
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024
387

PAPER
High-Throughput Exact Matching Implementation on FPGA with
Shared Rule Tables among Parallel Pipelines

Xiaoyong SONG† ,††a), Zhichuan GUO† ,††b), Xinshuo WANG† ,††c), and Mangu SONG† ,†††d), Nonmembers

SUMMARY In software defined network (SDN), packet processing is
commonly implemented using match-action model, where packets are pro-
cessed based on matched actions in match action table. Due to the limited
FPGA on-board resources, it is an important challenge to achieve large-
scale high throughput based on exact matching (EM), while solving hash
conflicts and out-of-order problems. To address these issues, this study
proposed an FPGA-based EM table that leverages shared rule tables across
multiple pipelines to eliminate memory replication and enhance overall
throughput. An out-of-order reordering function is used to ensure packet
sequencing within the pipelines. Moreover, to handle collisions and in-
crease load factor of hash table, multiple hash table blocks are combined
and an auxiliary CAM-based EM table is integrated in each pipeline. To
the best of our knowledge, this is the first time that the proposed design con-
siders the recovery of out-of-order operations in multi-channel EM table
for high-speed network packets processing application. Furthermore, it is
implemented on Xilinx Alveo U250 field programmable gate arrays, which
has a million rules and achieves a processing speed of 200 million opera-
tions per second, theoretically enabling throughput exceeding 100 Gbps for
64-Byte size packets.
key words: field programmable gate arrays (FPGA), match-action table,
exact matching, hash table, hash collision, CAM

1. Introduction

In software defined network (SDN), most network functions
are implemented based on match-action table (MAT) model.
InMAT, the specific fields of data packets are extracted as key
to probe the matching table, and the action instructions that
should be executed are obtained after successful matching
[1], [2]. Exact matching (EM) table plays an important role
and is widely used in packet processing applications such
as packet inspection [3], packet classification [4] and flow
monitoring [5] etc. The processing speed of network pack-
ets and the scale of networks are increasing continuously,
along with higher processing performance requirements for
switch devices, which also demand higher performance and
scalability to exact matching tables.

Manuscript received August 18, 2023.
Manuscript revised October 18, 2023.
Manuscript publicized January 30, 2024.
†The authors are with the National Network New Media Engi-

neering Research Center, Institute of Acoustics, Chinese Academy
of Sciences, Beijing 100190, China.
††The authors are with the University of Chinese Academy of

Sciences, Beijing 100049, China.
†††The author is with Suzhou Haiwang Network Technologies

Co., Ltd., China.
a) E-mail: songxy@dsp.ac.cn
b) E-mail: guozc@dsp.ac.cn (Corresponding author)
c) E-mail: wangxs@dsp.ac.cn
d) E-mail: songmg@dsp.ac.cn
DOI: 10.23919/transcom.2023EBP3140

Field programmable gate arrays (FPGA) has significant
advantages in terms of programmable flexibility and par-
allel processing, and various network functions are being
offloaded to FPGAs for accelerated processing [6]. How-
ever, neither EM nor content addressable memory (CAM)
is on an FPGA. User needs to design and implement the
matching table based on on-board resources. On FPGA, the
mainly methods to implement exact matching table include
hash-based methods and CAM-based methods. The exact
matching table based on CAM consumes huge resource and
has a low memory efficiency [7]. EM table based on hash
has higher memory efficiency, but there are problems such
as hash collision, insertion difficulty, and nondeterministic
worst case latency [8], [9]. Moreover, both methods will
face difficulties in achieving a large depth or large width EM
on FPGA with a high speed.

In order to improve the throughput of the matching ta-
ble, some designs employ multiple parallel channels. How-
ever, it also brings the problem of memory replication [10],
resulting in huge on-chip storage consumption. Some multi-
channel designs [11], [12] without storage replication also
have the problems of low hash table load factor. Moreover,
different from the out-of-order execution of a general Key-
Value System (KVS) in database, it is necessary to maintain
the sequence order of packets in most of network packet pro-
cessing applications. Hence, the issue of uncertain process-
ing latency or packets out-of-order should also be considered
in network matching table application.

To implement a large-scale high-throughput exact
matching table and solve the problems of hashing collision
and out-of-order among multiple pipelines, this paper pro-
poses a multi-channel exact matching table with shared rule
table, which can improve the processing speed of the match-
ing table without memory replication. Especially, it would
rearrange the out-of-order matching results after processing
to ensure a correct sequence, which avoids packets out-of-
order or error in network. The main contributions of this
work are as follows:

• This paper proposed an FPGA-based exact matching
implementation that leverages shared rule tables across
parallel pipelines to enhance overall throughput with-
out memory replication. The implemented EM table
based on FPGA could insert a million rules, which has
good scalability and achieves a processing speed of 200
million operations per second, theoretically enabling
throughput exceeding 100 Gbps for 64-Byte size pack-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



388
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

ets.
• An out-of-order reordering function to recover the order
of matching results within the pipelines to maintain
packet sequence in network packet processing.

• A compact CAM-based exact match table is incorpo-
rated alongside the primary hash-based EM tablewithin
each pipeline to handle hash collisions, which ensures
the important rules can be inserted into rule tables.

2. Exact Match Table Overview

2.1 Match-Action Model

As Fig. 1 shown, match-action model is the mainstream
framework to process data packets in data plane of pro-
grammable devices. At each processing stage of data pack-
ets, the feature match filed in the packet is extracted as Key
and used for MAT table lookup operation [2], [13]. The
action engine then executes actions based on the result of
the table lookup. Among the various types of MAT tables
used in packet processing and pattern matching, the exact
matching table is commonly employed.

There are two main ways to implement EM on FPGA,
which is hash-based EM like [10] and CAM-based EM like
[14]. Both hash-based and CAM-based exact matching
tables have O(1) lookup performance. In contrast, hash-
based EM has higher storage utilization efficiency, while the
SRAM-based CAM has low storage utilization. However,
CAM-based EM does not have the problem like hash colli-
sion or insert difficulty, etc.

2.2 Hash-Based Exact Match Table

The hash-based exact match table shown in Fig. 1(a) is a
fast and efficient data structure that stores Key-Value pairs in
the {Vld, Key, Value} data structure in each address space.
During inserting or querying, the Key is hashed to generate
the corresponding address index, and then the data structure
is stored at the address or retrieved for comparison, ultimately
yielding the corresponding value.

