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PAPER
UAV-BS Operation Plan Using Reinforcement Learning for Unified
Communication and Positioning in GPS-Denied Environment

Gebreselassie HAILE† and Jaesung LIM††a), Nonmembers

SUMMARY An unmanned aerial vehicle (UAV) can be used for wire-
less communication and localization, among many other things. When ter-
restrial networks are either damaged or non-existent, and the area is GPS-
denied, the UAV can be quickly deployed to provide communication and
localization services to ground terminals in a specific target area. In this
study, we propose an UAV operation model for unified communication and
localization using reinforcement learning (UCL-RL) in a suburban envi-
ronment which has no cellular communication and GPS connectivity. First,
the UAV flies to the target area, moves in a circular fashion with a constant
turning radius and sends navigation signals from different positions to the
ground terminals. This provides a dynamic environment that includes the
turning radius, the navigation signal transmission points, and the height of
the unmanned aerial vehicle as well as the location of the ground terminals.
The proposed model applies a reinforcement learning algorithm where the
UAV continuously interacts with the environment and learns the optimal
height that provides the best communication and localization services to
the ground terminals. To evaluate the terminal position accuracy, position
dilution of precision (PDOP) is measured, whereas the maximum allowable
path loss (MAPL) is measured to evaluate the communication service. The
simulation result shows that the proposed model improves the localization
of the ground terminals while guaranteeing the communication service.
key words: unmanned aerial vehicle, communication, localization, rein-
forcement learning, PDOP

1. Introduction

An unmanned aerial vehicle (UAV), also known as a drone,
or an airborne relay, is an aircraft controlled by a computer
system through a radio communication link. UAVs have
become the center of research in the industry because of
their paramount importance for military and civilian appli-
cations. In the civilian application, UAVs are highly de-
manded for public safety and rescue operations when nat-
ural and/or man-made disasters occur. In such cases, UAVs
can be quickly deployed to serve as base station in the sky
(UAV-BS) and provide communication as well as localiza-
tion services [1], [2].

UAV has size, weight, and power (SWaP) limitations.
Therefore, it is crucial to optimize the transmission power
and bandwidth of UAV-BS communications. Various re-
search issues and challenges regarding efficient UAV opera-
tion in wireless networks were introduced in [3], [4].

Manuscript received November 2, 2023.
Manuscript revised March 9, 2024.
Manuscript publicized May 6, 2024.
†Dept. of AI Convergence Network, Ajou University, Suwon,

South Korea.
††Dept. of Military Digital Convergence, Ajou University, Su-

won, South Korea.
a) E-mail: jaslim@ajou.ac.kr (Corresponding author)

DOI: 10.23919/transcom.2023EBP3174

The use of UAV-BS for communication service has
been studied in [5]–[10]. In [5], the authors proposed an
analytical approach to optimize the altitude of low area plat-
forms (LAPs) which can deliver essential wireless commu-
nication for public safety agencies in remote areas or dur-
ing the aftermath of natural disasters. The main goal of
this research work is to provide maximum radio coverage
on the ground. In [6], the authors proposed an energy ef-
ficient placement of a drone base station for minimum re-
quired transmit power. They formulated the problem in a
way such that it minimizes the average transmit power of the
UAV-BS that serves a set of ground users. The authors in [7]
proposed 3-D placement of a directional-antenna equipped
UAV-BS aiming to maximize the number of flying/hovering
UAV-UEs under its coverage area.

In [8], the authors applied deep reinforcement learn-
ing to make drones behave autonomously inside a suburban
neighborhood which has plenty of obstacles such as trees,
cables, parked cars, houses, and other moving drones. The
UAV learns about the environment to avoid these stationary
and moving obstacles as it navigates through the neighbor-
hood showing how it can be used to provide communication
services safely. The authors in [9] proposed a Q-learning
based UAV deployment algorithm in which the UAV makes
its own decision for attaining an optimal 3-D position by
learning from trial and mistake for maximizing the sum
mean opinion score of ground users. In [10], the authors
studied how to maximize the overall data rate through an in-
telligent deployment of an UAV-BS in the downlink of a cel-
lular system. They apply a reinforcement learning algorithm
to avoid collision between multiple UAVs and optimize the
UAV-BS positions that provide maximum sum data rate of
multiple user equipment.

