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PAPER
Cascaded Deep Neural Network for Off-Grid Direction-of-Arrival
Estimation∗

Huafei WANG†a), Xianpeng WANG†b), Xiang LAN†c), and Ting SU†d), Nonmembers

SUMMARY Using deep learning (DL) to achieve direction-of-arrival
(DOA) estimation is an open and meaningful exploration. Existing DL-
based methods achieve DOA estimation by spectrum regression or multi-
label classification task. While, both of them face the problem of off-grid
errors. In this paper, we proposed a cascaded deep neural network (DNN)
framework named as off-grid network (OGNet) to provide accurate DOA
estimation in the case of off-grid. TheOGNet is composed of an autoencoder
consisted by fully connected (FC) layers and a deep convolutional neural
network (CNN) with 2-dimensional convolutional layers. In the proposed
OGNet, the off-grid error is modeled into labels to achieve off-grid DOA
estimation based on its sparsity. As compared to the state-of-the-art grid-
based methods, the OGNet shows advantages in terms of precision and
resolution. The effectiveness and superiority of theOGNet are demonstrated
by extensive simulation experiments in different experimental conditions.
key words: off-grid, direction-of-arrival estimation, deep learning, autoen-
coder, convolutional neural networks

1. Introduction

Direction-of-arrival (DOA) estimation has been a hot topic
of research for decades, since it plays a crucial role in the
field of wireless communication and target sensing [1], [2].
In order to realize accurate DOA estimation, plenty of meth-
ods have been proposed over the past few decades. The
most well-known methods are the subspace-based methods,
which include the multiple signal classification (MUSIC)
[3], estimation of signal parameters via rotational invariance
techniques (ESPRIT) [4] and their variants [5]–[9]. The
basic principle of MUSIC method [3] is that a spatial spec-
trum is first constructed based on the orthogonal relationship
between the signal and noise subspaces, and then the peak
search is performed over the spatial spectrum with a specific
step size to achieve DOA estimation. While, the ESPRIT
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method [4], [9] capitalizes the rotational invariance of signal
subspace and does not require spectrum search. However,
the performance of these subspace-based methods depend
on the accuracy of covariance, which depends on the num-
ber of snapshots and signal-to-noise ratio (SNR), therefore
their performance may suffer significantly degradation at in-
sufficient number of snapshots or low SNRs.

In recent decade, compressed sensing (CS) technique
has attracted much attentions [10], [11], which has been
successfully applied in DOA estimation [12], [13]. The
CS-based methods mainly capture the sparsity of sources in
spatial domain, and adopt different strategies of sparse min-
imization to achieve DOA estimation. Since the sparsity of
source signals comes from the discrete grid in spatial domain,
the CS-based methods can be classified into three main cate-
gories: on-grid, off-grid, and gridlessmethods [14]. On-grid
methods [15], [16] can accurately estimate the angles coin-
cided with the fixed grid points in spatial domain. However,
their performance suffers from the off-grid error when angles
mismatch with the grid points, especially under a coarse grid
condition. Apparently, the problem of off-grid errors faced
by the on-grid methods can be alleviated by recursive grid
refinement or increasing the degree of spatial discretization.
However, it may result in a significant increase in computa-
tional complexity. Off-grid methods [17], [18] and gridless
methods [19] achieve a balance between estimation accu-
racy and computational complexity, which can realize high
precision DOA estimation under coarse grid conditions with
low computational cost. However, since all above CS-based
methods are model-driven, they rely on the pre-established
mathematical model, and share a common shortcoming that
each estimation needs a complete optimization process that
need appropriate parameter initialization. The inappropriate
initial parameters may cause the performance degradation
and even method failure.

Most recently, DOA estimation using deep learning
(DL) technique [20], [21] has raised much attentions, which
is completely data-driven method. The DL-based methods
use the powerful nonlinear mapping capability of neural net-
works (NN) to learn features in the array data to achieve
DOA estimation. As compare to the CS-based approaches,
DL-based methods can achieve DOA estimation based on
simple multiplications and additions in trained networks
with no optimization process, and the training is to be done
off-line once and for all. As a current research hotspot, a
stream of DL-based methods have emerged for DOA estima-
tion and its application [22]–[24]. Specifically, in [25] and
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Table 1 Glossary of notations throughout the paper.

