
398
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

PAPER
PopDCN: Popularity-Aware Dynamic Clustering Scheme for
Distributed Caching in ICN∗

Mikiya YOSHIDA†a), Yusuke ITO††b), Yurino SATO†††c), and Hiroyuki KOGA††d), Members

SUMMARY Information-centric networking (ICN) provides low-
latency content delivery with in-network caching, but delivery latency
depends on cache distance from consumers. To reduce delivery latency,
a scheme to cluster domains and retain the main popular content in each
cluster with a cache distribution range has been proposed, which enables
consumers to retrieve content from neighboring clusters/caches. However,
when the distribution of content popularity changes, all content caches may
not be distributed adequately in a cluster, so consumers cannot retrieve them
from nearby caches. We therefore propose a dynamic clustering scheme to
adjust the cache distribution range in accordance with the change in content
popularity and evaluate the effectiveness of the proposed scheme through
simulation.
key words: ICN, distributed caching, dynamic clustering

1. Introduction

Information-centric networking (ICN) [3], [4] has been at-
tracting attention as a new architecture that uses network
caching to satisfy the requirements (e.g., ultra-low latency,
ultra-high reliability, andmassive connectivity) for emerging
services such as IoT-like automation, robotics, and industrial
automation [5], [6]. In ICN, a consumer sends interest pack-
ets containing content names to request content. A content
router (CR), which is an intermediate router receiving the
interest packets, forwards the packets to a producer on the
basis of a routing table called a forwarding information base
(FIB). The producer then returns data packets of the re-
quested content with the reverse path to consumers. The
CRs cache data packets on their content store (CS) during
forwarding, so they can return caches to consumers instead
of the producer if they store the requested data. Namely, this
in-network caching, which can satisfy the future requests of
consumers, significantly reduces the network load and im-
proves content delivery efficiency. To take full advantage of

Manuscript received September 21, 2023.
Manuscript publicized January 30, 2024.
†The author is with the Center for Information Technology and

Management, Okayama University, Okayama-shi, 700-8530 Japan.
††The authors are with the Graduate School of Environmental

Engineering, The University of Kitakyushu, Kitakyushu-shi, 808-
0135 Japan.
†††The author iswith theDepartment of Control Engineering, Na-

tional Institute of Technology (KOSEN), Sasebo college, Sasebo-
shi, 857-1193 Japan.
∗Earlier version of this paper was presented at ACM ICN2022

and APSIPA ASC2022 [1], [2].
a) E-mail: m-yoshida@okayama-u.ac.jp
b) E-mail: y-ito@kitakyu-u.ac.jp
c) E-mail: y-sato@sasebo.ac.jp
d) E-mail: h.koga@kitakyu-u.ac.jp
DOI: 10.23919/transcom.2023EBP3152

in-network caching, an efficient content caching scheme is
needed, and various schemes have been proposed.

Simple content caching makes a cache decision on in-
dividual CRs, while distributed content caching distributes
content by considering nearby caches to satisfy content re-
quests. Distributed caching solves a cache efficiency prob-
lem that simple content caching causes cache duplication for
a small amount of highly popular content over neighboring
CRs. However, if the cached required content is distributed
over a large range, delivery latency may increase.

Therefore, cluster-based distributed caching schemes
have been proposed [7], [8] to control a distributed range.
These schemes group CRs into clusters in a domain∗∗ and
retain the main popular content in each cluster using a dis-
tributed caching manner. This aims to avoid cache dupli-
cation among CRs in the cluster, enabling the caches of
each content to be distributed within it. As a result, the
delivery latency can be controlled by cluster size, and it
enables consumers to retrieve content efficiently from the
originating clusters. However, a too-small distribution range
decreases cache utilization and causes delivery delays due to
the delivery from producers, while a too-large distribution
range increases cache utilization but may cause delivery de-
lays due to long cache delivery. Therefore, we believe that
the adequate cache distribution range should be determined
in accordance with content popularity on the basis of such
trade-off factors. In a practical environment, the distribution
of content popularity changes over time, so it is necessary to
determine the distribution range depending on the situation.

We therefore propose a dynamic clustering scheme to
adjust the cache distribution range, i.e., cluster size, in ac-
cordance with the change in content popularity, considering
cache utilization and delivery latency. Our scheme controls
the cluster size effectively using a simple threshold-based
algorithm based on the number of cache updates on CRs in a
cluster. Moreover, we evaluate the effectiveness of the pro-
posed scheme compared with conventional schemes through
simulation in a situation where content popularity changes.

The main contributions of this paper, updated from
previous papers [1], [2], are as follows:

• We discuss recent studies that utilize clustering tech-
niques in ICN.

• We evaluate the proposed scheme compared with con-
ventional schemes in detail and discuss the effective

∗∗In this paper, the term ‘domain’ refers to a large-scale network
consisting of one or more ISPs.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
399

threshold settings.
• We investigate the effectiveness of the proposed scheme
in practical network topologies.
The rest of this paper is organized as follows. In Sect. 2,

we describe our motivation for this study through a discus-
sion of related works. In Sect. 3, we describe our scheme. In
Sect. 4, we describe the simulation model and evaluation de-
tails. In Sect. 5, we evaluate the performance of our scheme
in comparisonwith conventional schemes. Finally, in Sect. 6,
we summarize our findings and conclude the paper.

2. Related Work

In this section, we describe an issue of this study through
discussions of various content caching schemes to improve
content delivery efficiency.