The use of UAV-BS for localization service in non-GPS
environments has been studied in [11]–[15]. In [11], the au-
thors proposed the use of a single UAV to localize terminals
in battlefield environments as the use of global navigation
satellite system (GNSS) such as GPS is prone to jamming
and has weak signal reception capability. They analyzed
the localization service by varying the number of received
navigation signals, and the velocity of the UAV. In [12],
the authors proposed a Doppler shift-based user position
detection system using UAV. They measured the statistical
and quantitative performance of the positioning errors of a
single ground user as the UAV moves in sinusoidal curve.
The ground user sends continuous signal with a fixed fre-
quency, the UAV receives it, and relays it to the terrestrial
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control station where the position computation takes place.
In [13], the authors proposed the use of multiple UAV-BSs
and additional ground references to locate a ground user.
In [14], the authors proposed UAV-assisted localization of
wireless devices that are in network outage and have run
out of power. To localize the inactive devices, the authors
used wireless power transfer (WPT) based wireless charg-
ing in which a small amount of power is transferred by the
UAV to enable the target device to broadcast a beacon. The
beacon from the devices contains the information about the
neighboring nodes and their signal strength. The paper in
[15] proposed the use of UAV-BSs for localization of a con-
nected autonomous vehicle (CAV). They applied reinforce-
ment learning algorithm to find the best spatial configuration
of the UAV-BSs to localize the CAV in an unknown environ-
ment.

In all the above research works, the focus of the au-
thors is either on the use of the UAV-BS for communication
or localization. In this study, we propose a reinforcement
learning based UAV-BS deployment scheme to provide both
communication and localization services to terminals in a
suburban environment without cellular communication and
GPS connectivity. To do so, the UAV-BS is first deployed
within the defined minimum and maximum heights. Then,
the maximum allowable path loss (MAPL) of the edge ter-
minal is computed using the air to ground (ATG) path loss
model to analyze the communication service. For the local-
ization service, the UAV-BS periodically sends navigation
signals to the ground terminals. Then, each ground terminal
calculates its own position using the time difference of ar-
rival (TDOA) algorithm. We assume that a single UAV-BS
moves in a circular fashion and sends navigation signals at
N navigation signal transmission points (NSTP) which de-
fine the UAV positions. The NSTPs of the UAV-BS serve
as reference (anchor) signals. The UAV-BS to terminal ge-
ometry impacts the position accuracy of the terminals. The
metric that is normally used for measuring the terminal posi-
tion accuracy is known as dilution of precision (DOP) which
represents the degree to which the UAV-BS to terminal ge-
ometry dilutes the position accuracy of the terminals [16].

The main contributions of this work are:

- Defined localization and communication models using
a single UAV-BS in a GPS and cellular communication
denied suburban environment.

- Defined an optimization problem that integrates both
the localization and communication services.

- Proposed a reinforcement learning based model to
solve the optimization problem.

The rest of the paper is organized as follows. Sec-
tion 2 provides the proposed system model. From the sys-
tem model, the proposed unified positioning and communi-
cation schemes are described in detail. Section 3 presents
the reinforcement learning based approach. Section 4 pro-
vides the simulation results, and finally, the conclusion and
future work are provided in Sect. 5.

Fig. 1 Proposed system model.

2. System Model

Figure 1 shows the proposed system model. The UAV-BS is
deployed to the target area where it moves in a circular route
to provide the localization and communication services to
the terminals. It’s assumed that the UAV-BS is equipped
with its own navigation equipment that provides accurate
location information at any navigation signal transmission
point, NSTP 1 to NSTP N as shown in Fig. 1. Also, it is as-
sumed that the UAV platform consists of fixed-wing aircraft
which can turn during flight in the sky and send downlink
navigation signals to the terminals periodically. The termi-
nals are assumed to be static (no mobility). Each naviga-
tion signal transmission point can provide different coverage
area ranges as the UAV-BS moves in a circular path in the
air. In this research work, however, we considered a fixed
target area where the terminals are located. Only the edge
terminal is located at the edge of the target area. Hence, the
target area coverage and the location of the edge terminal
are fixed as shown in Fig. 1.

2.1 Positioning Scheme

Let tn be the time when the UAV-BS transmits a navigation
signal from the n-th NSTP and, τn be the time when a ground
terminal receives it.