[26], the authors applied the denoising autoencoder to de-
noise the array covariance of uniform linear array and sparse
linear array, respectively. Then implement DOA estima-
tion based on the denoised covariance using MUSIC-based
methods, e.g., rootMUSIC and spatial smoothMUSIC. Sim-
ilarly, A. Barthelme et al. used neural network to reconstruct
the covariance matrix from sample covariance matrix, then
achieve DOA estimation by applying the MUSIC estimator
to the reconstructed covariance matrix [27]. On the other
hand, a deep convolutional neural network (CNN) was pre-
sented in [28] to reconstruct the noiseless covariance matrix
by using its Toeplitz structure, then root MUSIC method is
applied to realized gridless DOA estimation. However, the
methods in [25]–[28] are essentially semi-DL methods with
the techniques for final DOA estimation still model-driven,
which results in their inability to achieve end-to-end DOA
estimation. For purely DL-based methods, the authors in
[29], [30] proposed the deep neural networks (DNN) for ro-
bust DOA estimation in non-ideal situations such as array
imperfections and color noise. However, multiple parallel
networks are adopted both in [29] and [30], which leads to
large network structures that require large amounts of accu-
rately labeled data for training, and such volume of labeled
data for non-ideal situations are very difficult to collect in
practice. On the other hand, a deep CNN was developed
in [31] with utilizing the sparsity prior. However, since
1-dimensional (1D) convolution is utilized, the method do
not exhibit significant performance improvements. Further,
G. K. Papageorgiou et al. designed a deep network in [32] for
DOA estimation in low SNR, where the 2-dimensional (2D)
convolutions are used and the DOA estimation is modeled
as a multi-label classification task by inputting 3-channel
covariance. Nevertheless, such a network suffers from the
similar problem that CS-based methods suffer, i.e., the off-
grid errors. Coarse labeling of covariance leads to that the
network can only accurately classify the angles been labeled,
the off-labeled DOAs (similar to the off-grid DOAs) can only
be classified as the nearest angle to it, which cause off-grid
errors. While, the dense labeling will undoubtedly require a

large amount of labeled data, the collection of such amounts
of labeled data is a challenge in practical applications.

Above all, most of the existing DL-based DOA esti-
mation methods either do not provide end-to-end DOA es-
timation or the estimation precision is restricted by off-grid
errors. Thus, this paper try to fill in this gap by proposing a
cascaded DNN. The proposed neural network is referred to
as off-grid network (OGNet) which is composed of an au-
toencoder (AE) and a deep CNN (DCNN). The AE behaves
like a filter, which takes the upper triangular part of the sam-
pling unitary covariance as input to reduce the divergences
between sampling and theoretical unitary covariance. After-
ward, the reconstructed unitary covariance by AE is used as
the input of the DCNN to predict the off-grid error vector
hence to realize DOA estimation based on its sparsity. The
major contributions of this paper are summarized as:

• A neural network architecture is proposed for the DOA
estimation in off-grid scenarios. The proposed archi-
tecture include an AE and a deep CNN.

• In the proposed neural network, the AE behaves like a
pre-processor to reduce divergences between the sam-
pling and theoretical unitary covariance. And the deep
CNN is designed for off-grid DOA estimation by mod-
eling the off-grid error into labels, which enables it can
achieve off-grid DOA estimation based on its sparsity
and without a priori information of on-grid angles.

• The proposed neural network architecture achieves
more accurate off-grid DOA estimation as compare to
the state-of-the-art grid-based methods include tradi-
tional methods and DL-based methods.

The remaining part of this paper is structured as follows:
A briefly description of the problem formulation of DOA es-
timation is given in Sect. 2. In Sect. 3, the architecture of the
proposed cascaded DNN for off-grid DOA estimation is pre-
sented. The network training strategies corresponding to AE
and DCNN are introduced in Sect. 4. Simulation experiment
results are shown in Sect. 5 to evaluate the effectiveness and
superiority of the proposed network. Finally, the conclusions
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Fig. 1 Uniform linear array with M antennas and inter-antenna distance
d = λ/2.

of this paper are given in Sect. 6. The glossary of notations
throughout this paper is given in Table 1 for convince.

2. Problem Formulation

For DOA estimation, there are several array geometries to
be applied, such as the linear, circular and planar. In this
work, a uniform linear array (ULA) is considered. As shown
in Fig. 1, suppose a ULA equipped with M antennas is con-
figured at a inter-antenna distance of d = λ/2, where λ
is the wavelength of signals. With P independent far-field
narrow-band signals impinging on the ULA from different
directions of θp(p = 1,2, . . . ,P), the data received by ULA
at l-th sampling snapshot is [3]

y(l) = As(l) + n(l), l = 1,2, · · · , L, (1)

where s(l) = [s1(l), · · · , sP(l)]T ∈ CP×1 denotes the
signal vector and n(l) denotes the additive Gaussian
white noise vector at l-th sampling snapshot. A =

[a(θ1), a(θ2), · · · , a(θP)] denotes the M × P array steering
matrix with

a(θp) = [1, e j(2πd/λ) sin θp , · · · , e j(2πd/λ)(M−1) sin θp ]T ,

(2)

where j is the imaginary unit. By collecting L snapshots,
the multi-snapshot data is expressed as

Y = AS + N, (3)

with Y = [y(1), · · · , y(L)], S = [s(1), · · · , s(L)] and N =
[n(1), · · · , n(L)].

