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[PAPER

Robust Bilinear Form Identification: A Subgradient Method with
Geometrically Decaying Stepsize in the Presence of Heavy-Tailed

Noise

SUMMARY  This paper delves into the utilisation of the subgradient
method with geometrically decaying stepsize for Bilinear Form Identifica-
tion. We introduce the iterative Wiener Filter, an [, regression method, and
highlight its limitations when confronted with noise, particularly heavy-
tailed noise. To address these challenges, the paper suggests employing
the /; regression method with a subgradient method utilizing a geometri-
cally decaying step size. The effectiveness of this approach is compared to
existing methods, including the ALS algorithem. The study demonstrates
that the /; algorithm, especially when paired with the proposed subgradient
method, excels in stability and accuracy under conditions of heavy-tailed
noise. Additionally, the paper introduces the standard rounding procedure
and the S-outlier bound as relaxations of traditional assumptions. Numer-
ical experiments provide support and validation for the presented results.
key words: bilinear, subgradient, 1| regression

1. Introduction

The investigation into bilinear forms has been a topic of ex-
ploration across various studies, particularly due to the versa-
tile applications of bilinear models. These applications span
a wide spectrum, such as object recognition [1], compressed
sensing [2], digital filter synthesis [3], prediction problems
[4], channel equalization [5], and echo cancellation [6]. In
[71, the authors synthesized the findings of those studies and
introduced a novel method known as the iterative Wiener
Filter. The iterative Wiener Filter, categorized as an [, re-
gression method, demonstrates commendable performance
in the identification of bilinear forms. In [8], this method
can also be referred to as the Alternated Least Squares (ALS)
algorithm. However, this performance is contingent upon a
strict limitation—namely, that the signal system is assumed to
be in a noiseless environment or subjected to white Gaussian
noise. Given the ubiquity of noise in real-world scenarios
and the limited information available about its nature, the
applicability of the filter is constrained. In the realm of com-
pressed sensing, as noted in [9], [, regression methods excel
in signal retrieval when the system operates in a noiseless
or Gaussian noise environment. However, when confronted
with heavy-tailed noise, /, regression struggles to converge
effectively.
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To address system identification challenges under
heavy-tailed noise conditions, we employ the /; regression
method. The superiority of /; regression over I, regression
is very intuitive in the presence of outlier observations, as
I; regression is less affected by unusual observations due to
its use of the absolute loss function. As far as we know, uti-
lizing subgradient methods is the most practical approach to
solve the /| regression problem. In [10], the authors discuss
the Polyak subgradient method (which we will not consider
in this paper since, under noiseless conditions, I, regres-
sion methods would be more effective) and the subgradient
method with a geometrically decreasing step size. The con-
vex version of the second algorithm can be traced back to
Goffin [11]. Additionally, [12] analyzed these two methods
for sharp weakly convex functions.

In this paper, we introduce the use of the subgradient
method with a geometrically decaying stepsize, as introduced
by Davis [12], as an effective /; algorithm for addressing
the identification of bilinear forms under heavy-tailed noise
conditions. To the best of our knowledge, the /; algorithm
exhibits enhanced stability and attains greater accuracy when
dealing with scenarios involving heavy-tailed noise. We have
further demonstrated that a technique known as the standard
rounding procedure [13] and an assumption, specifically the
S-outlier bound [14, Page 9], can be employed as a relaxation
of conventional assumptions such as the Lipschitz bound and
sharpness assumptions. Our numerical experiments have
validated our results.

2. Identification of Bilinear Forms and ALS Algorithm

We consider the system with the bilinear forms given by:
yi=a' Xif+z, i=1,....p (1)

in which @ € R™ is an unknown m-dimensional vector and
B € R" is also an unknown n-dimensional vector, y;,z; € R
are scalars, which denote the outcome of the system and the
noise respectively. We assume X; = [(X;)1,(Xi)2,. . ., (Xi)al
denotes an m X n matrix where (Xl-)j,j = 1,...,n are the
m-dimensional column vectors of X;. Throughout this paper,
we will differentiate between scalars and vectors by denoting
vectors as bold letters. For example, x represents a scalar,
whereas x represents a vector.