Fig. 1 Basic scheme of match-action model. (a) Architecture of hash-
based exact match table. (b) Architecture of CAM-based exact match table.
(c) Architecture of non-collision exact match table.

2.3 CAM-Based Exact Match Table

Content Addressable Memory (CAM) is a type of memory
that enables fast content queries and has the advantage of
fast search rate. As Fig. 1(b) shown, in CAM-based exact
matching table, the key is entered into CAM to get the match-
ing information matchlines which contains all match result
of each address unit, and the match address index is encoder
by Priority Encoder. Finally, this address is used to read the
corresponding Value from the Value Store.

2.4 Non-Collision Exact Match Table

The probability of collision depends on the hash function,
which is not possible to be perfect, especially in the case of
random and frequently updatable data [7]. In order to solve
the hash conflict, the cuckoo hash [9], multiple level hash
table [10] or chaining [15], adding auxiliary storage [5], [12],
[16], and other solutions have been proposed. Figure 1(c)
shows a non-collision exact match table combinedwith hash-
based EM and CAM-based EM. The rule entry is firstly
inserted into hash-based EM table. If a collision occurs,
the conflicted entry is then inserted into the CAM-based
EM table. This hybrid structure leverages the benefits of
both CAM and hash-based techniques to ensure efficient and
collision-free matching.

3. Architecture

Although hash table has good scalability and high resource
utilization, implementing a high-performance EM table on
FPGA is still a challenge, especially when the size of table
is large. It is difficult to perform matching with sufficient
throughput for wire-speed processing. For instance, in a
100Gbps high-speed network, at least 148.8 million of 64B
size packets per secondmust be processed tomeet processing
speed requirements, which means the operation throughput
of matching table should not be lower than 148.8 million.

The core idea of increasing the processing speed is to
maximize the number of operations processed per clock cy-
cle. Usually, the processing speed is increased by boosting
the main frequency of system or utilization of multiple paral-
lel pipelines [17]. It is not easy to improve the frequency on
FPGA, especially when the entire system is complex and the
table size is large. The problem faced by multiple parallel
pipelines is that it requires multi-port memories or memory
replication to store each rule several times, which consumes
more storage resources. Due to the limited resources on
FPGA, it is not feasible to use the method of memory repli-
cation when implementing a very large scale matching table.

3.1 Parallel Shared Hash Table with CAM Structure

To avoid storage replication and increase the number of en-
tries processed in a single clock cycle, we optimize themulti-
level hash pipeline structure to multiple parallel pipelines



SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
389

Fig. 2 Overall architecture of exact table with 4 parallel pipelines.

structure. Additionally, multiple CAM tables were adopted
to handle hash conflicting.

All pipelines share all rules stored in the entire exact
matching table, and each rule is only stored once timewithout
backup. The table in each pipeline can be accessed by the
operation from its neighbor pipeline if needed. For each key,
there is a probability that they will be inserted or matched in
the hash table set of each pipeline. If the operation succeeds
in a hash table set, there is no need to access other tables in
other pipelines. Meanwhile, the tables in other pipelines can
process other operations. In the worst-case scenario, when
all EM tables in all pipelines need to be accessed for each
key, the throughput of the entire EM table is the same as that
of a single pipeline. In the best scenario, all operations are
succeed in the first hash table set they access, and the entire
exact matching table could handle P operations in each clock
cycle. However, for most cases, 1 ≤ p ≤ P, where p is the
number of operations EM can process in a clock cycle and
P is the number of pipelines.

In the entire EM table, there are P parallel pipelines,
each consisting of a set of hash table blocks as the main
storage and a CAM-based EM table as auxiliary storage.
Figure 2 shows the architecture of our EM table with four
parallel pipelines. Multiple hash functions and hash table
blocks are used in each hash table set to reduce the hash col-
lision rate. To avoid the uncertainty in insertion time caused
by cuckoo hashing, we select an empty address space from
multiple alternative addresses in parallel, and the conflicted
new entry would be inserted in other hash table sets instead
of replacing existing entries if there is no empty alternative
address in current hash table set. Entries failed inserted into
all hash tables are eventually inserted into CAM. In order
to maintain the sequence of packets and ensure a constant
search latency, there is a Reorder module behind the hash
table sets and CAM tables to return the searched key and
matched result to its own input pipeline, and unify the la-
tency of each search key according to its operation path.

3.2 Hash Table Block and Hash Table Set

In each pipeline, there is a set of hash-based EM table blocks,

here called the hash table set. Each hash table set consists
of M hash table blocks, and these hash table blocks are
independent and store Key-Value pairs in their address units
with the entry structure of {Vld, Key, Value}. If Vld is ‘1’,
it indicates the entry structure is valid and the slot in hash
table block has been used.

3.2.1 Class H3 Hash Function

The performance of a hashing scheme depends on the colli-
sion handling method and the hashing function chosen [18].

Class H3 hash algorithm [8] was used to perform the
hashing operation on the key, which has been demonstrated
to be effective on distributing keys randomly [10]. Let i
denotes the number of bits for input key, and j denotes the
number of bits for hash index. Let Q denotes a i × j Boolean
matrix. For a given q ∈ Q, let q(m) be the bit string of the
mth row of Q, and let x(m) denote the mth bit of input key.
The hashing function h(x) : A→ B is defined as

h(x) = (x(1) ·q(1))⊕(x(2) ·q(2))⊕ . . .⊕(x(i) ·q(i)). (1)

Compared to other hashing algorithms like Toeplitz
[19], the H3 algorithm not only ensures uniformity and fast
computation but also consumes fewer logic resources when
implemented on an FPGA. The hardware which stores H3
matrix can be organized in a bank of registers. The same
hardware can realize any desired hashing function from this
class and the hashing function can be changed dynamically
by loading data into the bank of registers if needed [18].
To improve the clock frequency, the hashing operation is
pipelined and completed within two clock cycles.

