clouds is very resource-rich
compared to local devices, this paper ignores the computing
consumption at the edge servers or clouds, so only the energy
consumed by their task transmission is calculated. From the
device’s point of view, when a task is offloaded to either
server, the energy consumed to process the task is the energy
spent on the task transfer. So both of the energy consumption
of MCC server and MEC server would be equal to Ebs

i .
Due to limited computing power and battery capacity,

multimedia devices offload tasks to edge servers or cloud
services to meet QoS requirements. The computation delay
of MEC server and MCC, while offloading is given, respec-
tively, as follows:

Te
i =

Ci

Fe
, (5)

Tc
i =

Ci

Fc
, (6)

where Fe and Fc denote the average computing power of
the edge server and the cloud, respectively. Ci denotes the
CPU cycle requirement of the task (in cycle/second). The
delay of the multimedia tasks offloading to the MEC server
and MCC server respectively as follows:

TE
i = Te

i + Tbs
i , (7)

TC
i = Tc

i + Tbs
i . (8)

Assuming that user-submitted multimedia tasks are se-
lected for execution on the local multimedia device and they
do not need to be offloaded to the edge server for processing,
the processing delay and energy consumption for task on
device is defined as

TL
i =

Ci

f Li
, (9)

EL
i = κi( f

L
i )

2, (10)

where κi is the energy consumption factor related to the
multimedia device, which depends on the CPU performance
architecture of the terminal.

In this paper, we aim to optimize the computational
resource allocation as well as the offloading policy, which
minimizes the multimedia task execution cost. The long-
term expected cost of each multimedia device is a weighted
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sum of execution delay and energy consumption. Each of
multimedia device cost is given by

Ti(pi, fi, xi, yi, zi) = xiTL
i + yiT

E
i + ziTC

i , (11)
Ei(pi, fi, xi, yi, zi) = xiEL

i + yiE
e
i + ziEc

i , (12)

where pi , fi , xi , yi and zi represent the vectors of transmit
powers, computation resource allocation, local computing,
edge offloading, and cloud offloading decision of device i,
respectively.

3. Problem Formulation

In this paper, the problem is formulated to solve the joint
minimization of long-term delay and energy consumption of
multimedia devices over time T .

In solving the optimization problem of offloading de-
cisions and computational resource allocation for MEC sys-
tems, the objective of this paper is to minimize the total
cost of the combination of execution delay and energy con-
sumption of the devices in the MEC system. Based on the
above analysis, the optimization problem can be described
as follows:

min
pi , fi ,xi ,yi ,zi

ωTi + λEi

subject to :
C1 : f Li ≤ Fmax,∀i ∈ N
C2 : xiEL

i + yiE
e
i + ziEc

i ≤ Emax,i,∀i ∈ N
C3 : Ti ≤ Tmax,∀i ∈ N
C4 : xi + yi + zi = 1,∀i ∈ N
C5 : xi, yi, zi ∈ {0,1},∀i ∈ N,

(13)

whereω and λ in the above optimization problem are denoted
as the delay and energy consumption weighting factors of
device i in performing the multimedia task, respectively. Let
0 ≤ ω ≤ 1, and 0 ≤ λ ≤ 1, ω + λ = 1, the ratio of ω to λ is
a constant, the value of the weight factor should be chosen
according to the heterogeneity of the resources available
on each multimedia device, if the device receives greater
constraints in terms of energy resources than computational
resources, the value should be larger, otherwise it should
be smaller. The constraint C1 indicates that the computing
resources allocated for the user should not exceed the total
computing capacity of the MEC system Fmax . C2 indicates
a limit on the energy resources of the device, which should
not exceed the maximum energy Emax that the MEC system
can provide, and C3 expresses that the overall service time
cost should not exceed the maximum allowable delay for the
user Tmax . C4 and C5 are the ternary offloading schemes
used in this paper.

However, to satisfy the requirement of minimizing the
total system cost under the multimedia task execution de-
lay as well as energy consumption tolerance. With binary
offloading variables (xi, yi, zi) included of above formulated
problem (13) makes the problem into a mixed integer non-
linear programming (MINLP) problem that cannot be solved
in an acceptable time frame.

4. The Proposed FDRL-DDQN Algortihm

In this section, we present our solution to address the com-
plex and non-convex optimization problem. We propose a
deep reinforcement learning algorithm that combines fed-
erated learning, and for offloading actions, we adopt the
Dueling DQN algorithm. This algorithm is referred to as
FDRL-DDQN.