The aim of this paper is to approximate the feasible so-
lutions for both @ and B within their respective feasible sets.
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Given that solving this problem is generally NP-hard and,
therefore, computationally infeasible, our approach involves
an approximate solution to the best subset problem.

Let @, ,é be the estimations of @ and S8 respectively, y =
[y1.y2, - ,yp]" is the p-dimensional vector of outcomes,
and the estimation of y is § = [§1, §2.- -+, §p]" .

Then we have

n| [é¢"xB
7] @' X,

Yp (i’TXpﬂA

For further information and methods related to the sys-
tem of bilinear forms, we recommend that readers refer to
[15]. To facilitate our analysis, it will be very helpful to use
the following relationships [7]:

J =X(&®/§) :X(&®In)ﬁ=X(Im®ﬁ)&, @)
where

Vee (X))F
Vee (Xo)T

Vec (Xp)T

and ® denotes the Kronecker product, I,, and I, are the
identity matrices of sizes nxn and mxm, respectively. We use
operation Vec(X;) to vectorize matrix X; to a vector with mn
entries, which means that stacking (X;); up. By employing
well-established identities from the realm of linear algebra,
these relationships can be readily derived.

Next we introduce the ALS algorithm as described in
[8], and in [7] authors refer to this algorithm as the iterative
Wiener filter. To avoid notation ambiguity between iterations
and powers, we use x® or x®) to represent iterations (e.g.
superscript enclosed in brackets), and x* to represent x raised
to the power of k. We use x*) to specifically denote that x
belongs to the set of optimal solutions. We can define the
function G : (R”™,R") — R as:

G (@B) = lly - 513
= |ly - X @e 1) A,

= Hy—X(Im®B)ti' z,

the second and third equations follow from the Eq. (2), and
then we can minimize G by the following update equations:

ak+) ((Im ® B(k>)T XTX (I ® B<’<>))_l :
(Im ®/§(">) v,

R ((d(k) ® In)TXTX (%o 1,1))l :
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Algorithm 1 Subgradient Method with A Geometrically De-
caying Stepsize
Input The measurement matrix X, observations g, iteration times k, step
size coefficient /lf,l ) s /1;3] ), initialized identifier @1, (1)
1: Applying the Standard Rounding Procedure

2: fori=1to k((_l)o @
. i ~ A i )
3: Choose b ;* € OF (¢, B) and hB € OF (a,p) .

4 Set@*h =g - ";(?',) nl.
hhl (02

a@ |2
W g _ 0
50 Set pUith = gli) n'.
ctp B ‘h(p B

Bl

(d(k) ® 1,,) Y.

The update equations above reveal that we iterate @*) and
B% alternately. We will demonstrate that our subgradient
method follows the same iterative procedure in next section.

3. Subgradient Method with a Geometrically Decaying
Stepsize

We present our algorithm in detail as Algorithm 1. In the ab-
sence of the Lipschitz bound (3.2) and the u-sharpness (3.1)
assumptions, we employ the Standard Rounding Procedure
in the first step. Subsequently, we select the subgradient of
function F, with respect to parameters & and ﬁ We de-
lineated the function F in (3), and dF(&, B) represents the
set of subgradients of F. The determination of the step size
is guided by Eqs. (6) and (7), with the method for calcu-
lating their coefficients /lfrl ) and /12) provided immediately
afterward.

In the rest of this section, we show how to use the
subgradient method to solve the problem of identification
with bilinear forms, defining function F : (R™,R") — R as:

F(a.8) =1y - gl 3)
We can easily get the subgradient of F (e, ) using the
following proposition:

Proposition 3.1. As for the aforementioned function F with
fixed «,

~(X (@ ®1,)" -sign(F (@, B))

is a subgradient of F with respect to B, and for a fixed B,
~ (X (In®B)! - sign(F (@, B))

is a subgradient of F with respect to a.