2.1 Distributed Caching

Simple caching schemes such as LCE [3] and Prob(p) [9]
make a cache decision on individual CRs. This may cause
cache duplication for a few high-popular contents over neigh-
boring CRs because more frequently requested content is
likely to be cached. This becomes useless for other con-
tent requests. Therefore, distributed caching schemes have
been proposed such as MCD [10], WAVE [11], MuNCC
[12], and Hash-routing [13], which distribute various con-
tent considering nearby caches to satisfy various content re-
quests. The key idea ofMCDandWAVEschemes is that each
CR moves requested caches to downstream CRs. Namely,
the CR caching the requested content sends its cache to the
downstreamCR and removes it from itself, so that each cache
is not duplicated on the default path, i.e., the shortest path to
consumers. However, it is unable to avoid cache duplication
among neighboring CRs outside the default path.

In contrast, in MuNCC and proposed in [14] schemes,
each CR shares cache summaries that are formed using a
Bloom filter among neighboring CRs to avoid cache duplica-
tion. When a data packet arrives, a CR determines whether it
caches it or not depending on the cache summaries of neigh-
boring CRs. The Hash-routing scheme distributes content
to CRs using a hash function that maps content identifiers
to each CR of the domain, without additional functionality
such as shared cache summaries. In particular, when an edge
router in the domain receives a request, it calculates the hash
value from the received content identifier and forwards it to
the responsible CR. Similarly, each CR caches the respon-
sible content whose hash value matches its identifier during
forwarding. As a result of this approach, since the cache
location of each content is limited to one CR over a domain,
it can avoid cache duplication among CRs. However, if the
cached required content is distributed over a large range,
delivery latency may increase.

2.2 Cluster-Based Distributed Caching

To control the cache distribution range considering deliv-

ery latency, network clustering-based distributed caching
schemes for ICN have been proposed [7], [8], [15], [16].
These schemes group CRs into clusters in a domain and
retain the main popular content in each cluster using a Hash-
routing-like distributed caching manner. The delivery la-
tency can thus be controlled by cluster size, enabling con-
sumers to retrieve content efficiently from the originating
clusters. As a scheme similar to the aforementioned ones, the
HCC [17] scheme has also been proposed. It centrally man-
ages the distributed caches by a cluster header constructed
in each cluster. The cluster header calculates the content
popularity and importance of each node on the basis of in-
formation collected from the cluster, and then assigns the
more popular content to the more important node to improve
cache efficiency and delivery latency.

However, the amount of content that can be cached in
the cluster depends on the cluster size. In other words, a
smaller cluster size is insufficient to reduce delivery latency
since it cannot cache necessary content sufficiently in the
cluster. As mentioned before, in this study, we believe that
it is necessary to determine the adequate cache distribution
range in accordance with content popularity on the basis of
the following trade-off factors. A too-small cache distribu-
tion range against the amount of main popular content will
not retain sufficient caches, so it decreases cache utilization
and causes delivery delays due to the delivery from produc-
ers. A too-large cache distribution range can satisfy most
user requests within the cluster but causes delivery delays
due to the delivery from widely distributed caches. In a
practical environment, the distribution of content popularity,
i.e., the amount of main popular content, will change over
time [18], so it is necessary to determine the distribution
range adequately depending on the situation.

3. Proposed Scheme

We propose a dynamic clustering scheme to adjust the cache
distribution range in accordance with the change in content
popularity. This scheme is an extended version of our previ-
ous work [7] that formed a fixed size of clusters. In this sec-
tion, we explain the operation of the proposed scheme. We
first explain the main points of the previous work in Sect. 3.1,
and then explain the extension in detail in Sect. 3.2.

3.1 Cluster-Based Cache Distribution Scheme

To improve delivery latency and cache efficiency, we have
proposed the cluster-based cache distribution scheme. It
groups CRs into clusters in a domain and retains the main
popular content in each cluster using a distributed caching
manner, enabling consumers to retrieve content from the
originating clusters. Furthermore, it can also retrieve caches
from closer CRs by advertising cache information among
CRs. In the following, we explain two functions of cluster-
based distributed caching and advertisement-based routing.

The distributed caching approach uniformly distributes
chunks of individual content to all CRs in each cluster, as



400
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 1 Cache placement.

shown in Fig. 1. This approach improves cache efficiency
by avoiding cache duplication in the cluster, leading to more
cached content in it. Furthermore, transmission efficiency
can also be improved by multi-path cache delivery from
multiple CRs (i.e., load balancing).

To uniformly distribute chunks in a cluster, this scheme
partitions a domain into clusters of the same size and assigns
unique identifiers (CRIDs) to each CR in advance. To avoid
cache redundancy among CRs in a cluster, it uses a hash
function that maps chunk identifiers to CRIDs. Specifically,
when a CR receives a chunk, it caches it as a responsible
one if the hash value calculated from the received chunk
identifier matches its own CRID. The Least Recently Used
(LRU) cache replacement algorithm is used for spaces on
the CS. In this study, each cluster is assumed to be a square
shape. The cluster size is defined as the number of CRs on
one side (as shown in Fig. 1 is 2), which affects the cache
efficiency and distance from consumers. Note that the shape
of clusters is not important because the main popular content
will be retained in clusters if CRIDs are properly assigned
within clusters in any topologies. For example, it can be
accomplished by defining the cost as the distance between
a CR and the nearest CR with a different CRID and solving
the problem of minimizing the total cost. This will ensure
that each CRID is assigned almost uniformly without bias
according to the cluster size, i.e., the number of CRIDs to be
assigned. Since each CR is neighboring to CRs with a CRID
different from its own, each cluster is nearly a circle shape.

Even if caches are uniformly distributed within a clus-
ter, consumers may not efficiently retrieve all chunks of the
requested content from the originating cluster. This is be-
cause not all chunks will be cached due to the limitation of
total cache capacity in a cluster, or there may be caches on
closer CRs in neighboring clusters than those in the originat-
ing cluster. Therefore, requests should be forwarded to the
nearest caches even those not in the originating clusters re-
gardless of cluster boundaries for efficient content delivery,
so the advertisement-based routing approach is used, which
forwards interest packets to nearby caches on the basis of the
advertised cache information.