Based on Eq. (1), with collecting infinite snapshots, the
theoretical covariance of the receiving data can be expressed
as

R = E{ y(l)y(l)H } = ARsA
H + Rn, (4)

where Rs and Rn denote the covariance of incident signals
and noise, respectively. However, the theoretical covariance
in Eq. (4) is hard to obtain and unknown in practice, hence it
is usually replaced by the sampling covariance, which is

R̄ =
1
L

L∑
l=1

y(l)y(l)H . (5)

Since the theoretical covariance R is a centro-Hermitian

matrix, it can be transformed into a real-valued matrix [33],
[34], which is called theoretical unitary covariance (TUC),
by [8]

Ru = (UM )
HRUM (6)

with 

UM=even =
√

2
2

[
IM

2
jIM

2
Π M

2
− jΠ M

2

]
,

UM=odd =
√

2
2


IM−1

2
0 M−1

2 ×1 jIM−1
2

01×M−1
2

√
2 01×M−1

2
Π M−1

2
0 M−1

2 ×1 − jΠ M−1
2

 ,
(7)

where Πi denotes (i × i)-dimensional matrix with the anti-
diagonal elements being 1 others all 0. While, although
the sampling covariance R̄ in Eq. (5) is a Hermitian ma-
trix, it’s not centro-Hermitian, hence it cannot directly be
transformed into real-valued by Eq. (6). Fortunately, the
forward-backward technique can be applied first to turn R̄
into a centro-Hermitian matrix, which is

R̄ f b =
1
2
(R̄ +ΠM R̄∗ΠM ). (8)

Then, the sampling unitary covariance (SUC) based on R̄ is

R̄u = (UM )
H R̄ f bUM . (9)

Based on Eq. (9), we are interested in estimating un-
known DOAs from R̄u . Hence, as considering the powerful
nonlinear mapping capability of NN, a cascaded DNN is
designed in the following section to predict the off-grid er-
ror vector by using R̄u as input, then achieve off-grid DOA
estimation using the sparsity of the predicted off-grid error
vector.

3. Proposed Cascaded DNN for Off-Grid DOA Estima-
tion

The overall architecture of the proposed cascaded DNN,
named as OGNet, is shown in Fig. 2, which is composed
of two components. The first component is a neural network
called AE, which is consisted by fully connected (FC) layers.
And the second component is the DCNN mainly composed
of 2-dimensional (2D) convolutional (Conv.) layers and FC
layers. The former is to reduce the divergences between
R̄u and Ru , while the latter is to predict the off-grid error
vector by using the unitary covariance predicted by AE as
input. Finally, the DOA estimation is realized based on the
sparsity of the predicted off-grid error vector. The detailed
architecture of the components within OGNet is introduced
as following.

3.1 The Architecture of AE

From Sect. 2, it is known that the Ru is obtained based on
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Fig. 2 The overall architecture of the proposed cascaded deep neural
network, i.e., the OGNet.

Fig. 3 The architecture of autoencoder within OGNet.

infinite snapshots, which is practically unrealistic, while the
R̄u is calculated with L snapshots. Therefore, there must
exist certain difference between R̄u and Ru , i.e.

Ru = R̄u + ∆Ru, (10)

where ∆Ru represents the divergence matrix between R̄u

and Ru . The AE within the proposed OGNet is designed
to reduce ∆Ru . The architecture of AE within OGNet is
displayed in Fig. 3, which is consisted of 9 FC layers include 1
input layer, 1 output layer and 7 latent layers (i.e., FC layers).
Each latent layer is followed by a ReLU activation layer
except for the input and output layers to avoid the gradient
disappearing. The specific configurations of each layer in
AE is given in Table 2.

Note that R̄u and Ru are all M × M-dimensional Her-
mitian matrices, therefore the training data pair for AE is
respectively denoted as vector consisted of the elements of
upper triangular parts of R̄u and Ru by columns, i.e.,{

µ = utv{R̄u},
u = utv{Ru}.

(11)

where µ ∈ R(
M (M−1)

2 +M)×1 represents the input of AE, and
u ∈ R(

M (M−1)
2 +M)×1 represents the output label of AE. Then,

the nonlinear mapping procedure of AE can be parameter-
ized as

fae(µ) = faout ( fa7(. . . ( fa1( fain(µ))))) = ω, (12)

where ω ∈ R(
M (M−1)

2 +M)×1 is the predicted output of AE
during training; fae{·} represents the nonlinear mapping
function of the whole AE, fain{·} and faout {·} respectively
denote the mapping function of input layer and output layer,
and fai{·} with i = 1,2, · · · ,7 denotes the mapping function
of i-th latent layer.

Since the AE is modeled for a regression task and com-
pletely composed of FC layers, it is potential to over-fitting
in the case of small training data. In order to prevent overfit-
ting, the mean-square-error (MSE) with L2 regularization is

Table 2 Specific configurations of autoencoder.

chosen as the loss function of AE to optimize the trainable
weights and biases set Θa during training phase, that is

Θ?a = arg min
Θa

1
Da

{ Da∑
d=1
L(ω(d), u(d)) +

λ

2

Na∑
n=1
‖W(n)

a ‖
2
F

}
,

(13)

where L(ω(d), u(d)) = { 1
Q

∑Q
i=1 |ω

(d)
i − u(d)i |

2} is the MSE
loss with Q = M(M−1)

2 + M; Da represents the total number
of training data for AE;ω(d) and u(d) respectively denote the
predicted output and the output label of AE when inputting
d-th data; ω(d)i and u(d)i represent the i-th entries ofω(d) and
u(d), respectively; Θa = {Wa, ba} is the set of trainable
weights and biases in AE; λ is the regularization parameter
for the weights in AE, which is λ = 10−4 in this paper; Na is
the total number of hidden layers in AE andW(n)

a represents
the weights of n-th hidden layer of AE.