The pseudo-range between the n-th UAV-BS NSTP and
the k-th ground terminal is computed as

ρn
k = c × (τn − tn) + εn (1)

where k = {1, 2, . . . ,K} is a ground terminal index, n =

{1, 2, . . . ,N} is a UAV-BS navigation signal transmission
point index, c is the speed of light and εn denotes the error
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that occurs during navigation signal transmission.
For any k-th ground terminal, the pseudorange differ-

ence between the n-th and the first UAV-BS navigation sig-
nal transmission points becomes:

ρn
k − ρ

1
k = c × ((τn − τ1) − (tn − t1)) (2)

where ρ1
k = c×(τ1 − t1)+ε1 is the pseudo-range between the

first UAV-BS navigation signal transmission point, n = 1,
and the k-th ground terminal. The errors ε1 = ε2 = . . . = εn
are similar for the same environment, the suburban environ-
ment in our case. So, in the pseudo-range difference com-
putations, these values cancel each other out.

In the 3-D Euclidean space orthogonal coordinate sys-
tem, the pseudo-ranges ρ1

k and ρn
k are computed as follows:

ρ1
k =

∣∣∣∣∣∣R1 − Rk

∣∣∣∣∣∣ (3)

ρ1
k =

√
(x1 − xk)2 + (y1 − yk)2 + (z1 − zk)2

ρn
k = ||Rn − Rk || (4)

ρn
k =

√
(xn − xk)2 + (yn − yk)2 + (zn − zk)2

where ‖·‖ represents the Euclidean norm vector, Rn is the po-
sition vector of the UAV-BS at tn, and Rk is the position vec-
tor of the k-th terminal. Here, the UAV-BS location (xn, yn,
zn) is known at each navigation signal transmission time, tn,
whereas the position of the k-th terminal, Rk = (xk, yk, zk), is
unknown.

From Eq. (2), Eq. (3), and Eq. (4), the position of the
k-th terminal, Rk, can be determined using the TDOA al-
gorithm and the non-linear least squares method in the
Levenberg-Marquardt algorithm [13].

From the pseudorange equation provided in Eq. (2),
let’s define matrices H and Z as follows:

H =


ρ2

k − ρ1
k

ρ3
k − ρ1

k
...

...
...

ρN
k − ρ1

k

 (5)

Z =



−
x1 − xk

ρ1
k

−
y1 − yk

ρ1
k

−
z1 − zk

ρ1
k

−
x2 − xk

ρ2
k

−
y2 − yk

ρ2
k

−
z2 − zk

ρ2
k

...
...

...

−
xN − xk

ρN
k

−
yN − yk

ρN
k

−
zN − zk

ρN
k


(6)

where matrix H is a column vector which consists of the
pseudo-range differences between the first and the remain-
ing (N − 1) UAV-BS positions for the k-th terminal, and ma-
trix Z is a set of unit vectors of the N UAV-BS positions for
the k-th terminal.

From Eq. (5) and Eq. (6), the terminal position is com-
puted as:

Rk =
1
2

(HT H)−1HT Z (7)

where Rk refers to the position of the k-th terminal, HT is the
transpose of matrix H, and (HT H)−1 indicates the inverse of
the matrix (HT H). At least four UAV-BS positions (N ≥ 4)
are required to calculate the positions of each terminal, Rk =

(xk, yk, zk), using Eq. (7).
Position DOP (PDOP) is a metric used to measure the

accuracy of terminal positioning in global navigation sys-
tems, particularly in the context of global positioning sys-
tems (GPS) and other airborne-relay based navigation sys-
tems. It is the uncertainty of 3-D parameters (latitude, longi-
tude, and height) and depends on the geometric arrangement
of the navigation signal transmission points and the altitude
of UAV-BS from perspective of the ground terminals. To
compute the PDOP, let’s define the geometric matrix, G:

G =



−
x1 − xk

ρ1
k

−
y1 − yk

ρ1
k

−
z1 − zk

ρ1
k

1

−
x2 − xk

ρ2
k

−
y2 − yk

ρ2
k

−
z2 − zk

ρ2
k

1

...
...

...
...

−
xN − xk

ρN
k

−
yN − yk

ρN
k

−
zN − zk

ρN
k

1


(8)

From the geometric matrix in Eq. (8), we define the co-
variance matrix Q = (GTG)−1 which is a 4 × 4 matrix.

Q =


Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

 (9)

Then, the PDOP of each terminal is extracted from the co-
variance matrix, Q, as follows:

PDOPk =
√

Q11 + Q22 + Q33 (10)

PDOP is a dimensionless number. A lower PDOP value in-
dicates a more favorable geometric configuration, leading to
higher position accuracy, while a higher PDOP value sug-
gests less favorable geometry and potentially reduced accu-
racy.