To achieve this behavior, each CR informs neighbor-
ing CRs of their own responsible cache status. Specifically,

Fig. 2 Cache information advertisement.

CRs that newly cache or discard responsible chunks adver-
tise the cache information (newly cached/discarded) in the
flooding manner shown in Fig. 2. The CR receiving the ad-
vertised packet updates its FIB entry with the received cache
information. Considering the overhead of this operation,
the flooding range should be limited but would affect the
content retrieval efficiency, which is defined as the flood-
ing limit parameter (as shown in Fig. 2 is 2). This opera-
tion is performed only when responsible chunks are cached
or discarded, thereby reducing the overhead compared with
conventional schemes flooded for all cached chunks such as
proposed in [19]. Moreover, to reduce the load caused by
flooding, our scheme simply discards and does not forward
the flooding packets when it can be determined that neigh-
boring CRs do not need to update their FIB. Let us explain
this process using the example shown in Fig. 2. When CR A
caches responsible chunks, it advertises its cache information
to neighboring CRs (gray-colored range). After that, when
CRB caches the same chunk, it can decide not to flood to CR
C and advertises the cache information to neighboring CRs
except it (red-colored range). This is because CR B has an
FIB entry with metric of 2 hops for the chunk by advertised
information fromCRC and it indicates that CRC already has
a valid metric of 1 hop that does not need updating. Namely,
if the CRs already have FIB entries of plus 2 hops or fewer
metrics than the flooding one, it does not need to advertise
it in that direction. Note that this scheme increases over-
heads including cache information sharing and FIB entry
increases to improve acquisition efficiency compared to on-
path routing schemes as an inherent issue of off-path routing
schemes. To resolve this issue (overheads caused by off-path
extension), several solutions (e.g., a Bloom filter approach
[12], [14], [20]) have been proposed, while we focus on re-
ducing delivery latency by adjusting cache distribution range
while considering only communication overheads caused by
flooding in this study so that wewill leave this issue for future
work.

3.2 Popularity-Aware Dynamic Clustering Scheme

As previously mentioned, the cluster size, i.e., cache distri-
bution range, should be adequately determined in accordance



YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
401

Fig. 3 Operation of dynamic clustering.

with content popularity. In a practical environment, the dis-
tribution of content popularity changes over time, so it is
necessary to determine the distribution range depending on
the situation. We therefore propose a dynamic clustering
scheme to adjust the cache distribution range in accordance
with the change in content popularity, considering cache uti-
lization and delivery latency. Our scheme controls the clus-
ter size effectively using a simple threshold-based algorithm
based on the number of cache updates in the cluster.

To discuss the adequate cluster size, we focus on the
frequency of cache updates in a cluster. This is because this
metric is useful to estimate whether the current cluster size
is suitable to cache the main popular content. When the
frequency of cache updates is high, it indicates that caches
are updated by incoming data packets from outside the clus-
ter. Namely, requested content cannot be retrieved inside the
cluster as well as the cluster size is too small. A low fre-
quency of cache updates indicates that caches are not updated
since requested content can be retrieved inside the cluster.
Namely, the cluster size may be decreased to reduce deliv-
ery latency. Thus, we consider that the frequency of cache
updates in a cluster would fall into a certain range with the
appropriate cluster size.

From the aforementioned strategy, the proposed scheme
adjusts the cluster size using a simple threshold-based algo-
rithm based on the frequency of cache updates. Specifically,
it uses the number of cache updates in a cluster as a metric,
and decreases/increases the cluster size when the metric falls
below or exceeds lower/upper thresholds. Figure 3 explains
how the proposed scheme migrates to the adequate cluster
size in accordance with the change in content popularity. Let
us consider a t-second scenario when the content popularity
will disperse after x seconds, and then heavily concentrate
after y seconds. In phase 1 until x seconds, we assume that
each cluster, which represents the domain divided into four
parts, can store most of the popular content, so the frequency
of cache updates fits between the upper and lower thresholds.
Namely, the current cluster size is adequate. In phase 2 from
x to y seconds when the content popularity disperses, the
frequency of cache updates increases and exceeds the upper

threshold because the current cluster size cannot retain the
popular content sufficiently. Therefore, the cluster size is
increased by one level to store them, and therefore the fre-
quency of cache updates decreases and falls within the upper
and lower thresholds. In phase 3 after y seconds when the
content popularity is heavily concentrated, the cache update
frequency decreases and falls below the lower threshold be-
cause the current large cluster size has exceeded the sufficient
cache capacity compared with the amount of main popular
content. Therefore, it attempts to improve the delivery la-
tency by decreasing the cluster size by one level. However,
this cluster size still has an excessive cache capacity, so the
frequency of cache updates remains below the lower thresh-
old. Therefore, the cluster size is decreased by one more
level, and therefore the frequency of cache updates increases
and falls within the upper and lower thresholds. Through
these procedures, the cluster size can be migrated to the ad-
equate cluster size in accordance with the change in content
popularity.

To achieve this function, we assume that a controller is
located in a domain and each CR notifies the controller with
the number of cache updates. The controller calculates the
total number of cache updates separately in each cluster by
the information received from each CR. When at least one
of the calculated values falls below or exceeds lower/upper
thresholds, it reassigns a new CRID and hash function to
each CR to decrease/increase cluster size. The cluster size
is not changed for a certain period, which is defined as the
reclustering interval parameter, immediately after recluster-
ing to mitigate the effect of the heavy fluctuation of cache
updates. We believe that such information sharing between
the controller and CRs can be achieved by a mechanism like
software defined networking (SDN) and the detailed design
of the scheme will be left as future work.

