The search functionality is under construction.

The search functionality is under construction.

Simple expressions for constriction resistance of multitude conducting spots were analytically formulated by Greenwood. These expressions, however, include some approximations. Nakamura presented that the constriction resistance of one circular spot computed using the BEM is closed to Maxwell's exact value. This relative error is only *e*=0. 00162 [%]. In this study, the constriction resistances of two, five and ten conducting spots are computed using the boundary element method (BEM), and compared with those obtained using Greenwood's expressions. As the conducting spots move close to each other, the numerical deviations between constriction resistances computed using Greenwood's expressions and the BEM increase. As a result, mutual resistance computed by the BEM is larger than that obtained from Greenwood's expressions. The numerical deviations between the total resistances computed by Greenwood's expressions and that by the BEM are small. Hence, Greenwood's expressions are valid for the total constriction resistance calculation and can be applied to problems where only the total resistance of two contact surfaces, such as a relay and a switch, is required. However, the numerical deviations between the partial resistances computed by Greenwood's expression and that by the BEM are very large. The partial resistance calculations of multitude conducting spots are beyond the applicable range of Greenwood's expression, since Greenwood's expression for constriction resistance of two conducting spots is obtained by assuming that the conducting spots are equal size. In particular, the deviation between resistances of conducting spots, which are close to each other, is very large. In the case of partial resistances which are significant in semiconductor devices, Greenwood's expressions cannot be used with high precision.

- Publication
- IEICE TRANSACTIONS on Electronics Vol.E82-C No.1 pp.25-32

- Publication Date
- 1999/01/25

- Publicized

- Online ISSN

- DOI

- Type of Manuscript
- Special Section PAPER (Special Issue on Electromechanical Devices and Their Materials)

- Category

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Hitoshi NISHIYAMA, Isao MINOWA, "A Study of the Approximate Expressions for Constriction Resistance of Multitude Conducting Spots" in IEICE TRANSACTIONS on Electronics,
vol. E82-C, no. 1, pp. 25-32, January 1999, doi: .

Abstract: Simple expressions for constriction resistance of multitude conducting spots were analytically formulated by Greenwood. These expressions, however, include some approximations. Nakamura presented that the constriction resistance of one circular spot computed using the BEM is closed to Maxwell's exact value. This relative error is only *e*=0. 00162 [%]. In this study, the constriction resistances of two, five and ten conducting spots are computed using the boundary element method (BEM), and compared with those obtained using Greenwood's expressions. As the conducting spots move close to each other, the numerical deviations between constriction resistances computed using Greenwood's expressions and the BEM increase. As a result, mutual resistance computed by the BEM is larger than that obtained from Greenwood's expressions. The numerical deviations between the total resistances computed by Greenwood's expressions and that by the BEM are small. Hence, Greenwood's expressions are valid for the total constriction resistance calculation and can be applied to problems where only the total resistance of two contact surfaces, such as a relay and a switch, is required. However, the numerical deviations between the partial resistances computed by Greenwood's expression and that by the BEM are very large. The partial resistance calculations of multitude conducting spots are beyond the applicable range of Greenwood's expression, since Greenwood's expression for constriction resistance of two conducting spots is obtained by assuming that the conducting spots are equal size. In particular, the deviation between resistances of conducting spots, which are close to each other, is very large. In the case of partial resistances which are significant in semiconductor devices, Greenwood's expressions cannot be used with high precision.

URL: https://global.ieice.org/en_transactions/electronics/10.1587/e82-c_1_25/_p

Copy

@ARTICLE{e82-c_1_25,

author={Hitoshi NISHIYAMA, Isao MINOWA, },

journal={IEICE TRANSACTIONS on Electronics},

title={A Study of the Approximate Expressions for Constriction Resistance of Multitude Conducting Spots},

year={1999},

volume={E82-C},

number={1},

pages={25-32},

abstract={Simple expressions for constriction resistance of multitude conducting spots were analytically formulated by Greenwood. These expressions, however, include some approximations. Nakamura presented that the constriction resistance of one circular spot computed using the BEM is closed to Maxwell's exact value. This relative error is only *e*=0. 00162 [%]. In this study, the constriction resistances of two, five and ten conducting spots are computed using the boundary element method (BEM), and compared with those obtained using Greenwood's expressions. As the conducting spots move close to each other, the numerical deviations between constriction resistances computed using Greenwood's expressions and the BEM increase. As a result, mutual resistance computed by the BEM is larger than that obtained from Greenwood's expressions. The numerical deviations between the total resistances computed by Greenwood's expressions and that by the BEM are small. Hence, Greenwood's expressions are valid for the total constriction resistance calculation and can be applied to problems where only the total resistance of two contact surfaces, such as a relay and a switch, is required. However, the numerical deviations between the partial resistances computed by Greenwood's expression and that by the BEM are very large. The partial resistance calculations of multitude conducting spots are beyond the applicable range of Greenwood's expression, since Greenwood's expression for constriction resistance of two conducting spots is obtained by assuming that the conducting spots are equal size. In particular, the deviation between resistances of conducting spots, which are close to each other, is very large. In the case of partial resistances which are significant in semiconductor devices, Greenwood's expressions cannot be used with high precision.},

keywords={},

doi={},

ISSN={},

month={January},}

Copy

TY - JOUR

TI - A Study of the Approximate Expressions for Constriction Resistance of Multitude Conducting Spots

T2 - IEICE TRANSACTIONS on Electronics

SP - 25

EP - 32

AU - Hitoshi NISHIYAMA

AU - Isao MINOWA

PY - 1999

DO -

JO - IEICE TRANSACTIONS on Electronics

SN -

VL - E82-C

IS - 1

JA - IEICE TRANSACTIONS on Electronics

Y1 - January 1999

AB - Simple expressions for constriction resistance of multitude conducting spots were analytically formulated by Greenwood. These expressions, however, include some approximations. Nakamura presented that the constriction resistance of one circular spot computed using the BEM is closed to Maxwell's exact value. This relative error is only *e*=0. 00162 [%]. In this study, the constriction resistances of two, five and ten conducting spots are computed using the boundary element method (BEM), and compared with those obtained using Greenwood's expressions. As the conducting spots move close to each other, the numerical deviations between constriction resistances computed using Greenwood's expressions and the BEM increase. As a result, mutual resistance computed by the BEM is larger than that obtained from Greenwood's expressions. The numerical deviations between the total resistances computed by Greenwood's expressions and that by the BEM are small. Hence, Greenwood's expressions are valid for the total constriction resistance calculation and can be applied to problems where only the total resistance of two contact surfaces, such as a relay and a switch, is required. However, the numerical deviations between the partial resistances computed by Greenwood's expression and that by the BEM are very large. The partial resistance calculations of multitude conducting spots are beyond the applicable range of Greenwood's expression, since Greenwood's expression for constriction resistance of two conducting spots is obtained by assuming that the conducting spots are equal size. In particular, the deviation between resistances of conducting spots, which are close to each other, is very large. In the case of partial resistances which are significant in semiconductor devices, Greenwood's expressions cannot be used with high precision.

ER -