Another metric used to evaluate the terminal position
accuracy is root mean square error (RMSE). RMSE is the
measure of the root of the mean of the squared errors be-
tween the predicted and true/actual terminal position values.

RMSE =

√√√√√√√√ K∑
k=1

(
(xk − xˆk)2 +

(
yk − yˆk

)2
+ (zk − zˆk)2

)
K

(11)

where (xk, yk, zk) is the true position and (xˆk, yˆk, zˆk) is the
estimated position of the k-th terminal.
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2.2 Communication Scheme

From the system model provided in Fig. 1, the ATG model
is used to evaluate the communication service of the termi-
nals located in the target area. From the ATG model [17],
the average path loss between the UAV-BS and the ground
terminal is computed as:

PL = PLLoS × p(LoS, θ) + PLNLoS × p(NLoS, θ) (12)

where PLLoS is the line-of-sight (LOS) path loss, p(LoS, θ)
is the LOS probability at elevation angle θ, PLNLoS is the
non-line-of-sight (NLOS) path loss, and p(NLoS, θ) is the
NLOS probability at elevation angle θ.

Now, let’s see how each of the parameters in the aver-
age path loss equation provided in Eq. (12) are computed.
The elevation angle is defined by θ = arctan

(
h
r

)
where h is

the UAV height, and r is the horizontal distance between the
center of the coverage area and the ground terminal.

The LOS and NLOS path loss parameters are given by:

PLLoS = FSPL + ηLoS (13)
PLNLoS = FSPL + ηNLoS (14)

where ηLoS and ηNLoS are the LOS and NLOS excessive path
losses respectively. Their values are given in Table 1.

The free space path loss, FSPL, is given by:

FSPL = 20 × log10

(
4 × π × f × d

c

)
(15)

where f is the operating frequency, d =
√

h2 + r2 is the
distance between the UAV-BS and the ground terminal, and
c is the speed of light.

The LOS probability is given by:

p(LoS, θ) =
1

1 + α × exp(−β × (θ − α))
(16)

where α and β are environmental constants, whose values
are shown in Table 1.

Equation (16) shows that the probability of having a
line-of-sight connection between the UAV-BS and a ground
terminal increases as the elevation angle increases. This de-
creases the mean path loss because the shadowing effect,
which is the attenuation of the signal due to obstacles, de-
creases as the elevation angle increases. On the other hand,
as the elevation angle increases, the distance between the
UAV-BS and the ground terminal also increases which re-
sults in higher path loss. The NLOS probability at the given
θ becomes:

p(NLoS, θ) = 1 − p(LoS, θ) (17)

Now, we have all the parameters to compute the aver-
age path loss value, PL, at each terminal using Eq. (12).

The minimum received power at each ground terminal
depends on the transmitted power of the UAV-BS, and the

Table 1 Environment constants [1], [18].

maximum path loss. In [18], the authors proposed a path
loss and height optimization (PLaHO) model where they de-
fined the maximum path loss for a given UAV height as fol-
lows:

h = exp (a0 (PLmax − u) − a1) (18)

where a0 and a1 are environmental constants, whose values
are given in Table 1, and u = 20 × log10

(
f × 10−9

)
where f

is the operating frequency.
According to Eq. (18), the maximum path loss for an

UAV-BS placed at 1400 m in a suburban environment is
110.4 dB. So, the maximum path loss value of 110.4 dB
would be used as the threshold path loss in this study.

2.3 Communication and Localization

By combining the communication and localization schemes,
we define the following optimization problem.

min. PDOPave
s.t. PL ≤ PLmax
hmin ≤ h ≤ hmax

(19)

where PDOPave is the average PDOP for the terminals in the
target area, PL is the path loss of a terminal, and h is the
UAV-BS height.

We are going to apply a reinforcement learning algo-
rithm to solve Eq. (19) which will be described in the next
sections in detail.

3. Communication and Localization Using RL

Reinforcement learning enables an agent to learn by contin-
uously interacting with the eenvironment by trial and error
using feedback from its own actions and experiences. In RL,
the agent is not programmed what actions to take; instead, it
learns the consequence of its actions. At each time step, the
agent receives a state st from the state space and selects an
action at from the set of possible actions in the action space.
As a result of the action it takes, the agent gets a numer-
ical reward rt+1 one time step later from the environment,
and it finds itself in a new state st+1 [19]. Figure 2 shows
the agent-environment interaction in reinforcement learning
algorithm.