The framework of the FDRL-DDQN algorithm is il-
lustrated in Fig. 3. The FDRL-DDQN algorithm contains
three main components: the training of offloading decision
and resource allocation, federated aggregation and update of
local model parameters. In the first step, devices participat-
ing in federated learning are selected. Next, the local model
is trained to learn multimedia task offloading decisions and
resource allocation. Subsequently, the trained model param-
eters are federated and aggregated. Finally, the updated pa-
rameters are distributed to each multimedia device involved
in federated learning. Algorithm 1 provides a detailed de-
scription of the proposed FDRL-DDQN algorithm in this
paper. And We give a flow chart of the Federation frame-
work in Fig. 4.

In a complex MEC network environment, mobile mul-
timedia devices are faced with three options for computing
multimedia tasks. This results in a total of 23N possible com-
putation offloading options per device at each time slot. With
an increasing number of multimedia devices, the complex-
ity of the state and action spaces for intelligent agents also
grows exponentially. Consequently, implementing central-
ized training becomes extremely challenging when dealing
with large-scale datasets and expansive action spaces. More-
over, in mobile multimedia services, which involve extensive
data transmission, centralized training leads to significant
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Fig. 3 Federated framework model.

Fig. 4 Federated framework model.

communication overhead and raises privacy concerns. Fed-
erated learning, a distributed machine learning approach,
offers several advantages in the MEC environment. Firstly,
it enables individual training of intelligent agents, allowing
them to cooperate and make independent decisions during
multimedia task execution. This approach enhances learn-
ing efficiency, reduces communication overhead, and better
adapts to large-scale MEC networks. Secondly, federated
learning facilitates interactive updates of model parameters

between distributed and central nodes, eliminating the need
for sharing original data. This mechanism provides a robust
guarantee for the security of local data.

4.1 Select Device

In cases where a large number of devices are involved in
joint learning, it can result in increased drop rates and un-
necessary communication overhead. To address this issue,
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we introduce a device selection strategy in this paper. At the
beginning of each iteration of the FDRL-DDQN algorithm,
a specific set of multimedia device agents is carefully chosen
to participate in the learning process. The principles of how
to select devices in this article are as follows

arg max
i∈N

MSE(
diPmax,i

Fmax,i
), (14)

where di denotes the distance between the device and the BS
and the function MSE denotes the mean squared error. This
approach allows for the selection of the most cost effective
method for different multimedia devices. Choosing the right
device to participate in the learning process can also help
with the overall learning speed.

4.2 Local Model Training

For the training of local agents in the FDRL-DDQN algo-
rithm, eachmultimedia device employs theDDQNalgorithm
to train its own local model and learn offloading and resource
allocation strategies. The Dueling DQN algorithm utilizes
an experience pool to store data for each state at time t. This
includes the action chosen based on the current state, the
reward received for that action, the new state after perform-
ing the action, and whether the state terminates during the
training process. As the amount of stored data in the experi-
ence pool reaches a sufficient size, small batches of data are
randomly selected and fed into the neural network for train-
ing. This continuous training process optimizes the weight
parameters in the neural network. By randomly selecting
training data, a broad range of experiences can be learned,
breaking the correlation between sample data and preventing
overfitting issues resulting from local experiences. Based on
the system model and optimization objectives presented in
this chapter, the FDRL-DDQN algorithm defines three key
elements: the state space, action space, and reward function,
which can be defined as

1. State space:

Si = {Li, hi} , (15)

where Si denotes the state space of each device, Li de-
notes the amount of multimedia task, and hi denotes
the path gain of infinite transmission between the mul-
timedia device and the base station.

2. Action space:
In the FDRL-DDQN model considered in this paper,
the intelligence is responsible for making appropriate
decisions based on the computational multimedia tasks.
The decisions include, determining whether the com-
putational multimedia tasks are offloaded to the edge
server or the cloud server, and how much computa-
tional resources should be allocated when the multime-
dia tasks are executed locally. The action space consists
of two parts, the multimedia device offloading decision

{αL
i , α

E
i , α

C
i }, where α

L
i denotes that the task is exe-

cuted locally, αE
i denotes that the task is offloaded to

the edge server, and αCi denotes that the task is of-
floaded to the cloud. The resource allocation strategy
f = { f1, f2, . . . , fN }.

3. Reword function:
The cost of each agent is the weighted sum of the delay
and energy consumption in the objective function. The
optimization objective of this paper is to minimize the
cost, so the reward function should be negatively corre-
lated with the cost, so the reward function as shown

Ri = −

(
ω(yiTE

i + ziTC
i ) + λ(yiE

e
i + ziEe

i )

ωxiTL
i + λxiEL

i

)
.