3.2.2 Hash Collision Handling

To reduce hash collisions, an independent H3 hash matrix
is set for each hash table block, and the entire EM table has
P × M H3 hash matrices and P × M hash function units.
If a hash collision occurs during insertion, the new entry
would select another empty slot to insert, instead of replacing
the original entry like cuckoo hashing. In each hash table
set, M hash function units perform hash calculations on the
same key parallelly, and then choose an address without hash
conflict from the M candidate addresses for insertion. With
an increasing number of hash table blocks in each hash table
set, the hash collision rate would be reduced significantly,
which would be explained further in Sect. 4.1. If there is
no empty candidate address in the current hash table set,
the insertion operation proceeds to the hash table set of the
next pipeline. If all hash tables fail to insert, the conflicting
entries are stored in the CAM table finally.

3.2.3 Operations

• Insert: As illustrated in Fig. 3, for each hash table set,M
hash function units in this set first generateM candidate
addresses for the key during entry insertion. Then the



390
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 3 Insert process of hash table set.

Fig. 4 Query process of hash table set.

entry structure stored in the candidate address of each
hash table block is read. If the Vld bit in entry structure
is ‘0’, the address is empty, and ‘1’ indicates that this
address space has been already in use. The Collision
handling logic selects a hash table block with empty
candidate address to insert. Write logicwrites the entry
structure of new entry into the corresponding address
of the selected table.

• Query: As illustrated in Fig. 4, after hashing calculation
and entry structure reading, the queried key is compared
with all keys in valid entry structures. After comparing,
Compare logic encodes all comparison results and gets
the matching address, and then the matching value is
selected according to the matching address.

• Delete: Performs a query operation firstly. After the
matching is successful, the content of the matching ad-
dress is written to 0 to delete the entry.

3.3 Auxiliary CAM Tables

Even if we use multiple hash functions and multiple hash
table blocks to reduce the probability of hash collisions, a
perfect hash function does not exist. To avoid situations
where important rules cannot be inserted into hash tables
due to hash conflicts, we handle this problem by adding
auxiliary storage, namely a small depth CAM-based EM
table for storing entries that cannot be inserted into the hash

Fig. 5 Timeline of the operation (H: Hash Table Set. C: CAM Table. K:
Operation Key. H0, H1, H2, H3 are the four hash table sets in Fig. 2, and
C0, C1, C2, C3 are the four CAM tables in Fig. 2. K0, K1, · · · , K13 are
the operation keys into the tables).

table.
The CAM here is implemented using the transposed

SRAM method [20]. In the implementation of this method,
key is used as write or read address, and matchlines contain-
ing entry address information are stored in SRAM.Thewidth
of matchlines is equal to the depth of CAM, with each ad-
dress space corresponding to a single bit in matchlines. For
a given key, if a particular bit in its correspondingmatchlines
is ‘1’, it means that the address is a matching address.

Theoretically, the depth of CAM depends on the prob-
ability of hash collision, and a detailed analysis will be pro-
vided in Sect. 4.2. Here, we assume that the total CAMdepth
requirement isCdepth . Figure 5 illustrates the timeline of the
operation in the EM table. When a keyK enters thematching
table, it will appear in the timeline and the grid in Fig. 5. The
white grid indicates that the operation of K is not completed
yet, and it needs to continue entering the next hash table
set or CAM table to try its operation with the loop order of
Pipe 0→ Pipe 1→ Pipe 2→ Pipe 3→ Pipe 0. The green
grid indicates that the operation of K has been successfully
completed or all tables have been accessed. For each key, if
its operation is failed in all hash tables, it would further enter
into CAM table. The key failed to do operation in a CAM
table would access the next CAM table with the same loop
order ofCAM 0→ CAM 1→ CAM 2→ CAM 3→ CAM 0.
For instance, the operation of K1 is failed in all hash table
sets and it finally completes its operation in CAM table 0. To
avoid the worst-case scenario which shown in Fig. 5, when
all hash table sets in multiple pipelines need to insert con-
flicting entries into CAM simultaneously (K10, K11, K12,



SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
391

Fig. 6 Architecture of CAM-based EM table.

and K13), we place a CAM table after each hash table set
in each pipeline. The key of K10, K11, K12, and K13 are
failed to do their operation after traversing all hash tables
in four pipelines. After the first Reorder module behind the
hash tables in Fig. 2, K10 ∼ K13 enter into the CAM tables
with their corresponding pipelines. The depth of the CAM
in each pipeline CD = Cdepth

P , where P is the number of
pipelines or the number of hash table sets.

By combining CAM-based EM tables with hash-based
EM tables, it can address potential hash conflicts and ensure
that important rules are correctly inserted into the match
table.

3.3.1 Address Spaces Management

As shown in Fig. 6, for each CAM table there is a bitmap
CAMVld vector which records the usage status of each CAM
address space. ‘0’ means that the space is already in use,
while ‘1’ means that it is available for use. When inserting
an entry into CAM, the address index generator allocates an
empty address space to this entry by the vld bitmap and a
priority encoder. After an entry is deleted, the corresponding
address vld bit corresponding would be set to ‘1’ again,
indicating this address can be reallocated.

3.3.2 Operations

• Insert: After generating the write index, the new con-
tent of the entry is generated based on the write index
(new content = 1 << write index). In the same
time, the original content in the address of writing key
should be read out as old matchiline. The new content
and old matchiline perform the or operation to generate
the new matchiline written into CAM. New matchiline
= old matchlines | new content. Use the entry key as
write address, write this new matchiline into the CAM.
At the same time, write the corresponding value into
value store at the write index. Set the corresponding bit
in the vld bitmap to ‘0’ to indicate the address is now in
use.

Fig. 7 State structure across EM pipelines.

• Query: During a query, the key is used as the read
address to read thematchlines stored inCAM.Apriority
encoder is used to encode thematchlines and obtain the
matching index. If the address space is in use, read the
corresponding value stored in this address space from
the value store.

• Delete: After completing the query operation, clear the
content of corresponding bit in matchlines at the key’s
address in CAM and also clear the content at the cor-
responding index of the value store. Set corresponding
bit in bitmap to ‘1’, indicating that it can be used again.