Q-learning is a model-free RL algorithm which learns
the value of an action in a particular state. Q-learning al-
gorithms carry out an action multiple times and adjust the
policy for optimal rewards based on the outcomes of the
actions. Epsilon-Greedy action selection policy is applied
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Fig. 2 Agent-Environment interaction in RL.

in the Q-learning algorithm where epsilon is a probability
value that balances the exploration and exploitation of the
action by the agent. Epsilon helps the agent to exploit the
action with small probability of exploring.

In this paper, Q-learning algorithm is applied to solve
the problem defined in Eq. (19). The goal is to apply Q-
learning algorithm to acquire the minimum PDOPave value
under the path loss and height constraints for unified com-
munication and localization services using UAV-BS. For any
Q-learning algorithm, the environment, agent, state, action,
and reward should be defined. In this paper, these parame-
ters are defined as follows:

Environment – An environment represents the system an
agent interacts with. In this paper, the environment is a GPS
and cellular communication denied suburban environment.

Agent – An agent is the entity that interacts with the envi-
ronment to achieve a specific task. In this paper, the agent
is the UAV-BS. So, UAV-BS and agent can be used inter-
changeably.

State space – The UAV-BS height (altitude) forms the state
space in our model. Originally, the state space is continuous
as the UAV-BS can take any value as it moves within the de-
fined minimum height, hmin and the maximum height, hmax.
This continuous UAV-BS height is then discretized to give
an integer number of states. By defining ∆h as the change of
height after each action, the total number of states is com-
puted as:

Nstates =

⌊
(hmax − hmin)

∆h
+ 1

⌋
(20)

where the floor function bxc takes a real number x and gives
the greatest integer less than or equal to x as an output.

In this paper, hmin and hmax are 400 m and 1400 m
respectively, and ∆h is 100 m. Applying these values to
Eq. (20) provides Nstates = 11 discrete number of states
which define the state space. Figure 3 shows how each ac-
tion the agent takes changes the state-space.

Action space: An action indicates what the agent (UAV-BS)
does from the current state. An action space indicates the
possible set of actions that the agent can take in the agent-
environment interaction. In this paper, we have defined three
types of actions the UAV-BS can take from the current state:
An Upward Action, a Downward Action, and a Static Ac-
tion, as illustrated in Fig. 3. Assuming that the current state
of the agent is h, depending on the epsilon greedy policy,

Fig. 3 Action space of the agent, UAV-BS.

the agent takes one of the three possible actions. An Upward
Action takes the agent to the (h+∆h) state, a Downward Ac-
tion takes it to the (h − ∆h) state, and a Static Action causes
the agent to remain int its current state at h.

Policy: Policy indicates how an agent chooses its actions.
In Q-learning, an epsilon greedy strategy decides whether
the agent should explore or exploit while interacting with
the environment. The agent initially starts out by choosing a
random action (exploration). As the episode progresses, the
epsilon value provides a balance between exploration and
exploitation. In exploitation, the agent chooses its action
based on the highest Q-value from the Q-table for the given
state.

Reward – A reward is a scalar value received after each ac-
tion for transition to the new state. The average PDOP value
is used as a reward in this paper. It measures the position
accuracy of the terminals in the target area. The UAV-BS
sends the navigation signals from the N UAV-BS positions
of the current state, and each terminal computes the PDOP
value as given in Eq. (10). When the number of terminals in
the target area is more than one (K > 1), an average PDOP
is used as the reward. The average PDOP is defined by:

PDOPave =

K∑
k=1

PDOPk

K
(21)

The PDOPave decides the reward in the Q-learning algo-
rithm. Low average PDOP shows good terminal position
accuracy, and large average PDOP shows bad terminal posi-
tion accuracy.

The Q-learning algorithm uses a Q-table which con-
tains the state and action pair known as Q-values. At each
state, the agent computes the numerical reward rt+1, based
on the average PDOP as follows:



686
IEICE TRANS. COMMUN., VOL.E107–B, NO.10 OCTOBER 2024

rt+1 =


−1, if PDOPave (st+1) > PDOPave (st)
0, if PDOPave (st+1) = PDOPave (st)

+1, if PDOPave (st+1) < PDOPave (st)
(22)

where PDOPave(st+1) is the average PDOP at the next state,
and PDOPave(st) is the average PDOP at the current state.