4. Simulation Model

We evaluated the proposed scheme focusing on the effec-
tiveness of retrieving content from nearby clusters/caches
in a large domain environment where content popularity



402
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 4 Simulation model.

Table 1 Simulation parameters.

changes through simulations using Network Simulator ns-3
ver. 3.30.1 [21] with the implementation of our scheme. We
used a simple grid topology with multiple paths to elimi-
nate the effects of cluster shape and content cache placement
within clusters as shown in Fig. 4(a) to enable us to focus
on the essential effect of dynamically changing cluster size.
One producer and 12 consumers were located on the upper
and lower sides of the grid (12 × 12) of CRs, respectively.
The parameters used in the simulation are summarized in
Table 1. The default path is the shortest path to the producer
(13 hops from each consumer) and it was set to the FIB of
each CR. The ratio of the CS size on CR to the amount of
content was set to approximately 1.5% on the basis of com-
parative papers [8], [22]. The flooding limit was set to 6,
which was the best value in terms of cost performance be-
tween overhead and efficiency in a preliminary evaluation.
As mentioned before, the proposed scheme needs to share
information among CRs via the controller, which can be
achieved by a number of mechanisms like SDN, and we ig-
nore its effect in this simulation since the exchange of shared
information is very infrequent and small compared with data

delivery. Each CR notifies the controller of the number of
cache updates at 1 second intervals.

Each consumer sent interest packets to request content
toward the producer at normal distribution intervals with an
average value of 0.3 seconds. The requested content was de-
termined on the basis of the content popularity, in which P2P
content was generally known to follow a Zipf-mandelbrot
distribution [23]. In this distribution, the degree of bias de-
pends on the parameters α and q. α is the skewness factor
that controls the slope of the curve, while q(≥ 0) is known as
the plateau factor that determines the flatness of the curve.
In this simulation, we gave q a fixed value of 5 and changed
the content popularity with α to avoid the complexity of the
discussion. Furthermore, we assumed no packet loss occurs
so we can focus on the fundamental characteristics of the dy-
namic clustering approach. The simulation was performed
for 270 seconds. We set the Zipf parameter α to 1.0 at the
start of the simulation as shown in Fig. 4(b). α changed to
0.6 at 30 seconds after the simulation started, in which a
wider range of content is requested, to 1.8 at 90 seconds,
to concentrate on the requested content, and after that, it
decreases by 0.4 every 60 seconds back to 1.0.

In this simulation, we compared and evaluated the effec-
tiveness of five representative schemes: LCE (LRU), Hash-
routing [13], Hash-routing + cluster [8], conventional (Static)
[7], and proposed (Dynamic). Furthermore, the average
number of hops needed to retrieve content, cache hit rate,
and advertisement rate were used as evaluation indices to
discuss the effectiveness of our scheme. Note that the Hash-
routing + cluster scheme uses the k-split algorithm with the
number of hops as similarity metrics for clustering and forms
k clusters. The average number of hops focused on content
retrieval time, which was defined as the total number of hops
during the timewhen all consumers retrieved content divided
by the total number of requests for all consumers. The cache
hit rate focused on cache efficiency, which was defined as
the total number of cache hits on all CRs divided by the to-
tal number of requests for all consumers. The advertisement
rate focused on communication overhead, which was defined
as the amount of advertisement packets divided by the total
amount of traffic. In this study, we assumed the average
name length is 30 bytes, and the size of the advertisement
packet which includes the content name, the flooding limit,
and the flag bit that indicates the cache information (newly
cached/discarded), is the same as the Interest packet.

5. Simulation Results

In this section, we first show the effectiveness of our scheme
compared with the conventional schemes. Then, we inves-
tigate how each parameter including the lower/upper thresh-
olds and reclustering interval affects our scheme. Finally,
we investigate the effect of the change interval of Zipf α and
network topology to reveal the environmental tolerance and
practicality of our scheme.



YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
403

Fig. 5 Estimation of adequate thresholds.

5.1 Evaluation of Effectiveness Based on Estimation of
Adequate Thresholds

In this section, we first discuss the basis for determining
threshold values of the proposed scheme through quantitative
evaluations and estimate the effective lower/upper threshold
values, which is a key point of the proposed scheme. As
mentioned in Sect. 3.2, given an adequate cluster size, the
number of cache updates in the cluster falls into a certain
range. We believe that the adequate cluster size can be
determined in accordance with the distribution of content
popularity. Figure 5 shows the average number of hops and
cache updates in the cluster when α varies from 0.5 to 2.0.
From Fig. 5(a), we can see that the adequate cluster size is 6
when α is less than 0.9, 4 for α of 1.0–1.1, 3 for α of 1.2–1.6,
and 2 for α of 1.7 or larger, respectively, since these cluster
size achieve the smallest number of hops for each content
popularity. Correspondingly, the number of cache updates
in the cluster falls into a certain range when the adequate
cluster size is given as shown in Fig. 5(b). Specifically, it
is approximately 50 or more for the adequate cluster size of
6 (α = 0.9 or less), 90–280 for the size of 4 (α = 1.0–1.1),
50–270 for the size of 3 (α = 1.2–1.6), and 250 or less for
the size of 2 (α = 1.7 or above), respectively. From the
aforementioned results, if the number of cache updates in
the cluster is approximately 50 and more or 280 and less, the
given cluster size will be adequate. Namely, the lower/upper
threshold values can be set on the basis of the number of
cache updates.