3.4 State Structure across Pipelines

In addition to entry structure stored in EM table, a custom
data structure is maintained and transferred among pipelines
to record the status and data path of each operation, here we
call it state structure. As shown in Fig. 7, this state structure
has a length of 8 bits, and each sub-field is defined as follows:

• [ 0 ]: Succeed – Indicates whether the operation of an
entry is successful. It is set to 1 if the entry has been
successfully inserted or if a query has been successful.

• [2:1]: Option Code – Specifies the operations to be
performed on this entry. 2’b00 indicates no operation,
2’b01 indicates insertion, 2’b10 indicates deletion, and
2’b11 indicates query.

• [6:3]: Pipeline State – A 4-bit bitmap represents the
status ofwhether pipelines or tables have been accessed.
1’b0 indicates that the table has been accessed, and
1’b1 indicates that table has not been accessed. For
example, 4’b1011 indicates that the entry is entered
from Pipe 2 and the table in Pipe 2 has been accessed.
If further access is needed, the next step is to jump to
Pipe 3 → Pipe 0 → Pipe 1 for access until operate
succeed or all pipelines have been accessed. For table
entries that have not been successfully operated in hash
tables, this field will be restored to its initial state of
4’b1111 before entering CAM tables.

• [ 7 ]: To CAM - Determines whether to insert an entry
into the CAM when insertion fails in all hash tables.
1’b0 means the entry can be directly discarded when
insertion fails in hash tables, while 1’b1 means the
entry should still be inserted into the CAM if needed.

As a key is queried or a Key-Value is inserted into the
EM, the hash table or CAM table performs the operation
based on its Option Code. If the current pipeline executes
successfully, it directly jumps out of the table and enters the
Reordermodule. Otherwise, if there is another pipeline table



392
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

that has not been accessed according to the Pipeline State, it
continues to jump to the next pipeline table for corresponding
operation.

Once the hash table or CAM table of each pipeline
completes its operation, it modifies the corresponding bit in
thePipeline State of the pipeline for that pipeline and updates
the Succeed bit based on the operation success. Additionally,
Reorder would control the exit time of each entry according
to its Pipeline State, which ensures the processing latency of
each entry is equal.

For a query entry, the state structure is propagated along
the query entry until the matching result gets used. However,
when inserting an entry, once the insertion is successful, the
structure will not propagate backwards further.

3.5 Rearrange Out-of-Order

According to the previous design, when an entry completes
the query operation in a hash table set or a CAM table,
it will carry its state structure away from the table to allow
more new entries to access thematching table for processing.
Since each entry may not need to access all hash table sets
or CAM tables, the operation latency vary from entry to
entry. This would result in out-of-order and congestion at the
out-ports of the EM table. Additionally, in network packet
processing applications, it is usually necessary to maintain
packet sequence.

To ensure that the sequence of packets entering and leav-
ing the pipeline is not disrupted, and that the query latency of
each entry is consistent, a reordermodule is introduced to re-
store the order of processed entries and make corresponding
delay for each entry.

As shown in Fig. 8, there are four channels in reorder
module, and each corresponds to one channel in the EM
table. Taking the hash table as an example, each queried
entry carries its status structure from the current hash table
set into the reorder module. The parsing unit parses its
pipeline state field to find out which pipeline the entry enters
the matching table from and how many hash table set it has
been accessed. The module of path select dispatches the
matching result back the pipeline it entered. Then delay
select module selects an appropriate additional delay for
this entry and outputs it from the corresponding outport of
reorder module.

After being processed by the reordermodule, the query
latency of each entry is consistent and it is equal with the
worst-case delay, and the corresponding matching results
can still be returned to its own pipeline after cross-pipeline
lookups, which ensures the sequence of packets in each
pipeline in the later processing.

As illustrated in Fig. 9, the girds with the same color
enter into the table simultaneously, and the colored grid
means a key has completed its operation. For example, K1,
K2, K3 and K4 are all green because they all entered into the
EM table at the first time. K1 completed its operation in its
first table setH0, but K2, K3 and K4 not. They went through
2, 3 and 4 tables to complete the operation respectively. Then

Fig. 8 Architecture of reorder.

Fig. 9 Timeline of reorder operation.

they entered the reorder module from the channel which they
complete operation. After reordering, these four keys exited
the EM table simultaneously.

The keys entered from a same pipeline also keep their
sequence after reordering. K4, K7 and K9 entered from
H3 table set at different time. Although they have different
processing latency in hash tables, they still maintain their
sequence after reordering.

4. Analysis

Here we analyze the hash collision rate, the capacity CAM
required and the issue of consistency. Table 1 lists the vari-
able abbreviations that will be used later and their meanings.

4.1 Hash Collision Rate

There are P hash table sets in the entire EM table, and each
hash table set containsM hash table blocks with the depth of



SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
393

Table 1 Tabel of abbreviation.

Fig. 10 Simulation results under different hash table block’s number and
depth. (a) The number of entries inserted into hash tables successfully. (b)
The number of failed entries which are not inserted into hash tables. (c)
The utilization rate of the entire hash table. (d) The collision rate of the
entire hash table.

HD. Hence, there are P×M hash table blocks. We simulated
the hash collision rate under different hash table block’s
number and depth. The probability of each key hashing
to a particular location is uniform [21], so uniform random
function acts as hash function unit to generate insert index
in simulation. 1000 simulation experiments were conducted
for each case and calculated the mean value. In each time,
P × M × HD entries are inserted into the hash tables.

The simulation results are shown in Fig. 10. The
Fig. 10(a) shows the number of successful inserted entries
and Fig. 10(b) shows the number of failed entries under
different table numbers and different table depths, which
provide us a reference to choose the depth of CAM under
different cases. It can be seen from Fig. 10(c) and Fig. 10(d)
that with the increase of the number of hash table blocks,
the hash table utilization rate (load factor) would increase
and the collision rate would decrease. When the number of
entries inserted into all hash tables is the same as the total
number of address spaces in hash tables, the collision rate
of entire hash table is almost unaffected by the depth of each
hash table block, but mainly determined by the number of
hash table blocks. When the number of hash table blocks

exceeds 64, the hash collision rate drops below 1%.

4.2 CAM Capacity

Assuming that the hash collision rate is Rcollison, there are
P hash table sets, and each hash table set has M hash table
blocks with the depth of HD. Then there are Hdepth (=
P × M × HD) address spaces in the entire hash table. After
inserting Hdepth entries into hash tables, there would be
Ncollison (= Rcollison × Hdepth) entries cannot be inserted
into the hash table finally.