3.2 The Architecture of DCNN

After obtaining a prediction of u from AE, the predicted
unitary covariance can be obtained based on its Hermitian
property, i.e.,

R̂u = mat{ω}, (14)

which is taken as the input of DCNN to predict the sparse
off-grid error vector. During training phase, Ru is chosen
as the training input. The architecture of the DCNN is dis-
played in Fig. 4. The DCNN contains 1 input layer, 1 output
layer, 10 2D Conv. layers, 1 flatten layer and 4 FC layers.
Each Conv. layer has 64 channels and is followed by a batch
normalization (BN) layer [35]. The kernel size of all Conv.
layers is κ× κ with κ = 3 and stride δ = 1 and same padding.
Similarly, to prevent the gradient disappearing, the activa-
tion function used in each Conv. and FC layer of DCNN is
ReLU. The specific configurations of each layer of DCNN is
given in Table 3.

The output label of DCNN is designed as an G-
dimensional P-sparse vector ξ , where G depends on the
number of discrete grid points in spatial domain. For in-
stance, if the spatial domain from −φ to φ is discretized by
the grid interval of α, then G = 2φ/α + 1, and the spatial
discrete grid can be obtained as Ψ = {ψ1,ψ2, · · · ,ψG} with
α = ψg+1 − ψg (g = 1,2, · · · ,G − 1). Suppose that the true
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Fig. 4 The architecture of DCNN within OGNet.

Table 3 Specific configurations of DCNN.

DOAs of P sources are θ = {θ1, θ2, · · · , θP}, then the sparse
off-grid error vector is expressed as

e = [e1, e2, · · · , eG]T ∈ RG×1, (15)

where eg ⊂ (−α/2, α/2]with g = 1,2, · · · ,G, and the entries
of e are all 0 except for the gp-th entry being egp = θp −ψgp
with p = 1,2, · · · ,P and gp = 1,2, · · · ,G. ψgp denotes the
angle in Ψ nearest to θp . Note that egp could be negative or
positive and could be very small when the targets are very
close to the discrete grids. In order to enhance the sparsity
of e and convert it into a positive vector for better learning
by neural networks, a linear transformation is introduced as

ξgp = egp × c +
α

2
× c, (16)

where gp = 1,2, · · · ,G, c is a constant which is set to c = 10
in this paper. Then the output label of DCNN ξ is expressed
as

ξ = [ξ1, ξ2, · · · , ξG]
T ∈ RG×1, (17)

which shares the same sparsity with e.

Remark 1. We set eg ⊂ (−α/2, α/2] intentionally, because
if −α/2 and α/2 both are included, there will exist con-
flict in the network labels, leading to problems during train-
ing. Let us take a simple example: suppose the true DOA

is −59◦ and α = 2◦, then we can labeled the outputs as
that e1 = α/2 = 1◦ or e2 = −α/2 = −1◦, which are
actually pointing at the same DOA. Hence, if −α/2 and
α/2 are both included, the labels are conflict for train-
ing. On the other hand, we set eg ⊂ (−α/2, α/2] instead of
eg ⊂ [−α/2, α/2). This is because a linear transformation
is made in Eq. (16) to maintain the sparsity of the labels, if
we set eg ⊂ [−α/2, α/2), the sparsity will be vanished when
eg = −α/2, which will also lead to problems during training.

Similarly, the nonlinear mapping procedure of DCNN
can be parameterized as

fcnn(Ru) = fcout ( fc14( fc13(. . . ( fc2( fc1( fcin(Ru))))))) = ζ,

(18)

where ζ ∈ RG×1 represents the predicted output of DCNN
during training; fcnn{·} denotes the nonlinearmapping func-
tion of the entire DCNN, fcin{·} and fcout {·} respectively
stand for the mapping function of input layer and output layer
of DCNN; fci{·} with i = 1,2, . . . ,10 is the mapping func-
tion of i-th Conv. layer, and fci{·} with i = 11,12, . . . ,14 is
the mapping function of (i − 10)-th FC layer.

Likewise, the DCNN is modeled to complete a regres-
sion task. Therefore, MSE is chosen as the loss function of
the DCNN for the optimization of the trainable weights and
biases set Θc in DCNN, i.e.,

Θ?c = arg min
Θc

1
Dc

{
Dc∑
d=1

{
1
G

G∑
i=1
|ζ (d)i − ξ

(d)
i |

2
}}

, (19)

where Dc represents the total number of training data for
DCNN; ζ (d) and ξ (d) respectively denote the predicted out-
put and the training label of DCNN by input d-th data during
training; ζ (d)i and ξ (d)i represent the i-th entry of ζ (d) and ξ (d),
respectively. It should be noted that there are other candidate
loss functions for regression task, such as mean-absolute-
error (MAE) and smooth MAE. As compare to MAE, the
gradient of MSE is dynamic (as the error decreases, so does
the gradient), which can accelerate the convergence of the
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Table 4 The procedure of off-grid DOA estimation using OGNet.

function and make the network training faster. Hence, the
MSE rather than MAE is chosen as the loss function of
DCNN, because the training of CNN values training speed,
especially the training of deep CNN.