Depending on the PDOPave, the UAV-BS decides rt+1 as
shown in Eq. (22). If the average PDOP at the next state is
greater than the average PDOP at the current state, the agent
gets a negative reward. If the average PDOP at the next
state is lower than the average PDOP at the current state, the
agent receives a positive reward. If there is no change in the
average PDOP values, the agent gets zero reward. The agent
updates its Q-table and takes one of the 3 actions based on
the epsilon greedy policy to move to the next state as shown
in Fig. 3.

UAV-BS Q-table update – the UAV-BS has an action-value
matrix which represents the value of being in a specific state
st, while taking an action at. The UAV-BS updates the Q-
value of the current state, Qn (st, at), through the Q-learning
function defined by:

Qn (st, at) = Qo (st, at) +

µ ×

(
rt+1 + γ ×max

a
Q (st+1, a) − Qo (st, at)

)
which can be simplified to:

Qn (st, at) = (1 − µ) × Qo (st, at) +

µ ×

(
rt+1 + γ ×max

a
Q (st+1, a)

)
(23)

where Qn (st, at) is the new Q-value of the current state,
Qo (st, at) is the old Q-value of the current state, µ is the
learning rate, rt+1 is the reward defined in Eq. (22), γ is the
discount factor, and maxa Q (st+1, a) is the action that maxi-
mizes the Q-value of the next state. µ determines how much
the agent adjusts its estimates based on new information ob-
tained from the interactions with the environment. It’s a
value between 0 and 1. γ is a parameter that controls the
importance of future rewards in the agent’s decision-making
process. It’s a value between 0 and 1 and represents the ex-
tent to which the agent values future rewards compared to
immediate rewards.

Stopping criteria: Initially, the UAV-BS is randomly lo-
cated in one of the discrete states which correspond to the
UAV-BS heights. Then, the interaction between the agent
and the environment proceeds in sequences of steps until
a stopping criterion is met. Stopping criteria decide when
the agent should stop interacting with the environment. One
way to define the stopping criteria is to let the agent continue
until all the available states are visited. This is done to give
the agent enough opportunity to interact with the environ-
ment and learn about it through exploitation and exploration
following the e-greedy policy. Another way to outline the
stopping criteria is to specify the number of steps in each
episode. In this paper, we have defined the stopping criteria
based on the number of steps. The agent runs for 200 steps

and then stops. This is decided based on a repeated simu-
lation observation where the reward does not improve when
the number of steps exceeds 200.

DQN versus Q-learning: Deep Q-learning network (DQN)
has become widespread in many of the RL-based research
works recently. In this paper, however, Q-learning has been
selected because the number of state and action spaces,
(states = 11, and actions = 3), is very small and memory is
not a problem. When the state and action spaces are large,
using the Q-table is impractical because of memory limi-
tations which affect the performance. In that case, DQN
should be used as it addresses the memory limitation of
Q-learning through Replay Memory technique where only
limited number of state-action pairs are used instead of the
whole state-action pairs.

4. Simulation Results

MATLAB is used to simulate the proposed UCL-RL model.
We have developed a customized suburban environment that
contains randomly generated terminals within a defined cov-
erage area. The agent (UAV-BS) continuously interacts with
the environment and learns about it using the reinforcement
algorithm.

To the best of our knowledge, this is the first work that
proposed the use of UAV for unified communication and lo-
calization services using reinforcement learning. To eval-
uate the performance of the proposed UCL-RL model, we
have used two models for comparison. The first model is
proposed in [11] which analyzed the use of single and dual
UAV to localize terminals in battlefield environments. Since
we are using one UAV-BS in this study, we have selected
the single UAV-based localization (SUL) model of [11] for
comparison. In the SUL model, the UAV-BS is placed at
the middle of the UAV-BS height ranges which is 0.9 Km
which is the average of the minimum (400 m) and maximum
(1400 m) UAV-BS altitudes. The PDOP, RMSE, and PL
metrics are then measured from this fixed altitude. As a sec-
ond model, we have defined a Basic model where the UAV-
BS is randomly placed within the minimum and maximum
UAV-BS heights throughout all the simulation episodes. In
the Basic model, the PDOP, RMSE, and PL metrics are com-
puted from the random position the UAV-BS takes at each
episode. For the proposed UCL-RL model, however, the
UAV-BS learns the optimal UAV-BS height using the rein-
forcement learning algorithm through a continuous interac-
tion with the environment.