(16)

The Dueling DQN algorithm is utilized to address com-
plex decision control challenges in real-world multimedia
environments. It combines Q-learning algorithms, empiri-
cal replay mechanisms, and target Q-values based on action
value functions to approximate the Q-value of the optimal
policy. Q-learning selects the actionwith the highestQ-value
by consulting the Q-table, while dueling DQN uses a neural
network to obtain the corresponding Q-value based on the
input, resulting in improved operational speed and stability.
As depicted in Fig. 5, the Dueling DQN architecture divides
the fully connected layer of the network into two branches,
each with its specific output. The upper branch represents
the state value function, which quantifies the value of the
static state environment itself, irrespective of actions taken.
The lower branch represents the state-dependent action ad-
vantage function, which captures the average action payoff
relative to states, indicating the additional value brought by
decision-making behavior. These two branches are then
combined to derive the Q-value for each action. This ap-
proach allows for mutual supervision, eliminates redundant
degrees of freedom, mitigates the risk of inflated Q-value es-
timates, and enhances algorithm stability. Therefore, in this
paper, the notation ui(s,a) is employed to represent the di-
rect cost incurred by each device as determined through the
aforementioned optimization process. Using the Bellman
equation, the action state values are given by

Fig. 5 The network of DDQN algorithm.
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Qi(s,a) = ui(s,a) + γ
∑
s′∈S

Pss′(a)max Qi(s′,a′), (17)

where Qi(s,a) denotes the Q value corresponding to the
action a generated according to the current state s. Similarly,
max Qi(s′,a′) is used to denote the action a′ corresponding
to themaximumQ value output by the stare s′. Pss′(a) stands
for the transfer probability function, γ represent the discount
factor. There are twonetwork parameters in the duelingDQN
network, one is the current Q network parameter, denoted by
θevali , to evaluate the greedy strategy of the current network
and the other is the target network parameter, denoted by
θ
target
i , to evaluate the target value yi . In each training
iteration, the target value used to train the evaluation network
in device i is calculated as

yi = ui(s,a)+γQi(s′,arg max
a′∈A

Qi(s′,a′; θevali ), θ
t arg et
i ).

(18)

Meanwhile, to obtain the optimal strategy andminimize
the gap between the target value and the evaluated value, we
set the loss function as

L(θ) = E[(yi −Qi(s,a))2]. (19)

4.3 Parameter Aggregation and Update

At the start of each learning round in FDRL-DDQN, the par-
ticipating local devices upload their network parameter mod-
els to the MEC server for model aggregation. This aggrega-
tion process combines the models to create a global model
within the MEC. Subsequently, the MEC server distributes
the aggregated global model parameters to each multimedia
device participating in FDRL-DDQN as the network param-
eters for the next round. In this paper, we employ FedAvg
[24] as the model aggregation method.

θglobal =

∑
i∈W θi

eval

|W|
, (20)

where |W| denotes the total number of participating train-
ing devices. θglobal represents the global model parameters.
Once the global model aggregation is complete, the model
parameters are transmitted to the local device, which then
updates its own model parameters. The local device uti-
lizes its local data to train the network evaluation parameters
during the offloading decision update. This update process
continues iteratively for the local devices until the algorithm
converges.

5. Simulation Results

In this section, we use tensorflow1.0 GPU version to imple-
ment the FDRL-DDQN framework in python and perform
simulations to evaluate its performance. The main simula-
tion parameter settings in this paper are shown in Table 3.

To simulate the proposed FDRL-DDQN algorithm, we

Table 3 Simulation parameters.

constructe a network comprising 50 multimedia devices.
However, only 10 devices were selected for each training
round. Each device has a maximum computational capacity
of 1 Gbps and a maximum energy consumption of 23 dBm.
Due to the limitations of computing power on the multi-
media devices in the MEC network, we utilize the smallest
feasible neural network for our algorithm. Considering the
computational constraints, our neural network consisted of
an input layer, two hidden layers, and an output layer. The
first and second layers consisted of 32 and 16 neurons, re-
spectively. ReLU activation functions were used throughout
the network.

5.1 Convergence Performance

In this section, we evaluate the convergence performance of
the FDRL-DDQN algorithm and compare it with the dis-
tributed DDQN. We examine the convergence of the two
schemes using selected devices and all devices to partici-
pate in the federation to address the non-IID data issue of
multimedia devices. Additionally, we analyze the impact
of learning rate and batch size on the convergence of the
FDRL-DDQN algorithm.