Where sign (F (a, B8)) denotes the sign of F (a, ), that
is a vector with the same dimensions as F (@, 8), but with a
+1 entry when where F (a, ) has an entry greater than zero,
a —1 entry when F (@, ) has an entry less than zero, and a
zero entry where F (a, ) has an entry equal to zero.

Proof. To simplify our proof and remove ambiguity, for a
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fixed @, we will omit it in the expression F (e, 8), and instead
denoting it as F (B).
Then for any 8; and B, in domain of F(a, 8), we have

F(B1) - F(B2)
Y =X (@Bl - IY =X (e Bl

Y -X(@®p)) -sign(y -X (@ ®B))-

(Y -X(a®pB)) -sign(Y - X (a ® B))
{¥-X(@ep) -¥Y-X@ep) }-
sign(Y — X (@ ® B1))

- (X (@®L,) (B - B2) sign(¥ - X (@ ® B1))
—sign (F(B1))" - (X (@ ® 1)) (B1 - B2)

Then we can use the same way to prove that the subgradient
of F (a, B) with respect to a. O

IA

Proposition 3.2. The Kronecker product is a continuous
mapping.

Proof. Let a be any m-dimensional vector and b be a fixed n-
dimensional vector, for any € > 0, there existsad = W R
and let ¢ be a m-dimensional vector which satisfies that

€
cllla-clle < —}
{ 2ymn ||b|«
‘We have
dist(a,c) = |la —cll,

\ i (a; - Ci)2

la-ecllo Vm <6

IA

and

n

dist(a ® b,c ® b) = Z Z (aibj - cibj)2

i
(b1l la — eIl

€.

IA

IA

N m
IA

O

Let a, b, and ¢ be defined as described in the preceding
proof of proposition. Then, there exists a scalar § € R. By
applying the definition of a convex function, we obtain:

fa+(1-0)c)b<6(a®b)+(1-6)(c®b).

We observe that the Kronecker product constitutes a convex
mapping, implying convexity in our objective function F.
This assertion stems from the fact that the composition of
a convex mapping (Kronecker product) with a convex func-
tion (/; norm) remains a convex function. The convergence
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guarantee for the subgradient method applied to convex func-
tions can be found in [11]. Additionally, for weakly convex
functions, the convergence assurance is established in [12].

Nevertheless, recent studies on the subgradient method
often require assumptions about the objective function, such
as the Lipschitz bound and sharpness assumptions.

Assumption 3.1. (Restricted sharpness [14, Page 7]). A
Sfunction F(-) is said to be pu-sharp with respect to & for some

wif

F)-FEY)>p “.f —£®

holds for any § € R™".

“

1

Assumption 3.2. We assume that the function is L-Lipschitz
continues, i.e. the function F(&) satisfies

|1F (&) - F(E)ll, < L& - &l )

In [14], not only the two properties mentioned earlier
but also the properties of approximate restricted sharpness
and mixed-norm restricted isometry property (RIP) are re-
quired. The RIP is widely used not only in the compressed
sensing field but also in many other fields, as evidenced by
studies such as [2], [9], [16], [17]. Here we introduce the
rounding procedure [13], using the ellipsoid method to the
polytope P = P(x) := {x]|||Xx]||; < 1}. For a given point
x ¢ P we using the hyperplane

{y |y —0)" X" sign(Xx) = (IXx]l;) +1) /2}

to serve as a separation oracle, which separate x and P when
lXxlly > 1.

In this procedure, we make use of the Gram-Schmidt
method or an equivalent procedure, to orthogonalize the
columns of X with respect to each other. Additionally, we
normalize the columns of X such that they all have an /;
norm of 1.

From [13, Theorem 2.1] we have that if ||€]|, < Vmn,
then [|£]]; < 1, and ||X£]|; < 1 follows from columns scal-
ing. After applying the rounding procedure, we can observe
that a new version of matrices X possesses an essential na-
ture. This condition states that the matrix X with the property
that for any &,

1
1€l = 1Xgll, = e €

A matrix X with this property will be known as the /;-
conditioned. This property provides insight into the behavior
of X with respect to the £; norm of its input vector €.