Hence, the capacity of CAM Cdepth required should be
equal the number of conflicted entries.

Cdepth = Ncollision = Rcollision × (P × M × HD). (2)

The CAM on each channel should be CD, and

CD =
Cdepth

P
. (3)

4.3 Consistency

Due to the latency in hash computation and SRAM
read/write operations, there are two extreme scenarios where
consistency issues may occur: (i) a queried key is the same
as an inserting key; (ii) in a hash table set, a key is being
inserted, the new inserted key takes the insert address of the
inserting key as its candidate address.

For the former, if the same search key accesses the
matching table during the writing process of an entry, it may
result in incorrect query results. For the latter, the status
of the inserted address is updated to the occupied state only
after the entry is inserted completely. During this insertion
period, the address space is still considered to be selected
for subsequent insert entries, which may lead to a collision
between two entries when selecting an address.

However, the probability and impact of these two sce-
narios are negligible. Firstly, compared with query opera-
tion, insertion operation is generally infrequent. Moreover,
it is extremely rare for multiple collisions of a single address
to occur in such a vast depth of table, especially within a very
short period of time. The first case has been discussed to
be negligible in prior work [10]. In the second case, entries
can be inserted from different pipelines in the way of round-
robin, or new entries can be inserted after confirming that
the previous entry has completed the insertion operation.

5. Implementation and Evaluation

5.1 Implementation

We implement our design on a Alveo U250 [22] FPGA
device, which has 1,728,000 LUTs, 3,456,000 Flip-flops,
2688 BRAM36Kmemory blocks and 1280 URAMmemory
blocks. In order to make a trade-off between latency and
throughput, the EM table has a total of 4 channels in our
implementation, each channel has a hash table set and an



394
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

auxiliary CAM based EM. Each hash table set has 64 hash
table blocks with a depth of 4K. Based on the hash collision
rate, it can be determined that 4K CAM entries are sufficient
to store the collision entries of the hash table. Therefore, the
CAM depth of each pipeline is 1K. The total EM can store
1048K (4*64*4096=1048576) entries.

5.2 Memory Utilization

The SRAM storage resources on FPGA are independent
units, and each SRAM unit must be used by block. We
utilized URAMs to implement hash table and transposed
BRAMs to implement CAM. Here, each URAM block is
configured as a 4K*72b SRAM and each BRAM36K block
is configured as a 512*72b SRAM. The symbol of d∗e rep-
resents rounding up.

The number of URAMs used by each hash table block
is

HT BUN =
⌈

HD
4096

⌉
×

⌈
K + V + 1

72

⌉
. (4)

The number of URAMs used by each hash table set is

HTSUN = M ×
(⌈

HD
4096

⌉
×

⌈
K + V + 1

72

⌉)
. (5)

The number of BRAM36Ks used by each CAM based
EM table is

CAMBN =

⌈
K

log512
2

⌉
×

⌈
CD
72

⌉
+

⌈
CD
512

⌉
×

⌈
V
72

⌉
. (6)

The total memory blocks consumed by the entire EM
table is TUN URAM blocks and TBN BRAM36K blocks, in
which

TUN = P ×
(
M ×

(⌈
HD
4096

⌉
×

⌈
K + V + 1

72

⌉))
, (7)

and

T BN = P ×

(⌈
K

log512
2

⌉
×

⌈
CD
72

⌉
+

⌈
CD
512

⌉
×

⌈
V
72

⌉)
. (8)

Table 2 shows the resource utilization for different
widths of key and value in our implementation. In entire
EM Tables, there are totally 1048K address spaces in hash
tables and 4K address spaces to store conflicted entries in
CAM-based EM tables. In general, the logical resource oc-
cupation remains within a reasonable range, which reserves
enough resource and frequency space for the implementa-
tions of other on-board applications. The utilization of stor-
age resources is directly proportional to the width of keys or
values. However, in some cases, because of the SRAMmust
be used in the unit of an entire block, there may be storage
waste, which is inevitable in FPGA implementations. In ad-
dition, when the depth of a matching table remains constant,
increasing the width may lead to a decrease in achievable

Table 2 Resource utilization of 1048K entries exact matching table on
U250 FPGA.

frequency. This is because increasing the width requires
more on-board resources and may result in more complex
routing and longer signal propagation paths. This increases
wire delay and limits the operating frequency of the entire
matching table.

5.3 Performance Evaluation

For each hash table set, its collision rate is rcollison, which
alsomeans the probability of transferring fromone hash table
set to its adjacent channel after the insertion failure. As can
be seen from Fig. 10(d), when there are a larger number
of hash table blocks, almost all entries can be successfully
inserted into its first hash table set. Taking an example when
each hash table set has 64 hash table blocks (i.e., M=64),
the collision rate rcollison is approximately 0.00785, which
means the entries rarely moves to other channels to insert.
Hence, the speed of insertion would be effectively enhanced
by multiple parallel pipeline channels.

For queries, the total number of address spaces in each
hash table set is equal, so the depth of each hash table set is 1

P
of the entire table (here do not consider the minimal number
of entries in CAM), and the probability of a successful query
for each table entry in the current table is 1

P . On average,
the expected number of hash table sets to be queried for each
table entry can be denoted asEp. Therefore, in average cases,
it is equivalent to having P

Ep channels working in parallel in
our EM table.

The expected number of tables to be queried for each
entry is

Ep =
1
P
+ 2

1
P

(
1 −

1
P

)
+ · · · + i

1
P

(
1 −

1
P

) i−1
+ · · ·

+ (P − 1)
1
P

(
1 −

1
P

)P−2
+ P

(
1 −

1
P

)P−1
, (9)

=

P−1∑
i=1

(
i
P

(
1 −

1
P

) i−1
)
+ P

(
1 −

1
P

)P−1
. (10)



SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
395

Fig. 11 Throughput under different EM configuration. (a) Throughput
of operations. (b) Throughput of packets with length of 64B.