3.3 Off-Grid DOA Estimation

The training of the networks within OGNet are performed
off-line with proper strategies to obtain the trained OGNet.
Once the training is completed, the off-grid errors corre-
sponding to sources can be predicted by feed a sampling
covariance into the trained OGNet, while the exact DOAs
are not estimated yet. The off-grid DOA estimation is re-
alized by a post processing based on the sparsity of ζ , and
without a priori on-grid angles estimation. Since ζ is P-
sparse, and the index of its each value corresponds to that
of on-grid angle on the spatial grid Ψ = {ψ1,ψ2, · · · ,ψG},
where there are spikes there’re sources impinging from those
angles. On the other hand, according to Eq. (16), each value
of the spikes in ζ contains the off-grid error information of
sources. Hence, the on-grid angles and off-grid errors of
sources can be obtained simultaneously by performing peak
searching on ζ to find P spikes. Then, the off-grid DOA
estimation can be realized by

θ̄ = Ψι +

(
ζι
c
−
α

2

)
, (20)

where ι ∈ 1,2, · · · ,G denotes the indices corresponding to
the P spikes in ζ , Ψι and ζι denote the ι-th entry of Ψ and
ζ , respectively. The procedure of off-grid DOA estimation
using OGNet is summarized as in Table 4†, where the off-
line training data and strategies for OGNet are introduced in
the following section.

4. Network Training

The training is performed on a Windows PC equipped with
3.2GHz AMD Ryzen 2700 CPU, 12GB NVIDIA GeForce
RTX 3060 GPU and 48GBRAM. The generation of training
data are performed by MATLAB, and the DL framework for
constructing NN, training NN and simulations are based on
TensorFlow 2.6.0 plus Python 3.7.12. The ADAM [36] with
†The number of sources P is assumed to be known previously.

initial learning rate 0.001 is chosen as the optimizer for all
networks within OGNet. In both training and testing phases,
a ULA equipped with M = 12 antennas is considered. The
data generation and training strategies for the AE and DCNN
is described in detail as following.

4.1 Training of AE

To generate the training data of AE, we consider P sources
lie in spatial from −60◦ to 60◦. The true DOAs of sources
are randomly sampled from the interval [−60◦,60◦] with a
sampling step of 0.1◦, and the angular separation between
any two DOAs is greater than 2◦. To generate sufficient
data for training, 2 × 106 pairs of true DOA are randomly
sampled from the interval. At each sample, let the SNR vary
randomly in steps of 5 dB between −15 dB to 20 dB and fix
the number of snapshots at T = 50. Then, the training data
for AE is generated according to Eqs. (4), (5), (6), (9) and
(11).

During training phase, the training data of AE is ran-
domly divided into 90% for training and 10% for validation,
hence Da = 2 × 106 × 0.9 = 1.8 × 106. The training for
AE is carried out 100 epochs with a batch size of 1000. The
learning rate drop factor is set as 0.5 with the drop period
being 4 epochs.

4.2 Training of DCNN

In generating the training data for DCNN, φ is consid-
ered to be 60◦, and α is considered to be α = 2◦
for instance. Then, the spatial discrete grid is Ψ =

{−60◦,−58◦,−56◦, · · · ,0◦, · · · ,58◦,60◦} and G = 61. Since
α = 2◦, the off-grid error egp ⊂ (−1,1]. The constant c is
set as c = 10 in this paper, then ξgp ⊂ (0,20]. The num-
ber of sources varies from 1 to Pmax to enable the DCNN
can achieve multi-DOA estimation, where Pmax = 3 is con-
sidered in this paper to relief the memory and system de-
mands. To generate the off-grid DOAs, the on-grid angles
of P = 1,2,3 sources are firstly generated from all possible
combinations in Ψ, i.e., we can obtain C1

61 + C
2
61 + C

3
61 pairs

of on-grid angles. Then, to release training burden, the off-
grid error for each pair of on-grid angle is randomly chosen
from ε = {−0.9,−0.8, · · · ,−0.1,0,0.1, · · · ,0.9,1} without
overlap until all off-grid errors in ε have been traversed
or the rest candidate off-grid errors are not enough to be
assigned to the on-grid angles in the angle pair. Then,
the total number of pairs of off-grid DOAs for training is
b20/1c × C1

61 + b20/2c × C2
61 + b20/3c × C3

61 = 235460
with b·c denoting the round-down operator. After obtaining
the 235460 pairs off-grid DOAs, the corresponding Ru (the
training input for DCNN) with respect to each pair of off-
grid DOAs at each SNR in {−15,−10,−5,0,5,10,15,20} dB
is calculated by (4) and (6), which leads to the total number
of training data being 235460 × 8 = 1883680. The output
label ξ corresponding to each Ru is generated during gener-
ating the off-grid error according to (15), (16) and (17). For
example, if the on-grid angle pair is {−60◦,−56◦} and the



WANG et al.: CASCADED DEEP NEURAL NETWORK FOR OFF-GRID DIRECTION-OF-ARRIVAL ESTIMATION
639

corresponding off-grid error is {−0.6◦,0.3◦}, the output label
ξ becomes ξ = [−0.6×10+10,0,0.3×10+10,0,0, · · · ,0]T
where the indices of non-zeros elements in ξ is the same as
the indices of the position of the corresponding angle pair in
Ψ.