On the basis of the aforementioned discussion, we now
show the simulation results and discuss the effectiveness
of the proposed scheme as compared with the conventional
schemes. Here, the lower/upper threshold values were set

to 50/280, the reclustering interval was set to 3 seconds,
and the initial cluster size of Hash-routing + cluster (HRC),
conventional (Static), and proposed (Dynamic) schemes was
set to 4, which was the appropriate value for an α of 1.0
at the start of the simulation. Figure 6 shows the average
number of hops, cache hit rate, and cluster size as a function
of time. From Figs. 6(a) and (b), the LCE scheme shows
the worst performance among the other schemes because it
causes duplicate caches on nearby CRs. The Hash-routing
(HR) scheme improves the performance, especially cache
efficiency, compared with the LCE scheme due to no du-
plicate cache occurrences, but the average number of hops,
i.e., delivery latency is not good because the caches are dis-
tributed widely. The Hash-routing + cluster (HRC) scheme
improves the performance compared with the HR scheme
due to controlling the cache distribution range at the cost of
a little cache efficiency. The conventional (Static) scheme us-
ing advertisement-based routing improves the performance
compared with the HRC scheme due to the avoidance of de-
tour routing caused by the false-positive problem with the
HR scheme as well as the effect of retrieving nearby caches
regardless of cluster boundaries. The proposed (Dynamic)
scheme further improves the delivery latency while main-
taining the cache hit rate compared with the conventional
(Static) scheme in almost all ranges of time because it ad-
justs the cluster size to an adequate value.

Next, let us take a look at adjusting the cluster size of
the Dynamic scheme focusing on three periods where the
content popularity changes. First, in the period of 30–90
seconds, a wider range of content becomes to be requested,
so that the cluster size is adjusted to a larger value (it is 6,
which is an adequate value when α = 0.6 (Fig. 5(a)) due to
the high frequency of cache updates as shown in Fig. 6(c).
It improves the cache hit rate as well as delivery latency,
although it takes time to distribute new caches in the clus-
ter. Second, in the period of 90–150 seconds, the requested
content becomes to be concentrated, so that the cluster size
is adjusted to a smaller value (it is 2, which is an adequate
value when α = 1.8) due to the low frequency of cache up-
dates. It improves the delivery latency, although it takes time
to discard unnecessary caches from the cluster, and comes
at the cost of a slight decrease in cache hit rate. Finally, in
the period of 150–270 seconds, similar to 30–90 seconds the
requested content becomes to be a wider range gradually, so
that the cluster size is adjusted to larger values (they are 3
and 4, which are adequate values when α = 1.4 and 1.0, re-
spectively). It improves delivery latency while maintaining
a high cache hit rate. This adjustment of cluster size is per-
formed by searching for the cluster size that keeps the number
of cache updates in the range of 50 to 280. Therefore, the
proposed scheme can adapt effectively to the environment
where content popularity changes.

5.2 Effect of Thresholds

Next, we investigate the effect of the thresholds. Figures 7(a),
(b), and (c) show the average number of hops, cache hit rate,



404
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 6 Effectiveness of our scheme.

Fig. 7 Effect of thresholds.

Fig. 8 Estimated and adequate thresholds.

and advertisement rate, respectively, when the lower/upper
thresholds vary. Here, the reclustering interval was set to
3 seconds. Figures 7(a) and (b) indicate that the upper and
lower threshold values should be set to an appropriate range
(neither too large nor too small) to reduce delivery latency
and maintain the high cache hit rate. When the upper thresh-
old value is too large, it is difficult to migrate to a larger
cluster size despite high frequent cache updates. As a result,
it worsens cache efficiency as well as delivery latency. When
the upper threshold value is too small, it is easy to migrate
to a larger cluster size despite low frequent cache updates.
As a result, it improves cache efficiency but increases deliv-
ery latency because the caches are widely distributed. The
lower threshold observes a similar trend. Consequently, the
adequate threshold values should be determined on the ba-
sis of the delivery latency and cache hit rate considering
these trade-offs. The adequate lower/upper thresholds are
70/100 in this simulation environment, which achieves the
lowest number of hops (Fig. 7(a)) and the high cache ef-
ficiency (Fig. 7(b)). Furthermore, the adequate cluster size
does not cause frequent cache updates and reduces the flood-
ing of advertisement packets for dynamic FIB updates, so the

proposed (Dynamic) scheme with adequate thresholds also
improves the advertisement rate, i.e., communication over-
head, to approximately 2% of the total amount of traffic
(Fig. 7(c)).

Here, it is noted that the estimated threshold values and
adequate ones are largely different. This indicates that it
should aggressively migrate to various sizes of clusters with
the setting of larger/smaller lower/upper threshold values to
maintain cache hit rates in the environment where the con-
tent popularity changes significantly. Figure 8 shows the
average number of hops, cache hit rate, and change of cluster
size in the conventional (Static) scheme and proposed (Dy-
namic) scheme with the estimated (50/280) and adequate
(70/100) threshold values. Figure 8(c) clearly shows that
the proposed scheme with adequate thresholds can more fre-
quently migrate closer to the appropriate cluster size than
that with estimated thresholds. Moreover, Fig. 8(a) and
(b) show that such migration quickly improves the deliv-
ery latency and cache hit rate when the content popularity
changes. Consequently, although the proposed scheme with
estimated thresholds achieves good performance, it can be
further improved by setting adequate thresholds on the basis



YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
405

Fig. 9 Effect of reclustering intervals.

Fig. 10 Effect of change intervals of Zipf α.

of the aforementioned trade-offs as well as detecting sensi-
tive changes in content popularity to quickly adjust the clus-
ter size with appropriate cache distribution. However, the
adequate threshold values may need to be adjusted dynam-
ically in accordance with network conditions (the topology,
frequency of requests, etc.), which will be tackled in future
work.

