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SUMMARY Optical I/O core based on silicon photonics technology
and optical/electrical assembly was developed as a fingertip-size optical
module with high bandwidth density, low power consumption, and high
temperature operation. The advantages of the optical I/O core, including
hybrid integration of quantum dot laser diode and optical pin, allow us
to achieve 300-m transmission at 25 Gbps per channel when optical I/O
core is mounted around field-programmable gate array without clock data
recovery.
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bly, FPGA

1. Introduction

Big data analysis and artificial intelligence (AI) have grown
increasingly important in the modern information and com-
munication technology (ICT) society. Large quantities of
data have been collected by data centers (DCs) and are ana-
lyzed not only in these centers but also in high-performance
computers (HPCs). Due to the increase of such data, compu-
tational complexity has also been increasing. The progress
of AI with increasing information content thus requires large
computing power. However, as the processing speed of
CPUs/GPUs has almost doubled over the last two years [1],
current processing speeds are not enough to cope with the
increase of data. In order to compensate for the processing
speed, field-programmable gate arrays (FPGAs) have come
into use in DCs and HPCs. For examples, FPGA is used
as fixed function hardware acceleration in high throughput
data processing, as software acceleration such as offload-
ing portions of a software application running on the CPU
to FPGAs, and as bridges and switches to connect differ-
ent interface logic and subsystems [2]. These FPGAs have
large I/O bandwidth of over 1 Tbps. To satisfy these band-
width requirements, an optical module with a small foot-
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print and high bandwidth (high bandwidth density), low
power consumption, and high temperature operation is re-
quired for mounting around FPGA. In this work, we pro-
pose a fingertip-size optical module, which we call “optical
I/O core”, to satisfy these requirements. We applied optical
I/O cores to FPGA boards and demonstrated 300-m trans-
mission at 25 Gbps per channel.

2. Design and Structure of Optical I/O Core

To cope with the increase in I/O capacity due to large scale
integration (LSI), high bandwidth density and low power
consumption in a high temperature environment are required
for optical transceivers. Our developed optical transceiver,
which we call “optical I/O core”, is shown in Fig. 1 [3]. The
optical I/O core has a small footprint of 5 × 5 mm2 and a
maximum capacity of 300 Gbps (25 Gbps × 12 channels).
As shown in the cross-sectional view in Fig. 1, the optical
I/O core consists of technologies based on both silicon pho-
tonics integration and optical/electrical assembly.

Our silicon photonics integration technology is based
on 300-mm silicon on insulator (SOI) wafer process. ArF-
immersion lithography enables us to create low-loss and

Fig. 1 Pictures and cross-sectional views of optical I/O core (transmitter
(Tx) and receiver (Rx)). SSC = spot size converter, TGV = through glass
via.
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Fig. 2 Cross-sectional view of silicon photonics integrated circuit with
FP-LD.

high-uniformity optical waveguide. We achieved low wave-
guide loss of 1.28 dB/cm for the O-band [4] and highly-
uniform wavelength distribution of 2 nm (3σ) for a resonant
peak of coupled resonator optical waveguides (CROWs) on
the entire 300 mm wafer [5]. We also developed a germa-
nium selective epitaxy process for photodetectors (PDs).

Based on these processes, we have developed a sil-
icon photonics integrated circuit that includes the wave-
guide, MOS-capacitor-type Si optical modulator, Ge pho-
todetector (Ge-PD), and grating coupler (GC) as shown
in the cross-sectional view in Fig. 1. The structure of
our developed MOS-capacitor-type Si modulator is a ver-
tical MOS-junction Si optical modulator structure with the
Mach–Zehnder interferometer (MZI). This modulator has
high modulation efficiency of 0.16 V · cm, which is about
ten-fold more than has a conventional Si optical modulator
with only a lateral pn junction [6]. Furthermore, it showed
more than 25-Gbps operation with relatively low impedance
of CMOS driver and 4-segmented electrode structure [6].
We also designed a high-speed and high-efficiency Ge-PD of
a surface-illuminating type with 1800-nm thick Ge layer. By
optimizing the anti-reflection coating stack structure, high
responsivity of 0.8-0.9 A/W was uniformly obtained within
the wafer [7]. A bandwidth of about 15 GHz was obtained
at DC bias of 3 V. In the case of the Ge-PD with a thick Ge-
layer, photo-carrier transit time mainly limits the frequency
bandwidth.