Table 2 shows the simulation parameters. The simula-
tion scenario consists of a 2.8284 km radius target area as
shown in Fig. 4. Figure 4 illustrates one instance of the sim-
ulation scenario where the UAV-BS is placed at h = 1400.
From this position, it moves in a circular path, generat-
ing navigation signals at each UAV position. Subsequently,
the localization and communication services are measured.
At another time step, the UAV-BS takes different UAV-BS
heights according to the UCL-RL algorithm as depicted in
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Table 2 Simulation parameters.

Fig. 4 Simulation scenario.

Fig. 3, to produce the required state, action, and reward.
The agent continues interacting with the environment until
it reaches a stopping condition.

There are two simulation scenarios: single user sim-
ulation scenario and multiple user simulation scenario. In
the single user simulation scenario, one terminal (K = 1),
which is an edge user, is used to evaluate the performance
of the SUL, Basic and UCL-RL models. In the multiple user
simulation scenario, 20 terminals (K = 20) are generated
within the defined target area. Out of the 20 terminals, 19
terminals are randomly generated whereas 1 terminal is an
edge user. The values for the learning rate µ = 0.1 and the
discount factor γ = 0.95 are selected because they are very
common values in many of the Q-learning algorithm-based
research works. The value for epsilon is initially 1 and de-
creases as the episode progresses to balance the exploitation
and exploration strategies which are crucial to maximize the
cumulative reward over time.

Figure 5 shows the PDOP simulation result for the
SUL, Basic and UCL-RL models for the single user sim-
ulation scenario. Here, the dynamicity in the agent-
environment interaction is the result of the change in altitude
of the agent. The PDOP of the edge terminal is computed at
each episode and serves as the reward. In Fig. 5, the PDOP
for the SUL model doesn’t vary throughout the episodes be-
cause it’s measured from a fixed height. Initially, up until

Fig. 5 PDOP comparison of SUL, Basic and UCL-RL models, K = 1.

Fig. 6 PDOPave comparison of SUL, Basic and UCL-RL models for K
= 20.

episode 13, the proposed UCL-RL model has worse PDOP
value than the SUL and Basic models as it has not interacted
with the environment and learned the best reward yet. As
the agent-environment interaction proceeds (defined by the
episodes), the proposed UCL-RL model has resulted in an
improved PDOP value compared to the SUL and Basic mod-
els. After 24 episodes, the UCL-RL model has converged to
the best reward, while the SUL model has fixed value, and
the Basic model has random values in every episode.

Figure 6 shows the average PDOP simulation result for
the SUL, Basic and UCL-RL models for the multiple user
simulation scenario. The average PDOP for the terminals is
computed at each episode and serves as the reward. Initially,
like in the single user scenario, the average PDOP value for
the UCL-RL model is worse than the PDOP value of the SUL
and Basic models. As the episode progresses, however, the
average PDOP value for the UCL-RL model has improved.
Starting from episode 14, the UCL-RL model provides better
average PDOP compared to the SUL and Basic models as
shown in Fig. 6.

The PDOP range in the single-user simulation scenario
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Fig. 7 RMSE comparison of SUL, Basic and UCL-RL models for K = 1
and K = 20 averaged over 50 episodes.

(PDOP = 4 to 7.5 in Fig. 5) is lower than the PDOP range
in the multiple user simulation scenario (PDOPave = 18 to
25 in Fig. 6). This variation in PDOP value in the two sim-
ulation scenarios come from the different UAV-BS to ter-
minal geometries. The UAV-BS to terminal geometry is an
important factor that affects the PDOP value. It describes
the geometry of the navigation signal transmission points
(NSTP) of the UAV-BS from the ground terminals perspec-
tive. In the single-user simulation scenario, the geometry of
the terminal depends on the NSTPs and height of the UAV-
BS only. This provides better UAV-BS to terminal geometry
which corresponds to the lower PDOP range. In the multiple
user simulation scenario, however, there are many UAV-BS
to terminal geometries, one for each terminal, which depend
on the NSTPs and the height of the UAV-BS as well as the
positions of the terminals. These multiple geometries result
in a large average PDOP value at each episode. That is the
reason why the PDOP range in the multiple-user simulation
scenario is larger than the PDOP range in the single-user
simulation scenario. In both simulation scenarios, the pro-
posed UCL-RL model provides better PDOP value as the
episode increases compared to the SUL and Basic models
as illustrated in Fig. 5 and Fig. 6.