5.3 Effect of Reclustering Intervals

We investigate the effect of reclustering intervals. Figure 9
shows the average number of hops, cache hit rate, and ad-
vertisement rate when the reclustering interval varies. Here,
the lower/upper thresholds were set to 70/100 (adequate val-
ues in this environment). Figure 9(a) shows that shorter
reclustering intervals improve delivery latency except for
too-short ones. This is because the shorter intervals can
quickly migrate to the adequate cluster size and improve
cache hit rates as shown in Fig. 9(b). However, too-short
intervals inhibit migration to the adequate cluster size due
to heavy cache updates immediately after reclustering. In
addition, Fig. 9(c) shows that shorter reclustering intervals
improve the overhead. This is because unnecessary cache
updates are reduced by quickly migrating to the adequate
cluster size. Consequently, the reclustering interval should
be set to an adequately short value, which is 3 seconds in
this environment.

5.4 Effect of Change Intervals of Zipf

We investigate the effect of change intervals of Zipf α to
show the environmental tolerance. For example, when the
change intervals are set to 20 seconds, 30 seconds after the
simulation starts with Zipf α of 1.0 and a cluster size of 4,

Zipf α sequentially changes to 0.6, 1.4, 1.8, and 1.0 every
20 seconds, and these changes are repeated for 240 seconds
(until the end of simulation). Figure 10 shows the average
number of hops, cache hit rate, and advertisement rate when
the change intervals of Zipf α vary. Here, the thresholds of
lower/upper were set to 70/100, and the reclustering interval
was set to 3 seconds (adequate values in this environment).
From Fig. 10, the proposed (Dynamic) scheme always im-
proves the delivery latency, cache hit rate, and overhead com-
pared with the conventional (Static) scheme in a wide range
of change intervals. This is because the proposed scheme
can adapt cluster sizes smoothly to environments where the
content popularity changes frequently.

5.5 Effect of Network Topology

Finally, we evaluate the proposed and conventional schemes
comparatively in a practical network topology. We used the
Interoute topology of 110 nodes from the Internet Topology
Zoo [24] on the basis of comparative paper [8]. Since the
dataset shows the relationship of pop-level routers, we de-
fined each node as CR and placed producers and consumers
on each CR. Content was randomly placed on each producer.
Each consumer sent interest packets requesting content to-
ward the producer at normal distribution intervals with an
average value of 1.0 seconds. The Dynamic scheme used
the clustering algorithm described in Sect. 3.1 and its ini-
tial cluster size was set to approximately 4 (16 CRs in each
cluster). The HRC scheme formed 6 clusters by the k-split
algorithm. These settings were the appropriate value for an
α of 1.0 at the start of the simulation. The Dynamic scheme
can migrate the cluster size, which consists of 4, 9, 16, 36, or
110 CRs in each cluster, during the simulation. The reclus-
tering interval was set to 3 seconds, the flooding limit was set



406
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 11 Effect of network topology.

to 6, and the lower/upper threshold values were set to 70/130,
which were the appropriate values in this simulation. Other
simulation parameters shall conform to Table 1.

Figure 11 shows the average number of hops and cache
hit rate as a function of time. It indicates that the trend is
almost the same as the results for the grid topology shown in
Sect. 5.1, and theDynamic scheme alwaysmaintains the high
cache hit rates and reduces the average number of hops. In
addition, regarding communication overheads, the Dynamic
scheme achieves smaller advertisement rates of 4.37% than
the Static scheme of 6.07%. Therefore, the proposed scheme
is effective even in practical network topologies.

6. Conclusion

Weproposed a dynamic clustering scheme to adjust the cache
distribution range in accordance with the change in content
popularity. Our scheme adjusts the cluster size effectively
using a simple threshold-based algorithm based on the num-
ber of cache updates in the cluster. Simulation evaluations
have indicated that the proposed scheme can reduce the de-
livery latency while consistently maintaining a high cache
hit rate in a large domain environment where content pop-
ularity changes. In future work, we will investigate more
flexible clustering schemes considering content attributes in
practical topologies.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant-
in-Aid for Scientific Research (C) Number 21K11872.

References

[1] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “Popularity-aware

dynamic-clustering scheme for distributed caching in ICN,” Proc.
ACM ICN2022, pp.192–193, Sept. 2022. DOI: 10.1145/3517212.
3559482

[2] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “Performance evaluation of
popularity-aware dynamic-clustering scheme for distributed caching
in ICN,” Proc. APSIPA ASC2022, pp.185–190, Nov. 2022.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” Commun. ACM, vol.55,
no.1, pp.117–124, Jan. 2012. DOI: 10.1145/2063176.2063204

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K.C. Claffy,
P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang, “Named data
networking,” ACM SIGCOMM Comput. Commun. Rev., vol.44,
no.3, pp.66–73, July 2014. DOI: 10.1145/2656877.2656887

[5] S. Arshad,M.A.Azam,M.H.Rehmani, and J. Loo, “Recent advances
in information-centric networking-based internet of things (ICN-
IoT),” IEEE Internet Things J., vol.6, no.2, pp.2128–2158, April
2019. DOI: 10.1109/JIOT.2018.2873343

[6] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and S.
Al-Ahmadi, “Named data networking: A promising architecture for
the internet of things (IoT),” International Journal on Semantic Web
and Information Systems, vol.14, no.2, pp.86–112, April 2018. DOI:
10.4018/IJSWIS.2018040105

[7] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “A cluster-based cache
distribution scheme in content-centric-networking,” Proc. ACM
ICN2018, pp.196–197, Sept. 2018. DOI: 10.1145/3267955.3269012