When training the DCNN, the training data is randomly
divided into 90% training set and 10% validation set, hence
Dc = 1883680 × 0.9 = 1695312. The training for DCNN
is carried out 200 epochs with a batch size of 512, and the
corresponding learning rate drop factor is set as 0.7 with the
drop period being 5 epochs.

Remark 2. It should be noted that the OGNet without AE
(i.e., only DCNN) is also capable of achieving off-grid DOA
estimation by taking the SUC as the input, even if the DCNN
is trained using TUC. However, the estimation performance
of DCNN is inferior compared to that of OGNet, as will
be demonstrated in the simulation experiments later. On
the other hand, the DCNN can be trained under different
grid intervals α by using the similar data generation and
training strategies, and such DCNN still has superior DOA
estimation performance, which will also be demonstrated in
the simulation experiments later.

Remark 3. The computational burden of OGNet is mainly
dominated by the floating-point operations (FLOPs) in AE
and DCNN when estimating DOA, while the FLOPs of AE
and DCNN depend on the number of layers and neurons in
each layer. Since AE is consisted by FC layers, its FLOPs
is 2

∑Na

i=1 I(i)O(i), where Na denotes the number of FC layers
in AE, and I(i) and O(i) represent the number of input and
output neurons of each FC layer, respectively. While in
DCNN, the FLOPs include two parts: FLOPs of Cov. layers
and that of FC layers. The FLOPs of FC layers in DCNN
can be similarly calculated as 2

∑Nd

i=1 I(i)O(i) with Nd being
the number of FC layers in DCNN. The FLOPs of each Cov.
layer in DCNN is 2CI κ

2COM2 since all Cov. layers are
identical in DCNN, then the total FLOPs of all Cov. layers is
2CI κ

2COM2Ncov where CI and CO represent the input and
output channels of each convolution, k is the kernel size, and
Ncov denotes the total number of Cov. layers. Thus the total
FLOPs of OGNet is

FLOPs = 2
Na∑
i=1

I(i)O(i) + 2
Nd∑
i=1

I(i)O(i) + 2CI κ
2COM2Ncov .

(21)

Based on the similar calculation process, the FLOPs
of CNN in [32] can be computed as 2

∑Nd

i=1 I(i)O(i) +
2CI κ

2COM2Ncov . Obviously, according to the specific net-
work parameters of CNNprovided in [32], the computational
complexity of the OGNet is a little more expensive than that
of the CNN. While, since the DOA estimation achieved by
NN is only based on simple additions and multiplications in
trained networks, it is still within acceptable limits, which
will be demonstrated as in the following section.

5. Simulation Experiments and Analyses

Numerous simulation experiments are conducted in this sec-
tion to evaluate the effectiveness and superiority of the pro-
posed OGNet. During simulations, the ULA is considered
to be equipped with M = 12 antennas. The random inde-
pendent far-field narrow-band signal is utilized for simula-
tions. Firstly, the effectiveness of the proposed OGNet under
different scenarios is evaluated. Then, the performance su-
periority of the OGNet is evaluated by comparing with the
state-of-art NN-based methods and traditional model-driven
methods.

5.1 Effectiveness of the OGNet

Firstly, the effectiveness of the AE within OGNet is eval-
uated by the difference between the theoretical Ru and the
predicted R̂u by AE, which is referred as to predicted dif-
ference. The difference between Ru and the R̄u , which is
called original difference, is calculated for comparison. The
number of sources is P = 2 with θ = [−27.21◦,13.35◦]. The
difference is evaluated by

‖∆Ru ‖F =
1

Nmc

Nmc∑
i=1
‖Ru − ÛR(i)u ‖F , (22)

where Nmc = 103 denotes the total number of Monte Carlo
trials, ÛR(i)u represents R̂u or R̄u at i-th Monte Carlo trial. The
results of ‖∆Ru ‖F under different SNRs and number of snap-
shots are given in Fig. 5 with the number of snapshots being
T = 500 and SNR = 0 dB, respectively. As clearly shown in
Fig. 5, the difference decreases with SNR increasing. More-
over, the predicted difference is significantly smaller than the
original difference in all SNR cases. Similarly, one can also
see that the difference decreases with increasing number of
snapshots and the predicted difference is much smaller than

Fig. 5 ‖∆Ru ‖F under different SNRs and number of snapshots with
P = 2. Upper: divergence versus SNR. Lower: divergence versus number
of snapshots.
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the original difference in all snapshot cases. The results in
Fig. 5 illustrate that the AE component within OGNet can
effectively reduce the difference between the sampled R̄u

and theoretical Ru .
As previously claimed in Sect. 4.2, the OGNet without

AE (i.e., only DCNN) can also achieve off-grid DOA esti-
mation. Hence, the simulation experiments on DOA estima-
tion RMSE of DCNN and OGNet is conducted to evaluate
the effectiveness of the AE and DCNN with P = 2 and
θ = [−27.21◦,13.35◦]. The definition of RMSE is