After completing a silicon photonics integrated circuit,
we assembled a Fabry-Perot laser diode (FP-LD) and opti-
cal pins into an optical I/O core. Figure 2 shows a cross-
sectional view of the part of the silicon photonics integrated
circuit on which the FP-LD is assembled. As shown in
Fig. 2, the LD is passively aligned to LD mounting stage
on the silicon photonics integrated circuit according to the
alignment marks on the LD and the silicon photonics in-
tegrated circuit with our developed LD bonding machine.
The LD is bonded with the AuSn solder bump on the cir-
cuit. Our LD bonding machine creates horizontal misalign-
ment of ±0.5 μm between the LD and the silicon photonics
integrated circuit by using infrared camera [8]. The verti-
cal positioning is determined by the Si pedestals fabrication
process. Therefore, the vertical misalignment is better than
±0.1 μm.

The optical coupling tolerance between LD and Si

Fig. 3 Optical coupling tolerance between LD and Si waveguide with tip
tapered SSC along horizontal and vertical directions.

Fig. 4 Temperature dependence of light output power of quantum dot
FP-LD versus quantum well FP-LD.

waveguide with tip tapered SSC along the horizontal and
vertical directions was measured as shown in Fig. 3. The
minimum optical coupling loss between the LD and the Si
waveguide was 2.4 dB. The alignment tolerances for 1-dB
excess loss were ±0.7 μm for horizontal and ±0.3 μm for the
vertical direction, respectively. Therefore, by using the LD
bonding machine, less than 3 dB coupling loss can be ob-
tained. Furthermore, there is almost no temperature depen-
dence of the coupling loss due to the flip-chip bonding at up
to 100◦C as shown in [9].

For these LDs on silicon photonics integrated circuit,
high temperature operation and high optical feedback tol-
erance are required. We applied quantum dot FP-LDs to
address both requirements. Figure 4 shows the tempera-
ture dependence of light output power of the quantum dot
FP-LD versus quantum well FP-LD at the operation cur-
rent of 200 mA. The quantum well layer was composed
of a strain compensated quantum well structure consisting
of 5 InGaAsP compressive strained (+1%) wells with 6-
nm thick and 6 InGaAsP tensile strained (−0.1%) barri-
ers sandwiched by 1.0-μm composition InGaAsP SCH lay-
ers. On the other hand, the quantum dot layer was com-
posed of 8 layers of InAs/GaAs quantum dot sandwiched
by 1400 nm Al0.4Ga0.6As cladding layers. The quantum dot
FP-LD maintains higher output power at high temperature
compared to the quantum well FP-LD. Figure 5 shows the
system for measuring optical feedback tolerance at near-end
reflection. The system consists of a LD and a MZI with



NAKAMURA et al.: FINGERTIP-SIZE OPTICAL MODULE, “OPTICAL I/O CORE”, AND ITS APPLICATION IN FPGA
335

one output arm connected to the PD and the other connected
to the air facet. By shifting the phase of one arm in MZI,
the reflected light intensity from the air facet to the LD can
be changed. We measured and compared the optical feed-
back tolerance for quantum dot FP-LD and quantum well
FP-LD. Figure 6 shows the estimated worst signal-to-noise
ratio (SNR) versus the feedback condition (Cfeedback), the
equation of which is indicated in Fig. 5. The Cfeedback of
optical I/O core is −7.5 dB. Compared to quantum well FP-
LD, the estimated worst SNR for quantum dot FP-LD is bet-
ter than 40 dB in a wide region of Cfeedback, which is enough
for a 25-Gbps error-free operation [10]. These results show
that quantum dot FP-LD is suitable for silicon photonics in-
tegrated circuits.

Next, we will briefly introduce the optical pin. Opti-
cal pin is a three dimensional polymer waveguide used in
place of an optical lens for connecting the GC or the Ge-PD
with multi-mode fiber (MMF). Optical pin is made of resin
using 2-step lithography: one step is the core and the other
step is cladding. Thanks to this lithography process, it is
easy to expand the full wafer process and reduce the assem-
bly cost. The output wavelength from the optical I/O core
has high temperature dependence of 0.6 nm/◦C because of
the FP-LD without temperature control. The radiation angle
from GC has changed at 0.083 degree/nm as a result of high
temperature dependence of wavelength in FP-LD. However,

Fig. 5 System for measuring optical feedback tolerance at near-end re-
flection and the equation of feedback condition.

Fig. 6 Estimated worst SNR versus feedback condition Cfeedback.

as the optical pin has a high refractive index with numerical
aperture of more than 0.4 between the core and cladding, the
varied radiated light from the GC can be enclosed within the
core [11]. Therefore, the calculated misalignment tolerance
with 1-dB excess loss between the optical pin with φ 35-μm
cladding and GI50 MMF is larger than 10 μm in a tempera-
ture range from −45◦C to +85◦C.