Firstly, we assess the convergence speed of the training
loss in the FDRL-DDQN algorithm. In Fig. 6, the average
training loss L(θ) of the FDRL-DDQN model is plotted.
Initially, the algorithm exhibits significant fluctuations due
to the lack of experience during the initial training, mak-
ing it challenging for the intelligence to learn the optimum.
However, as the experience pool accumulates sufficient data,
the intelligence can make actions that lead to the optimal
solution, resulting in maximum rewards. As the number of
iterations increases, the loss function steadily decreases, in-
dicating a smoother learning process. After approximately
200 iterations, the algorithm reaches the optimum value for
the neural network.

In Fig. 7, we address the non-IID problem among mo-
bile multimedia devices by selecting only a fraction of de-
vices to participate in each round of federated learning, en-
suring the convergence speed of the overall algorithm. To
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Fig. 6 Convergence process of loss function.

Fig. 7 Comparison of convergence between FDRL-DDQN and systems
without selection mechanism.

evaluate the effect of the device selection method on the
convergence of the FDRL-DDQN algorithm, we compare
the approach of adding all devices to federated learning with
the partial device addition. The convergence performance of
the FDRL-DDQNalgorithm is validated using 5W randomly
generated multimedia tasks, which are offloaded for optimal
resource allocation decisions. In each iteration round, the in-
telligence derives a reward value based on its decision. The
average reward of the FDRL-DDQN algorithm is plotted,
showing an increasing trend with the number of iterations as
the intelligence improves its decision-making ability. The al-
gorithm converges after approximately 200 iterations. It can
be observed from the figure that the average reward value
of the overall algorithm, after utilizing the device selec-
tion mechanism, is significantly higher and converges faster
compared to the approach of adding all devices to federated
learning.

Furthermore, we examine the impact of learning rate
and batch size on the convergence of the FDRL-DDQN al-
gorithm. Figure 8 illustrates the effect of the intelligence’s
learning rate on the convergence performance of the FDRL-
DDQN framework. We experiment with learning rates of

Fig. 8 Convergence of reward value under different learning rates.

Fig. 9 Convergence of reward value under different batch size.

0.0001, 0.001, and 0.002. While a higher learning rate leads
to faster learning, the figure shows that a learning rate of
0.0001 results in slow convergence due to the low learning
rate. On the other hand, a learning rate of 0.002 increases
learning efficiency, but it compromises algorithm stability,
causing repeated oscillations that hinder convergence. Thus,
in this paper, we set the learning rate to 0.001 in the simula-
tion.

Another parameter of interest is the batch size for multi-
media task processing. Figure 9 demonstrates that increasing
the batch size improves the convergence of the FDRL-DDQN
algorithm. With a small batch size of 10, convergence takes
around 380 iterations. However, when the batch size is in-
creased to 20, convergence occurs after 310 iterations, and
with a batch size of 30, the algorithm converges quickly in
only 180 iterations. Larger batch sizes enable training with
more instances, providing the intelligence with faster expe-
rience accumulation. Consequently, the executed actions
can reach optimal solutions more rapidly, resulting in faster
algorithm convergence.
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Fig. 10 Influence of delay weight on total system cost.

5.2 Comparison of Total Cost

In this section, we first compare the proposed FDRL-DDQN
algorithm with the distributed DDQN algorithm. To further
evaluate the algorithm’s performance, we also compare it
with the centralized DDQN algorithm, centralized DQN al-
gorithm, and two baseline computation offloading policies:
mobile execution and edge node execution. Mobile execu-
tion refers to local device computation of multimedia tasks,
while edge node execution involves offloading all tasks to
the edge node. We investigate the effect of delay weights on
the FDRL-DDQN algorithm in comparison to the four men-
tioned centralized algorithms. Additionally, we discusse the
trade-off between delay and energy consumption.

In Fig. 10, we experiment with the weights of delay and
energy consumption on algorithm performance. To handle
different types ofmobilemultimedia tasks, we set theweights
of delay ω to equal values of 0-1 and similarly γ to 1 − ω.
We set the delay weights of the centralized DQN algorithm,
DDQN algorithm, to be consistent with FDRL-DDQN. As
ω increases the system assembly also rises, the total cost of
FDRL-DDQN is always lower than the other four algorithms.
This is due to the fact that FDRL-DDQN is able to provide an
optimal offloading strategy for the optimized target compared
to the other four algorithms, thus achieving an overall cost
reduction.