RMSE =

√√√
1

NmcP

Nmc∑
i=1
|θ − θ̄(i) |22, (23)

where Nmc = 103 denotes the total number of Monte Carlo
trials, θ ′(i) denotes the estimated DOAs at i-th Monte Carlo
trial. The corresponding results are given in Fig. 6, where the
upper is the RMSE versus SNR with T = 500, and the lower
is the RMSE versus number of snapshots with SNR = 0 dB.
As can be seen from the Fig. 6 that the RMSEs of DCNN
and OGNet are reasonably decreased with the increasing of
SNR and snapshots. While, the RMSE of the OGNet is
distinctly much smaller than that of the DCNN, especially

Fig. 6 RMSE of DCNN and OGNet under different SNRs and number
of snapshots. Upper: RMSE versus SNR. Lower: RMSE versus number of
snapshots.

Fig. 7 Single-prediction results of OGNet and corresponding estimated off-grid errors with different
number of sources P.

at low SNR, which demonstrate that the DCNN can achieve
off-grid DOA estimation alone and the AE can effectively
improve its performance to achieve high-precision off-grid
DOA estimation.

Further, the effectiveness of the OGNet is evaluated
by single-prediction simulation experiments with different
number of sources P. When P = 1, the true DOA is fixed as
[11.23◦]. When P = 2 and P = 3, the true DOAs are fixed as
[−27.21◦,13.35◦] and [−33.56◦,5.42◦,41.37◦], respectively.
The simulations are conducted under SNR = 0 dB and T =
500. The prediction results of OGNet and the corresponding
estimated off-grid errors with different number of sources P
are shown in Fig. 7, and the corresponding specific numerical
results of estimated off-grid errors and DOAs are given in
Table 5. As can be seen in Fig. 7, in the case of differentP, the
raw predictions of OGNet and corresponding estimated off-
grid error vector have obvious spikes and are very sparse. On
the other hand, the specific numerical results in Table 5 show
that the off-grid errors estimated by OGNet are very accurate
for different P, thus the corresponding DOA estimation are
precise. The mean estimation errors for P = 1, P = 2
and P = 3 reached 0.0448, 0.0531 and 0.0937, respectively,
which indicates that the proposed OGNet can effectively
achieve high-precision off-grid DOA estimation.

Lastly, different off-grid DOAs are estimated by using
the proposed OGNet in different number of sources P =
1,2,3 to evaluate the effectiveness more widely. For different
P, the initial DOAof the first source is fixed as θ1 = −59.52◦,
then other initial DOAs are θ2 = θ1 + ∆θ and θ3 = θ2 + ∆θ
with ∆θ = 5.3◦, respectively. Then, DOAs under different
P are varies from the initial angles with an increasing step
of 1◦ until all possible angles in the interval of (−60◦,60◦)
are sampled. The estimation results with SNR = 0 dB and
T = 500 are shown in Fig. 8. It is clearly demonstrated that
the estimated DOAs by OGNet under different number of
sources are very close to the true DOAs, which illustrate that
the proposed OGNet is valid for different number of sources
and different angles.

5.2 Superiority of the OGNet

The effectiveness of the proposed OGNet has been eval-
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Table 5 Specific numerical results of estimated off-grid errors and DOAs by OGNet.

Fig. 8 Estimation results on different off-grid DOAs with different number of sources P by OGNet.

uated in the previous subsection. In this subsection, the
performance superiority of the proposed OGNet is evalu-
ated by comparing with the sate-of-the-art methods under
P = 2. Unless otherwise specified, the corresponding true
DOAs of sources are fixed as θ = [−27.21◦,13.35◦]. The
methods introduced for comparison include MUSIC [3], off-
grid sparse Bayesian inference (OGSBI) [17] and CNN [32].
Additionally, the conditional Cramér-Rao bound (CRB) [37]
is calculated for comparison. The evaluation metric is the
RMSE defined in Eq. (23).

First of all, the normalized spectra of single DOA
estimation for different methods are given in Fig. 9 with
SNR = 0 dB and T = 500. Note that the CNN and the
proposed OGNet do not really have a spectrum, hence the
DOA estimation results of CNN and OGNet are shown as
solid lines placed directly in the figure for intuitive compar-
ison. As clearly shown in Fig. 9, the DOAs estimated by the
proposed OGNet are closer to the true DOAs than that of the
CNN, also than the spectrum peaks of the other comparison
methods, which indicate that the proposed OGNet has higher
precision of DOA estimation.

Afterward, the computational complexity of different
methods are compared by their average time required for a
single DOA estimation, the corresponding result is given in
Table 6. The results are based on 103 independent simula-
tions, T = 500, SNR = 0 dB and θ = [−27.21◦,13.35◦]. As
can be seen from Table 6, since the computational complex-
ity of the proposed OGNet is higher than that of the other
comparison methods, its average time for a single DOA es-
timation is reasonably longer than that of its rivals. Despite
this, the computational complexity of the proposed OGNet is
still within acceptable limits and can fulfill the requirements
of real-time estimation.