With this rounding procedure, we can proof that we do
not need the Lipschitz bound and sharpness assumptions.

Theorem 3.1. In a noisy case, an l\-conditioned matrix
X ensures that the function F () = ||X& — y||; Lipschitz
continuous with a constant of L = 1.



630
Proof.
|F (&1) = F (£&)]
= g1 —yll; —lly2 -yl
= X6 —y +zlly — IX&2 — y + 2|l ]
< |IXé - Xé
< €1 = &l

where the second line equality follows from the presence of
noise, specifically heavy-tailed noise, the third line inequality
follows from the triangle inequality and the fourth inequality
follows from the /;-condition of X. As a result, we have
L =1, and (5) follows. O

In prior literature, the RIP plays a crucial role in prov-
ing algorithm convergence. However, through the round-
ing procedure introduced here, we can directly obtain an
[1-conditioned measurement matrix X. This property con-
tributes to the establishment of the fourth inequality in The-
orem 3.1.

Assumption 3.3. (S-outlier bound [14, Page 9]) Matrix
X € R™" js said to obey S-outlier bound with respect to a
set S with a constant 6 if for all vectors @ € R™, 8 € R", one
has

Sl @Bl <o XsBll, - llo” Xsh]
where Xsc means {X;};csc and Xs means {X;};cs.

Theorem 3.2. In the presence of noise, if assumption 3.3
holds, afunction F (§) = ||X€ — y||, is regarded as u-sharp,
with p = co.

Proof. If assumption 3.3 holds and noise is present, we have
F&)-F (&)
= |xg - X&) 42| -z,

= [Xse& - Xseg®
>
ieS
-] -
>
ieS

> c6 “g _g®

+

1

T
o' XiB - (0’(*)) XiB" + 5

|

where the first equality arises from the presence of noise,
with the former part simply unfolding the expression of the
function F'. The latter part arises from the fact that the term
f(*) is what we subtract within function F, and subtracting
two identical terms leaves only a z. The second equality
follows from the definition of S, the third inequality follows
from the triangle inequality, the last inequality follows from
the S-outlier bound, and c is a constant. Therefore, we have

- |Zi|)

T
o X;B - (0’(*)) x;,p%

s
1
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U =co. O

Subsequently, it becomes apparent that we can regard
the standard rounding procedure and the assumption 3.3 as
a form of relaxation for the Lipschitz bound and sharpness
assumptions.

Following this, we can employ a strategy akin to the
one presented in [11] to ascertain the algorithm’s step size:

. ")
w©_ Ay w_ g
t(z - s tB ETEVENTEE (6)
[ 75|
R 1) B

where AX = 1954 and /lg‘) = /lg))pz. We initialize 1 =
Ru/(mp) and /lg)) = Ru/(np). Let p, and pg satisfy that

o = {\/ L= GufmP fm <V2[2 -

p/(2m) wim =22’
oy = {\/1 (/) pn <32
wu/(2n) w/n > v2/2

Here, R is a constant, and we assume that the iteration algo-
rithm started in close proximity to the feasible solution set.
This implies Hd' —a® )t ||ﬂ - ﬁ(*)”z <R

4. Numerical Experiment

This section presents the experimental settings and numer-
ical results of our study. To evaluate the accuracy of the
measurements, we use the normalized projection misalign-
ment metric [7, Page 654].

aT @ 2

NPM (e, @) = 1 — (—)
llell, &l

. gp )

NPM (B, =1-|—F1 .
(#4) (llﬂllzllﬂﬂz)