For the entire EM table, although each operation has a
certain latency, both insert operations and query operations
are pipelined. Therefore, the EM table can do P

Ep opera-
tions per clock cycle on average. Therefore, the operation
throughput of the EM table is

Operation T hroughput =
P

E p
∗ Freq. (11)

For packets, the theoretical throughput that can be
achieved is

T hroughput =
P

E p
∗ Freq ∗ (Pkt Len + 20)B. (12)

The additional 20 bytes are the extra overhead of packet
transferring in network, which includes: 12 bytes inter frame
gap (IFG) which is the minimum frame gap of Ethernet pack-
ets (IEEE 802.3), 7 bytes preamble for clock synchronization
and 1 byte start of frame delimiter (SFD) for identifying the
start of the frame.

In our implementation, the number of pipelines is 4.
When P is 4, E p(P = 4) ≈ 2.73, and P

Ep ≈ 1.46. Therefore,
the EM table can handle 1.46 operations per clock cycle on
average. According to the implementation frequency of EM
in Table 2, we can calculate the operation throughput and
supported packet throughput of EM table in different cases.

Figure 11 shows the number of query operations that
EM can handle per second and the corresponding 64B packet
throughput under different conditions. A smaller EM table
is easy to achieve higher throughput because it could reach a
higher working frequency. Overall, the entire EM table can
process more than 200 million of operations per second, and
can reach a throughput of about 125 Gbps for 64B packets.

6. Related Work and Discussion

Exact matching table is a research hotspot and is widely used
in database, key-value store and packet classification etc.,
and hash-based exact matching table is a mainstreammethod
on FPGA implementation. Researchers mainly focusing on
scale expansion, hash collision handling and throughput en-
hancement of hash table on FPGA, which are also our main
work in this paper.

With the continuous expansion of the network scale, the
size of the matching table is also increasing. Although hash
table is a storage efficient structure, the implementation of
huge matching tables on FPGA would still encounter prob-
lems such as implement difficulties, resource constraints,
and frequency reduction etc. Besides this, solving the hash
collision problem is one of the key challenges to achieve
accurate matching tables. Researchers use different meth-
ods to reduce collisions, such as using better hash functions,
open addressing methods, chain methods, etc. Implement-
ing collision resolution algorithmonFPGAneeds to consider
the balance between hardware resource utilization efficiency
and throughput. To increase throughput, the researchers
explored a variety of approaches. For example, parallel ac-
cess is achieved by querying and manipulating multiple hash
buckets in parallel.

Y.Z. Li [16] proposed a non-collision hash scheme us-
ing bloom filter (BF) and CAM to ensure that each lookup
accesses memory at most once. An additional CAM is used
to store the conflicting entries of hash table. And a bloom
filter to pre-detect if an entry is in hash table ensures that
each lookup accesses hash table or CAM at most once. It
achieves better worst-case performance and has greater flex-
ibility to quickly insert or query entries. However, bloom
filter has some problems such as the difficulty of deleting,
and it consumes a lot of resources when implementing a
large matching table, which is not feasible in practice.

M. Sha [5] proposed to solve the cuckoo hash conflicts
by using a set of distributed RAM as auxiliary storage, which
is actually a small CAM implemented by distributed RAMs
and registers. However, it has limited scalability especially
under a bigger depth requirement ofCAMwhen thematching
table has huge depth. Additional, there may be uncertainty
in the insertion time in this design because of the cuckoo
hashing and the entries in extended table may be rewritten
back into the hash table.

Yang et al. [10] proposed FASTHash to optimize hash
table throughput through multiple parallel pipeline designs.
In this design, it carries out memory replication on each
pipeline, which means the tables in each pipeline are the
same. Although it improves the throughput of the hash table,
it consumes great storage resources to store the same rules
multiple times, and it is infeasible to do memory replication
on resource-limited FPGA when the size of the matching
table is very huge. In addition, although the design reserves
multiple slots for each address space to avoid hash colli-
sion, it does not solve the hash conflict more thoroughly. In
some cases, there will still be entries that cannot be inserted
successfully.

Salvatore Pontarelli Pedro Reviriego et al. [11] com-
pared serial, parallel and parallel-pipeline hash table imple-
mentations, and proposed parallel d-pipeline implementa-
tion which increases the throughput by accessing the tables
in parallel. However, the hash collision in cuckoo hashing
does not further be solved in this design.

W.Q. Wu et al. [12] introduced CAM into d-Pipeline to
address hash collision further and kept the high throughput



396
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Table 3 Comparison with other methods.

of parallel hash tables. However, the structure has only one
CAM unit after multiples hash tables. When load factor of
hash table is high, the insertion of hash table is difficult and
multiple conflicted entries need to access CAM simultane-
ously. Moreover, the CAM it used needs 16 clock cycles
to finish a write operation. Limited by the writing speed of
CAM, if there is entry to be written to CAM, the hash table
needs to stall and wait its completion. The CAM cannot be
adapted to the parallel hash tables with high throughput. In
addition, the out-of-order problem is not considered in the
design, and it is not applicable in some scenarios that require
the sequence of network packets.

Table 3 shows the comparison of our work with exist-
ing methods. Based on resource considerations, we did not
adopt the bloom filter in our design like BF-HASH-CAM
[16]. Compared to [5], it does not replace the existing en-
try in insertion when collision occurs in our design, which
avoids the uncertain insertion latency caused by cuckoo hash-
ing. By sharing the rule matching table among multiple
pipeline channels, our method avoids storage replication in
FASTHash [10] and improves throughput. At the same time,
the load factor is enhanced by increasing the number of hash
table blocks, and hash conflicts are handled by auxiliary
CAM units. In addition, for the network packet processing
scenario, this paper specially considers the out-of-order re-
covery in the multiple parallel pipeline channels, which is
not considered in the design of d-Pipeline [11] and [12].

Actually, there are several dedicated SmartNICs prod-
ucts or solutions to offload SDN packet processing these
years, such as Nvidia’s ConnectX series [23], Xilinx’s Alveo
U25 [24] and SN1000 [25] SmartNICs, Microsoft’s Blue-
bird [26] etc. The proposed matching table is an platform-
independent module, it could be embedded into these sys-
tems to support SDN packet processing as well.