Figure 11 illustrates the equilibrium trend of the net-
work’s average delay and average energy consumption as
the delay weight varies. In this simulation, the number of
users is set to N=5. From Fig. 11, it is apparent that the net-
work’s average delay gradually decreases as the delay weight
increases, while the average energy consumption of the net-
work increases. Both the average delay and average energy
consumption of the network stabilize when the delay weight
reaches a certain thresholdwhen theω >= 0.4. This happens
because when the value of ω is small, increasing it reduces
delay at the expense of energy performance. However, when
the value ofω is large, due to limitations on user transmitting
power, further increasingω doesn’t result in reduced average

Fig. 11 The average delay and the average energy consumption curve.

Fig. 12 The cost of FDRL-DDQN scheme is compared with distributed
DDQN algorithm.

delay or increased average energy consumption.
Figure 12 compares the average total cost of the pro-

posed FDRL-DDQN algorithm with the distributed DDQN
algorithm. We select three multimedia devices which are
trained individually using the distributed DDQN algorithm
without any parameter exchange between the three multi-
media devices during the period. When the training is fin-
ished, we add the three multimedia devices to the FDRL-
DDQN framework for retraining until convergence. The
experimental results show that the cost of each device is
reduced using the FDRL-DDQN algorithm, where the aver-
age consumption can be reduced by 20.3%. By combining
federated learning with deep reinforcement learning, coop-
erative training between devices is achieved. It avoids the
equipment alone training by environmental instability, ac-
tion space, state space and other inexperienced impact, and
provides a relatively stable intelligent body learning envi-
ronment, combining different devices together intelligently.
Because of the devices involved in training only upload the
model parameters needed for learning, it can effectively pro-
tect the privacy and security of users. In addition, federated
learning enables knowledge sharing between devices and
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Fig. 13 Effect of the number of multimedia tasks on the total cost of the
system.

enriches the data parameters they can collect.
To demonstrate the performance benefits of the FDRL-

DDQN algorithm, in Fig. 13, it shows the impact of multi-
media tasks data size on the average total cost of devices. We
compared FDRL-DDQN algorithm with centralized DDQN
algorithm, centralized DQN algorithm, mobile execution al-
gorithm and edge note execution algorithm. It can be seen
that the FDRL-DDQN has a faster learning speed than the
basic centralized DDQN, and the cost rises more slowly with
the number of tasks, with the smallest optimization perfor-
mance at a total cost of 600 Kbits and the largest optimiza-
tion performance at a total cost of 1000 Kbits. This is due
to the fact that when the multimedia task data size increases,
more and more information be interacted between devices,
the advantage of federated learning can be fully reflected,
and the learning speed of the intelligence will be faster and
faster, while the centralized DDQN will decrease due to the
increase of the multimedia task data size, which leads to
the exponential growth of the action space received by the
intelligence. FDRL-DDQN algorithm can reduce the total
cost by 7.1% when the system multimedia task volume is
600Kbit and 31.3% when the multimedia task volume is
1000Kbit compared with centralized DDQN, while FDRL-
DDQN algorithm can reduce up to 35.3% compared with
mobile local offloading algorithm and 34.8% compared with
edge node offloading algorithm, because FederatedDeep Re-
inforcement Learning combines FL and DRL are organically
combined to obtain the exact optimal policy by intelligent
and effective learning for multiple device parameters. In
addition, FDRL-DDQN can reduce the cost by up to 30.1%
compared to the centralized DQN algorithm which has al-
ready widely used to offload multimedia task policies. The
biggest advantage of the DDQN algorithm over the DQN al-
gorithm is that it can ensure the stability of the target network,
which helps the whole system to update the parameters and
thus converge faster to get the optimal policy. When FL is
combined with DDQN its effect is more obvious, FL makes
DDQN algorithm more stable making the final result more
accurate and faster convergence.

6. Conclusion

In this paper, we propose an adaptive offloading algorithm
FDRL-DDQN that combines federation learning and deep
reinforcement learning. For the computational offloading
problem in theMEC scenario ofmobilemultimedia dynamic
multimedia task arrival, we jointly allocate computational
and communication resources with the goal of minimizing
latency and energy consumption, and make reasonable of-
floading decisions. For the non-IID data problemwith differ-
ent multimedia devices, we design an adaptive device selec-
tion mechanism as a way to ensure the convergence of FL. In
addition, we compared FDRL-DDQN with centralized Du-
eling DQN, distributed DDQN, mobile algorithm and edge
algorithm with better results. Simulation results show that
the algorithm has good latency and energy performance. In
future work, we will consider resource coordination among
multiple MEC servers, as well as investigate more flexible
and generalized resource allocation and computational of-
floading strategies.
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