We generated the entries of vectors & and S using the
Bernoulli distribution with probability 1/2, while the ma-
trix X; was generated by independent identically distributed
(i.i.d.) N(0,1) random variables. We choose values for p,
and pg from the interval [0.9,1), and set the vector lengths
to m = 30 and n = 30. Let us consider that there are
p = 200 data samples available for estimating the vectors.
In Fig. 1, it is evident that the /; regression model exhibits
faster convergence than the /; regression model within the
Gaussian noise structure. In Fig.2, we examine a system
exposed to Cauchy noise and another system subjected to
heteroscedastic noise. The heteroscedastic noise structure
is characterized by the following distribution: one-third of
the entries conform to a Gaussian distribution, another third
adhere to a Cauchy distribution, and the remaining entries
follow a t-distribution. It is observable that for a system un-
der Cauchy noise or heteroscedastic noise, the /, regression
method struggles to converge, while the /; regression method
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Fig.1  On the left (a), we have a system under Gaussian noise employing
the /; regression model with the subgradient method and a geometrically
decaying stepsize. On the right (b), we have a system under Gaussian noise
using the [, regression model with the ALS algorithm.
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Fig.2  Figures (a) and (c) employ the /] regression model with the sub-
gradient method and a geometrically decaying stepsize, while figures (b)
and (d) utilize the ALS algorithm. Figures (a) and (b) illustrate the sys-
tem under Cauchy noise, whereas figures (c) and (d) explore the impact of
heteroscedastic noise.

continues to perform well.

Next, the algorithm’s performance is evaluated from a
system identification perspective. We generated the entries
of @ according to the ITU-T G.168 Recommendation [18],
and B are generated as 8; = 270D, withi = 1,2,...,n. In
this simulation, as depicted in Fig. 3, the length of B varies
with values of m = 2,4,and 8; consequently, the length of
a is fixed at n = 64. From a system identification stand-
point, it is evident that under a heavy-tailed noise condition,
the /; regression consistently outperforms the /, regression
method. The variation observed in Figure (a) within Fig. 3
is attributed to the relatively short length of the vector .
For a fixed value of p (e.g., the available data samples), it is
evident that increasing the product of mn can contribute to
achieving more accurate results.

Finally, we will explore the impact of relatively small
available data samples, denoted as p, on the algorithm. No-
tably, not only does the /; regression method converge when
p < mn, but it also performs well when p < mn/4. Contrast-
ingly, the /, regression method faces challenges in attaining
satisfactory results under such conditions, primarily due to
the influence of heavy-tailed noise and the limited availabil-
ity of data samples. See Fig. 4.
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Fig.3 In this experiment, we demonstrate the convergence of @ and S.
In Figure (a) and figure (c), we apply the /; regression model using the
subgradient method with a geometrically decaying step size. In Figure (b)
and Figure (d), the I, regression model is employed. Figures (a) and (b)
depict the NPM of «, while Figures (c) and (d) showcase the NPM of .
We experiment with various combinations of m and n while maintaining a
fixed p = 200 under a Cauchy noise condition.

— p=mni2
p=mn/a
— p=mn/5
p =mn/6

1og(NPM)

0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations

(@) (b)

Fig.4  Figure (a) illustrates the Normalized Power Mean (NPM) of «,
while Figure (b) presents the NPM of 8. We conduct tests using the subgra-
dient method with a geometrically decaying step size under a Cauchy noise
scenario, varying the parameter p (representing available data samples).
The vector lengths of & and 8 are set to m = 8 and n = 64, respectively.

5. Conclusion

To conclude, the utilization of /; regression methods presents
the advantageous capability of generating robust solutions,
a trait highly beneficial in diverse applications like phase
retrieval and compressed sensing. This subgradient method
exhibits relatively good performance when dealing with bi-
linear systems under heavy-tailed noise.

However, the selection between [; and I, regression
methods hinges upon the distinct problem and noise char-
acteristics at hand. In certain instances, the preference
may lean towards /, regression, particularly when dealing
with Gaussian noise and well-conditioned problems. In a
broader perspective, the integration of subgradient methods
for nonlinear problem-solving has demonstrated promising
outcomes, holding significant potential for driving substan-
tial advancements across various application domains.
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