7. Conclusions

In summary, this paper presented a large-scale high-
throughput collision-free EM table which shares rule ta-
bles and with out-of-order recovery among multiple parallel
pipelines for the network packet application based on FPGA.
By multiple channels working parallelly and sharing their
rule tables, the throughput of the entire table is increased by
about 1.5 times without storage replication. All matching
results would be reordered to ensure the operation sequence
and the constant processing latency in each pipeline. More-
over, it reduces the collision rate through multiple hash table
blocks, and stores conflicted entries into auxiliary CAM ta-

bles.The implemented exact match table supports 200 mil-
lion query operations per second, which is enough to support
exceeding 100 Gbps throughput even for 64B packets.

Acknowledgments

This research was funded by National Key Research and
Development Program of China: Software-defined inter-
connecting chip and supporting software kit development
(Project.No. 2022YFB2901004).

References

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol.44, no.3, pp.87–95, July 2014.

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F.Mujica, andM. Horowitz, “Forwardingmetamorphosis: Fast
programmable match-action processing in hardware for SDN,” ACM
SIGCOMMComput. Commun. Rev., vol.43, no.4, pp. 99–110, 2013.

[3] R. Shubbar andM. Ahmadi, “Fast 2D filter with low false positive for
network packet inspection,” IET Networks, vol.6, no.6, pp.224–231,
2017.

[4] P. Reviriego, G. Levy, M. Kadosh, and S. Pontarelli, “Algorithmic
tcams: Implementing packet classification algorithms in hardware,”
IEEE Commun. Mag., vol.60, no.9, pp.60–66, 2022.

[5] M. Sha, Z. Guo, K. Wang, and X. Zeng, “A high-performance and
accurate FPGA-based flow monitor for 100Gbps networks,” Elec-
tronics, vol.11, no.13, p.1976, 2022.

[6] M. Sha, Z. Guo, and M. Song, “A review of FPGA’s application
in high-speed network processing,” J. Network New Media, vol.10,
pp.1–11, 2021.

[7] M. Irfan, A.I. Sanka, Z. Ullah, and R.C. Cheung, “Reconfigurable
content-addressable memory (CAM) ON FPGAs: A tutorial and
survey,” Future Generation Computer Systems, vol.128, pp.451–465,
2022.

[8] J. Carter and M. Wegman, “Universal classes of hash functions (ex-
tended abstract),” Proc. ninth Annual ACM Symposium on Theory
of Computing, STOC’77, pp.106–112, 1977.

[9] R. Pagh and F.F. Rodler, “Cuckoo hashing,” J. Algorithms, vol.51,
no.2, pp.122–144, 2004.

[10] Y. Yang, S.R. Kuppannagari, A. Srivastava, R. Kannan, and V.K.
Prasanna, “FASTHash: FPGA-based high throughput parallel hash
table,” Proc. 35th International Conference, ISC High Performance
2020, High Performance Computing, Frankfurt/Main, Germany,
pp.3–22, Springer, June 2020.

[11] S. Pontarelli, P. Reviriego, and J.A. Maestro, “Parallel d-pipeline:
A cuckoo hashing implementation for increased throughput,” IEEE
Trans. Comput., vol.65, no.1, pp.326–331, 2015.

[12] W.-Q. Wu, M.-T. Xue, T.-Q. Zhu, Z.-G. Ma, and F. Yu, “High-
throughput parallel SRAM-based hash join architecture on FPGA,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.67, no.11, pp.2502–
2506, 2020.

http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1049/iet-net.2017.0055
http://dx.doi.org/10.1049/iet-net.2017.0055
http://dx.doi.org/10.1049/iet-net.2017.0055
http://dx.doi.org/10.1109/mcom.001.2100923
http://dx.doi.org/10.1109/mcom.001.2100923
http://dx.doi.org/10.1109/mcom.001.2100923
http://dx.doi.org/10.3390/electronics11131976
http://dx.doi.org/10.3390/electronics11131976
http://dx.doi.org/10.3390/electronics11131976
http://dx.doi.org/10.1016/j.future.2021.09.037
http://dx.doi.org/10.1016/j.future.2021.09.037
http://dx.doi.org/10.1016/j.future.2021.09.037
http://dx.doi.org/10.1016/j.future.2021.09.037
http://dx.doi.org/10.1145/800105.803400
http://dx.doi.org/10.1145/800105.803400
http://dx.doi.org/10.1145/800105.803400
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1007/978-3-030-50743-5_1
http://dx.doi.org/10.1007/978-3-030-50743-5_1
http://dx.doi.org/10.1007/978-3-030-50743-5_1
http://dx.doi.org/10.1007/978-3-030-50743-5_1
http://dx.doi.org/10.1007/978-3-030-50743-5_1
http://dx.doi.org/10.1109/tc.2015.2417524
http://dx.doi.org/10.1109/tc.2015.2417524
http://dx.doi.org/10.1109/tc.2015.2417524
http://dx.doi.org/10.1109/tcsii.2020.2980420
http://dx.doi.org/10.1109/tcsii.2020.2980420
http://dx.doi.org/10.1109/tcsii.2020.2980420
http://dx.doi.org/10.1109/tcsii.2020.2980420


SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
397

[13] M. Kekely and J. Korenek, “Mapping of P4 match action tables to
FPGA,” 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), IEEE, pp.1–2, 2017.

[14] D.-H. Le, K. Inoue, andC.-K. Pham, “Design a fast CAM-based exact
pattern matching system on FPGA and 0.18µm CMOS process,”
IEICE Trans. Fundamentals, vol.E96-A, no.9, pp.1883–1888, Sept.
2013.

[15] Z. István, G. Alonso, M. Blott, and K. Vissers, “A flexible hash table
design for 10GBPS key-value stores on FPGAS,” 2013 23rd Interna-
tional Conference on Field Programmable Logic and Applications,
IEEE, pp.1–8, 2013.

[16] Y. Li, “Non-collision hash scheme using Bloom filter and CAM,”
2009 Second Pacific-Asia Conference on Web Mining and Web-
based Application, IEEE, pp.55–58, 2009.

[17] M.Kekely, L. Kekely, and J. Korenek, “Memory aware packet match-
ing architecture for high-speed networks,” 2018 21st Euromicro Con-
ference on Digital System Design (DSD), IEEE, pp.1–8, 2018.