Then, the simulation experiments for RMSE and prob-
ability of successful detection (PSD) of DOA estimation of
different methods in terms of SNR are carried out to evalu-
ate the superiority of the OGNet. The criteria for successful

Fig. 9 Normalized spectra of different methods.

Table 6 The average time required for a single DOA estimation based on
different methods.

detection is
√

1
P |θ − θ

′ |22 < τ with τ = 0.3 in this paper.
The results are depicted in Figs. 10 and 11 with T = 500.
In Fig. 10, one can find that the RMSE of CNN does not
decreased anymore when SNR > 0 dB since it’s an on-grid
method that have a precision restriction for off-grid angles
under a coarse searching grid. Conversely, the RMSE of
OGNet continues to decrease as the SNR increases since it
can well handle the off-grid error. Meanwhile, the proposed
OGNet possesses the lowest RMSE among the other meth-
ods. But what cannot be ignored is that when SNR ≥ 10 dB,
the RMSE of our proposed method seems to deviate from
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Fig. 10 RMSE of different methods under different SNRs.

Fig. 11 PSD of different methods under different SNRs.

CRB and has a floor effect†. On the other hand, it can be
easily found in Fig. 11 that the PSD of the proposedOGNet is
higher than that of all the comparison methods at low SNRs,
and reaches 100% faster than the other methods. These
results indicate that the proposed OGNet can achieve high-
precision off-grid DOA estimation and has distinct superior-
ity under different SNRs.

Next, the simulation experiments for RMSE and PSD
of DOA estimation of different methods in terms of number
of snapshots are conducted to evaluate the superiority of
the OGNet. The results are given in Figs. 12 and 13 with
SNR = 0 dB. From the Fig. 12, we can find that the RMSE of
the proposedOGNet is the lowest and is closest to the CRB in
all cases of number of snapshots. While, in Fig. 13, the PSD
of proposed method is similar to that of MUSIC and higher
†This is because that deep networks are biased estimators (this

holds for all DL-based estimators and not only the proposed) and
the accuracy is limited by some factors such as network architecture
and the size of training data-set. With fixed network structure and
training data, when the model training is done, there must be an
error between its prediction results and labels, resulting in the upper
limit of its performance. When the model reaches this upper limit
as SNR increases, it is difficult to show further improvements.

Fig. 12 RMSE of different methods under different number of snapshots.

Fig. 13 PSD of different methods under different number of snapshots.

than that of other methods at small snapshots, and reaches
100% faster than other rivals. The results in Fig. 12 and
13 further illustrate the superiority of the proposed OGNet
under different number of snapshots.

Further, the RMSE of different methods under different
angular separations are compared. The corresponding result
is depicted in Fig. 14, in which T = 500, SNR = 0 dB and
the true DOA is set as θ = [θ1, θ1+∆θ]with θ1 = −3.67◦ and
∆θ changing from 1◦ to 5◦. As clearly shown in Fig. 14, the
proposed OGNet shows lower RMSE as compare to other
comparison methods in close proximity, which indicate that
the proposed OGNet has obviously performance advantage
in terms of resolution.

In the end, the RMSE of different methods in the case
of different grid intervals are evaluated. Since the CNN
method is an on-grid method whose performance become
poor or even invalid for the off-grid angles in coarse grid,
only the OGSBI method is introduced to compare with the
proposed OGNet. The different grid intervals are set as α =
{2◦,3◦,4◦,5◦}. The data generation and training strategies
for OGNet when α = 2◦ have been introduced in detail
in previous Sect. 4.2. While, the data generation strategies
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Fig. 14 RMSE of different methods under different angular separations.

Fig. 15 RMSE of OGSBI and OGNet under different grid intervals.

for α = {3◦,4◦,5◦} are the same as that for α = 2◦, and the
training strategies is similarwith that forα = 2◦ except for the
batch size decreasing to 256. The results is shown in Fig. 15,
as in which that the RMSE of the OGSBI increases with the
increase of α, while the RMSE of OGNet remains stable
with the increase of α. On the other hand, OGNet shows
better performance than OGSBI in different SNRs and grid
intervals. The results demonstrate that the proposed OGNet
has performance benefits while being robust to different grid
intervals.

6. Conclusion

In this paper, a cascade DNN named OGNet is designed
for off-grid DOA estimation. Specifically, the upper triangu-
lar part of the sampling unitary covariance of array receiving
data is firstly taken as the input of AE to reduce the difference
between it and the theoretical, then the predicted unitary co-
variance of AE is input into the DCNN to predict the sparse
off-grid error vector. The ultimate DOA estimation is re-
alized by using the sparsity of the output of DCNN, which
enables that the proposed OGNet can realize high-precision
off-grid DOA estimation without a priori on-grid DOA esti-

mation. The results under various scenarios indicate that the
DOA estimation performance and resolution of the OGNet
is remarkable and has noticeable advantages over its rivals.
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