[8] V. Sourlas, I. Psaras, L. Saino, and G. Pavlou, “Efficient hash-routing
and domain clustering techniques for information-centric networks,”
Elsevier Computer Networks, vol.103, pp. 67–83, July 2016. DOI:
10.1016/j.comnet.2016.04.001

[9] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnec-
tion of LRU caches and its analysis,” Elsevier Performance Eval-
uation, vol.63, no.7, pp.609–634, July 2006. DOI: 10.1016/j.peva.
2005.05.003

[10] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hi-
erarchical web caches,” Proc. IEEE IPCCC2004, pp.445–452, April
2004. DOI: 10.1109/PCCC.2004.1395054

[11] K. Cho, M. Lee, K. Park, T.T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” Proc. IEEE INFOCOM2012 Workshops,
pp.316–321, May 2012. DOI: 10.1109/INFCOMW.2012.6193512

[12] T. Mick, R. Tourani, and S. Misra, “MuNCC: Multi-hop neighbor-
hood collaborative caching in information centric networks,” Proc.
ACM ICN2016, pp.93–101, Sept. 2016. DOI: 10.1145/2984356.
2984375

[13] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for infor-
mation centric networking,” Proc. ACM ICN2013, pp.27–32, Aug.
2013. DOI: 10.1145/2491224.2491232

[14] J.H. Mun and H. Lim, “Cache sharing using Bloom filters in named
data networking,” Journal of Network and Computer Applications,
vol.90, pp.74–82, July 2017. DOI: 10.1016/j.jnca.2017.04.011

[15] C. Li and K. Okamura, “Cluster-based in-networking caching for
content-centric networking,” International Journal of Computer Sci-
ence and Network Security, vol.14, no.11, pp.1–9, 2014. http://
paper.ijcsns.org/07_book/201411/20141101.pdf

[16] B. Alahmri, S. Al-Ahmadi, and A. Belghith, “Efficient pooling and
collaborative cache management for NDN/IoT networks,” IEEE Ac-
cess, vol.9, pp.43228–43240, March 2021. DOI: 10.1109/ACCESS.
2021.3066133

[17] H. Yan, D. Gao, W. Su, C.H. Foh, H. Zhang, and A.V. Vasilakos,
“Caching strategy based on hierarchical cluster for named data net-
working,” IEEE Access, vol.5, pp.8433–8443, March 2017. DOI:
10.1109/ACCESS.2017.2694045

[18] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal locality in today’s content caching: Why it
matters and how to model it,” SIGCOMM Comput. Commun. Rev.,
vol.43, no.5, pp.5–12, Oct. 2013. DOI: 10.1145/2541468.2541470

[19] W. Wong, L. Wang, and J. Kangasharju, “Neighborhood search

http://dx.doi.org/10.1145/3517212.3559482
http://dx.doi.org/10.1145/3517212.3559482
http://dx.doi.org/10.1145/3517212.3559482
http://dx.doi.org/10.1145/3517212.3559482
http://dx.doi.org/10.23919/apsipaasc55919.2022.9979928
http://dx.doi.org/10.23919/apsipaasc55919.2022.9979928
http://dx.doi.org/10.23919/apsipaasc55919.2022.9979928
http://dx.doi.org/10.1145/2063176.2063204
http://dx.doi.org/10.1145/2063176.2063204
http://dx.doi.org/10.1145/2063176.2063204
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1109/jiot.2018.2873343
http://dx.doi.org/10.1109/jiot.2018.2873343
http://dx.doi.org/10.1109/jiot.2018.2873343
http://dx.doi.org/10.1109/jiot.2018.2873343
http://dx.doi.org/10.4018/ijswis.2018040105
http://dx.doi.org/10.4018/ijswis.2018040105
http://dx.doi.org/10.4018/ijswis.2018040105
http://dx.doi.org/10.4018/ijswis.2018040105
http://dx.doi.org/10.4018/ijswis.2018040105
http://dx.doi.org/10.1145/3267955.3269012
http://dx.doi.org/10.1145/3267955.3269012
http://dx.doi.org/10.1145/3267955.3269012
http://dx.doi.org/10.1016/j.comnet.2016.04.001
http://dx.doi.org/10.1016/j.comnet.2016.04.001
http://dx.doi.org/10.1016/j.comnet.2016.04.001
http://dx.doi.org/10.1016/j.comnet.2016.04.001
http://dx.doi.org/10.1016/j.peva.2005.05.003
http://dx.doi.org/10.1016/j.peva.2005.05.003
http://dx.doi.org/10.1016/j.peva.2005.05.003
http://dx.doi.org/10.1016/j.peva.2005.05.003
http://dx.doi.org/10.1109/pccc.2004.1395054
http://dx.doi.org/10.1109/pccc.2004.1395054
http://dx.doi.org/10.1109/pccc.2004.1395054
http://dx.doi.org/10.1109/infcomw.2012.6193512
http://dx.doi.org/10.1109/infcomw.2012.6193512
http://dx.doi.org/10.1109/infcomw.2012.6193512
http://dx.doi.org/10.1109/infcomw.2012.6193512
http://dx.doi.org/10.1145/2984356.2984375
http://dx.doi.org/10.1145/2984356.2984375
http://dx.doi.org/10.1145/2984356.2984375
http://dx.doi.org/10.1145/2984356.2984375
http://dx.doi.org/10.1145/2491224.2491232
http://dx.doi.org/10.1145/2491224.2491232
http://dx.doi.org/10.1145/2491224.2491232
http://dx.doi.org/10.1016/j.jnca.2017.04.011
http://dx.doi.org/10.1016/j.jnca.2017.04.011
http://dx.doi.org/10.1016/j.jnca.2017.04.011
http://paper.ijcsns.org/07_book/201411/20141101.pdf
http://paper.ijcsns.org/07_book/201411/20141101.pdf
http://paper.ijcsns.org/07_book/201411/20141101.pdf
http://paper.ijcsns.org/07_book/201411/20141101.pdf
http://dx.doi.org/10.1109/access.2021.3066133
http://dx.doi.org/10.1109/access.2021.3066133
http://dx.doi.org/10.1109/access.2021.3066133
http://dx.doi.org/10.1109/access.2021.3066133
http://dx.doi.org/10.1109/ACCESS.2017.2694045
http://dx.doi.org/10.1109/ACCESS.2017.2694045
http://dx.doi.org/10.1109/ACCESS.2017.2694045
http://dx.doi.org/10.1109/ACCESS.2017.2694045
http://dx.doi.org/10.1145/2541468.2541470
http://dx.doi.org/10.1145/2541468.2541470
http://dx.doi.org/10.1145/2541468.2541470
http://dx.doi.org/10.1145/2541468.2541470
http://dx.doi.org/10.1109/GLOCOM.2012.6503549


YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
407

and admission control in cooperative caching networks,” Proc.
IEEE GLOBECOM2012, pp.2852–2858, Dec. 2012. DOI: 10.1109/
GLOCOM.2012.6503549

[20] S. Nayak, R. Patgiri, and A. Borah, “A survey on the roles of Bloom
filter in implementation of the named data networking,” Elsevier
Computer Networks, vol.196, art. no.108232, Sept. 2021. DOI: 10.
1016/j.comnet.2021.108232

[21] G.F. Riley and T.R. Henderson, “The ns-3 network simulator,” Mod-
eling and Tools for Network Simulation, K. Wehrle, M. Güneş, and
J. Gross, eds., pp.15–34, Springer, Berlin, Heidelberg, 2010. DOI:
10.1007/978-3-642-12331-3_2

[22] A. Ioannou and S.Weber, “A survey of caching policies and forward-
ingmechanisms in information-centric networking,” IEEECommun.
Surveys Tuts., vol.18, no.4, pp.2847–2886,May 2016. DOI: 10.1109/
COMST.2016.2565541

[23] M. Hefeeda and O. Saleh, “Traffic modeling and proportional par-
tial caching for peer-to-peer systems,” IEEE/ACM Trans. Netw.,
vol.16, no.6, pp.1447–1460,March 2008.DOI: 10.1109/TNET.2008.
918081

[24] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE J. Sel. Areas Commun., vol.29,
no.9, pp.1765–1775, Oct. 2011. DOI: 10.1109/JSAC.2011.111002

Mikiya Yoshida received the B.E. degree in
Information Science and Electrical Engineering
from the Kyushu Sangyo University, Japan, in
2017, and his M.E. degree in Information En-
gineering from the University of Kitakyushu,
Japan, in 2019. He is now a doctoral student
at the University of Kitakyushu, Japan. His re-
search interests include network architecture and
information-centric networking.

Yusuke Ito received theB.E., M.E., andD.E.
degrees in Information and Media Engineering
from the University of Kitakyushu, Japan in
2014, 2016, and 2019, respectively. From 2019
to 2022, he was an Assistant Professor at the
Tokyo University of Science. Currently, he is a
Lecturer in the Department of Information Sys-
tems Engineering, Faculty of Environmental En-
gineering, The University of Kitakyushu, Japan.
His research interests include network architec-
ture and edge cloud computing.

Yurino Sato received the B.E., M.E., and
D.E. degrees in Information and Media En-
gineering from the University of Kitakyushu,
Japan in 2012, 2014, and 2019, respectively. She
has been an assistant professor since April 2018
in the Department of Control Engineering, Na-
tional Institute of Technology (KOSEN), Sasebo
College, Japan. Her research interests include
network architecture, transport protocol, and for-
ward error correction.

Hiroyuki Koga received the B.E., M.E.,
and D.E. degrees in Computer Science and Elec-
tronics from the Kyushu Institute of Technology,
Japan in 1998, 2000, and 2003, respectively.
From 2003 to 2004, he was a postdoctoral re-
searcher in the Graduate School of Information
Science, Nara Institute of Science and Technol-
ogy. From 2004 to 2006, he was a researcher
in the Kitakyushu JGN2 Research Center, Na-
tional Institute of Information and Communica-
tions Technology. From 2006 to 2009, he was an

assistant professor in the Department of Information and Media Engineer-
ing, Faculty of Environmental Engineering, The University of Kitakyushu,
and has been an associate professor in the same department since April
2009. His research interests include performance evaluation of computer
networks, mobile networks, and communication protocols.

http://dx.doi.org/10.1109/GLOCOM.2012.6503549
http://dx.doi.org/10.1109/GLOCOM.2012.6503549
http://dx.doi.org/10.1109/GLOCOM.2012.6503549
http://dx.doi.org/10.1109/GLOCOM.2012.6503549
http://dx.doi.org/10.1016/j.comnet.2021.108232
http://dx.doi.org/10.1016/j.comnet.2021.108232
http://dx.doi.org/10.1016/j.comnet.2021.108232
http://dx.doi.org/10.1016/j.comnet.2021.108232
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1109/comst.2016.2565541
http://dx.doi.org/10.1109/comst.2016.2565541
http://dx.doi.org/10.1109/comst.2016.2565541
http://dx.doi.org/10.1109/comst.2016.2565541
http://dx.doi.org/10.1109/tnet.2008.918081
http://dx.doi.org/10.1109/tnet.2008.918081
http://dx.doi.org/10.1109/tnet.2008.918081
http://dx.doi.org/10.1109/tnet.2008.918081
http://dx.doi.org/10.1109/jsac.2011.111002
http://dx.doi.org/10.1109/jsac.2011.111002
http://dx.doi.org/10.1109/jsac.2011.111002