[18] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware
hashing functions for high performance computers,” IEEE Trans.
Comput., vol.46, no.12, pp.1378–1381, 1997.

[19] H. Krawczyk, “LFSR-based hashing and authentication,” Proc. 14th
Annual International Cryptology Conference, Advances in Cryptol-
ogy—CRYPTO’94, Santa Barbara, California, USA, pp.129–139,
Springer, Aug. 1994.

[20] W. Jiang, “Scalable ternary content addressable memory implemen-
tation using FPGAs,” Architectures for Networking and Communi-
cations Systems, IEEE, pp.71–82, 2013.

[21] G.H. Gonnet, “Expected length of the longest probe sequence in hash
code searching,” J. ACM (JACM), vol.28, no.2, pp.289–304, 1981.

[22] Xilinx, “Alveo u200 and u250 data center accelerator cards data
sheet (ds962),” Online, 2023, https://docs.xilinx.com/r/en-US/ds
962-u200-u250

[23] Nvidia, “ConnectX-7 400G Adapters,” Online, 2023, https://nvdam.
widen.net/s/csf8rmnqwl.infiniband-ethernet-datasheet-connectx-7
-ds-nv-us-2544471

[24] Xilinx, “AlveoU25ProductBrief,” Online, 2023, https://www.xilinx
.com/content/dam/xilinx/publications/product-briefs/alveo-u25-pro
duct-brief.pdf

[25] Xilinx, “Alveo SN1000 SmartNICs Data Sheet (DS989),” Online,
2023, https://docs.xilinx.com/v/u/en-US/ds989-sn1000

[26] M. Arumugam, D. Bansal, N. Bhatia, J. Boerner, S. Capper,
C. Kim, S. McClure, N. Motwani, R. Narasimhan, U. Panchal,
T. Pimpo, A. Premji, P. Shrivastava, and R. Tewari, “Bluebird: High-
performance SDN for bare-metal cloud services,” 19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 22), Renton, WA, pp.355–370, USENIX Association, April
2022.

Xiaoyong Song received the B.S. degree
from Beijing University of Technology, Beijing,
China, in 2019. He is currently pursuing the doc-
tor’s degree with the School of Electronic, Elec-
trical and Communication Engineering, Univer-
sity of Chinese Academy of Sciences, Beijing.
His current research interest includes FPGA net-
work acceleration, and matching table etc.

Zhichuan Guo received the B.S. degree
from Wuhan University in 1996, and the Ph.D.
degree from the University of Science and Tech-
nology of China in 2006. From 1996 to 2003, he
served as an Electronics Engineer with the 13th
Research Institute of China Electronics Technol-
ogy Group Corporation and a SDH hardware
R&D system engineer of optical networks at
Huawei. In 2006, he joined with the Institute of
Acoustics, Chinese Academy of Sciences, Bei-
jing, China. Now he is a Professor of CAS en-

gaging in field programmable gate array (FPGA)-based code acceleration,
VLSI, and security.

Xinshuo Wang received the B.E. de-
gree from Chongqing University of Posts and
Telecommunications, Chongqing, China, in
2021. At present, he is studying for a doctor-
ate degree in the school of electronic. electrical
and communication engineering of the Univer-
sity of Chinese Academy of Sciences in Beijing,
focusing on the field of FPGA network acceler-
ation.

Mangu Song is currently working at the
Institute of Acoustics, Chinese Academy of Sci-
ences (IACAS), as a research assistant. She re-
ceived her M.Sc degree in electronics and com-
munication engineering from the School of Mi-
croelectronics, Chinese Academy of Science,
Beijing, China in 2017. Her current research
interests include FPGA-based code acceleration
and network security.

http://dx.doi.org/10.23919/fpl.2017.8056768
http://dx.doi.org/10.23919/fpl.2017.8056768
http://dx.doi.org/10.23919/fpl.2017.8056768
http://dx.doi.org/10.1587/transfun.e96.a.1883
http://dx.doi.org/10.1587/transfun.e96.a.1883
http://dx.doi.org/10.1587/transfun.e96.a.1883
http://dx.doi.org/10.1587/transfun.e96.a.1883
http://dx.doi.org/10.1109/fpl.2013.6645520
http://dx.doi.org/10.1109/fpl.2013.6645520
http://dx.doi.org/10.1109/fpl.2013.6645520
http://dx.doi.org/10.1109/fpl.2013.6645520
http://dx.doi.org/10.1109/wmwa.2009.64
http://dx.doi.org/10.1109/wmwa.2009.64
http://dx.doi.org/10.1109/wmwa.2009.64
http://dx.doi.org/10.1109/dsd.2018.00017
http://dx.doi.org/10.1109/dsd.2018.00017
http://dx.doi.org/10.1109/dsd.2018.00017
http://dx.doi.org/10.1109/12.641938
http://dx.doi.org/10.1109/12.641938
http://dx.doi.org/10.1109/12.641938
http://dx.doi.org/10.1007/3-540-48658-5_15
http://dx.doi.org/10.1007/3-540-48658-5_15
http://dx.doi.org/10.1007/3-540-48658-5_15
http://dx.doi.org/10.1007/3-540-48658-5_15
http://dx.doi.org/10.1109/ancs.2013.6665177
http://dx.doi.org/10.1109/ancs.2013.6665177
http://dx.doi.org/10.1109/ancs.2013.6665177
http://dx.doi.org/10.1145/322248.322254
http://dx.doi.org/10.1145/322248.322254
https://docs.xilinx.com/r/en-US/ds962-u200-u250
https://docs.xilinx.com/r/en-US/ds962-u200-u250
https://docs.xilinx.com/r/en-US/ds962-u200-u250
https://docs.xilinx.com/r/en-US/ds962-u200-u250
https://docs.xilinx.com/r/en-US/ds962-u200-u250
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl.infiniband-ethernet-datasheet-connectx-7
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl.infiniband-ethernet-datasheet-connectx-7
-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
-ds-nv-us-2544471
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u25-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u25-pro
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u25-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u25-pro
duct-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u25-product-brief.pdf
duct-brief.pdf
https://docs.xilinx.com/v/u/en-US/ds989-sn1000
https://docs.xilinx.com/v/u/en-US/ds989-sn1000