Another way to measure the accuracy of the terminal
positioning is to apply root mean square error (RSME). Fig-
ure 7 shows the RMSE for the SUL, Basic and UCL-RL
models for the two simulation scenarios averaged over 50
episodes. For K = 1, the RMSE values for the SUL, Basic
and UCL-RL models are 1.91 m, 2.06 m and 1.51 m respec-
tively. For K = 20, the RMSE values for the SUL, Basic and
UCL-RL models are 3.70, 3.67 m and 2.97 m respectively.
To compute the estimated positions of the terminals, we ap-
ply a non-linear least square method using the Levenberg-
Marquardt algorithm [13]. The algorithm iteratively adjusts
the estimated terminal positions, leading to reduced errors
and minimized RMSE values. Consequently, despite the
high PDOP values shown in Fig. 6, the RMSE values in
Fig. 7 are small. The improvement is due to the effective-

Fig. 8 MAPL comparison of SUL, Basic and UCL-RL models at
episodes 5 and 20.

ness of the Levenberg-Marquardt algorithm in minimizing
errors.

In both simulation scenarios, the UCL-RL model has
provided smaller RMSE values compared to the SUL and
Basic models. This shows the proposed UCL-RL model pro-
vides better terminal position accuracy as the agent learns
the best parameters that minimize the positioning error of
the terminals.

To evaluate the communication, the maximum allow-
able path loss (MAPL) metric is measured. The purpose
of this evaluation is to show the path loss of the proposed
UCL-RL model lies within the given path loss range defined
by the maximum path loss, PLmax, which is the threshold
path loss. According to the PLaHO model defined in [18]
and given in Eq. (18), the MAPL for an UAV-BS to ground
terminal communication in suburban environment is 110.4
dB which is the threshold path loss value. Figure 8 shows
the path loss for the SUL, Basic and UCL-RL models at two
episodes (ep = 5, and 20) for the single user simulation sce-
nario (K = 1) by considering the MAPL for the suburban
environment. The values of ep = 5 and ep = 20 are carefully
selected to demonstrate learning properties of the agent. The
lower episode, ep = 5, represents the learning process at the
beginning of the learning. At this episode, the agent has had
limited interaction with the environment. At ep = 20, the
agent demonstrates substantial learning about the environ-
ment due to increased interaction. The characteristics of the
other episodes are similar to these two episodes.

At ep = 5, the path loss values for the SUL, Basic and
UCL-RL models are 108.15 dB, 111.94 dB and 108.15 dB
respectively. At ep = 20, the path loss values are 108.15 dB,
108.12 dB, 108.74 dB for the SUL, Basic and UCL-RL mod-
els respectively. The proposed UCL-RL model has produced
path loss value below the MAPL as the episode increases
from 5 to 20 as shown in Fig. 8. There is a slight increase in
the path loss value for the UCL-RL model when the episode
increases from 5 to 20, but it is still less than the threshold
path loss value (110.4 dB) which shows that the proposed
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UCL-RL model maintains the communication service. This
proves that the proposed UCL-RL model provides improved
localization service while enabling communication service
to the terminals in the target area when compared to the SUL
and Basic Models.

5. Conclusion

This paper proposed the use of a single UAV-BS to provide
unified communication and localization services in subur-
ban environment with no cellular and GPS connectivity by
applying reinforcement learning. The UAV-BS is flown to
the target area and deployed within the minimum and max-
imum heights where it moves in a circular path to send
navigation signals to the terminals in the target area. The
combination of the UAV-BS turning radius, navigation sig-
nal transmission points, UAV-BS height, and the position of
the ground terminals provides a dynamic environment. The
UAV-BS interacts with the environment and learns the av-
erage PDOP value as a reward through the Q-learning algo-
rithm. The path loss of an edge terminal is also measured to
assess the communication service. Simulation results have
shown that the proposed model provides improved termi-
nal positioning accuracy while guaranteeing communication
service.

In this work, the UAV-BS turning radius is constant.
In our next work, we will design the problem by varying
the turning radius and assess how it affects the localization
and communication capabilities. In addition to that, we will
expand the UAV-BS height range to increase the state space
and then apply other reinforcement learning algorithms, like
DQN, to evaluate the performance.
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