As for the electrical assembly, we assembled a driver
and a trans-impedance amplifier (TIA) integrated circuit
(IC), and through glass via (TGV) for the electrical I/O. For
miniaturization, the driver and the TIA IC are assembled on
a silicon photonics integrated circuit by flip-chip bonding,
longitudinally. The step between the GC or Ge-PD on the
silicon photonics chip and the top surface of the IC chip
makes it difficult to assemble MMF on the GC or the Ge-
PD. Therefore, by installing the optical pin, we can easily
connect MMF to the optical I/O core. Furthermore, as this
step also makes it difficult to connect electrical contacts, we
install TGV for a flat layer over the IC chip to connect them
easily.

3. Characteristics of Optical I/O Core

In this section, we present the characteristics of the optical
I/O core. Two characteristics are especially important for
mounting optical I/O cores around FPGAs: high tempera-
ture operation and low power consumption.

The optical I/O core was mounted on the evaluation
board and MMF was implemented in it. We measured eye
patterns and bit error rates (BERs) in the constant temper-
ature bath. Figure 7 shows temperature dependence of eye
patterns and BERs at 25 Gbps, with pseudo random bit se-
quence (PRBS) 31. Clear eye patterns were achieved from
25◦C up to 85◦C. Furthermore, BERs with less than 10−12

were demonstrated at 20◦C and 85◦C [12]. This operation in
a wide temperature range is achieved by means of the quan-
tum dot LD and optical pin.

Figure 8 shows the bathtub curve of BER at 25 Gbps,
PRBS31. Thanks to clear eye patterns, we obtained a 0.34

Fig. 7 Temperature dependence of eye patterns and BER at 25 Gbps,
PRBS31.
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Fig. 8 Bathtub curve of BER at 25 Gbps, PRBS31.

Fig. 9 Transmission characteristics of optical I/O core.

unit interval (UI) at BER of 10−12 without clock data recov-
ery (CDR). Although the power consumption of both the
driver and the TIA is as low as 5 mW/Gbps at 25-Gbps op-
eration, thanks to the 28-nm CMOS process, this exclusion
of CDR further contributes to reducing the power consump-
tion of the optical I/O core. Figure 9 shows the transmission
characteristics of the optical I/O core. Two types of MMF
were used. One is corning clear curve LX MMF [13], which
is specialized for the O-bands and the other is conventional
OM3 fiber, which is used in 850-nm wavelength. By using
corning clear curve, transmission up to 300 m was achieved
at 25 Gbps. The transmission length of 300 m is sufficient
for applications in DC systems. Furthermore, by using con-
ventional OM3 fiber, 30-m transmission without equalizer
and 60-m transmission with equalizer were also achieved at
25 Gbps. The transmission length of 30–60 m is sufficient
for applications in HPC systems.

4. FPGA Applications

As FPGA performance increase, its application area widens
to include not only communications but also DCs and HPCs.
This is largely due to FPGA’s advantages in terms of flexibil-
ity, high throughput, low latency, and low power consump-
tion compared to CPU and GPU. At the server systems in

Fig. 10 FPGA boards with optical I/O cores.

Fig. 11 FPGA measurements of (a) eye pattern and (b) BERs.

DCs and HPCs, FPGAs are used to function as the accel-
erators of CPUs and GPUs, which are connected through
the FPGAs. Therefore, bandwidth guarantee of the entire
system is important for improving the effective performance
in server systems. For this purpose, we propose an FPGA
board around which optical I/O cores are mounted, as shown
in Fig. 10. A maximum of 24 Tx and Rx channels of opti-
cal I/O cores, with a capacity of 1.2 Tbps, were mounted
around FPGA. These FPGA boards were connected by 300-
m MMF, and 25 Gbps signals per channel were transmit-
ted. Then, BERs and eye patterns were measured in FPGA.
As shown in Fig. 11, BERs less than 10−12 with good eye
patterns were obtained. This shows that there is almost no
degradation in BERs at simultaneous many channels opera-
tion in optical I/O core.

The mounting area of 12 conventional quad small
form-factor pluggables (QSFPs) (capacity = 1.2 Tbps) is
about 180 cm2. In contrast, the mounting area of eight op-
tical I/O cores, also with a capacity of 1.2 Tbps, is about
11 cm2. In other words, the mounting area of optical I/O
cores is less than 1/10 of the conventional QSFP area. This
means that over-10-fold bandwidth in a server system is
guaranteed by using optical I/O cores compared to the con-
ventional optical modules. Furthermore, as optical I/O cores
can be mounted close to FPGA, thanks to their small size
and high temperature operation, the high speed electrical
line between FPGA and the optical I/O cores becomes very
short: less than 20 mm. This enables high speed transmis-
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sion of 25 Gbps without CDR and contributes to low power
consumption.

5. Conclusions

Optical I/O core based on silicon photonics technology and
optical/electrical assembly was developed as a fingertip-size
optical module with high bandwidth density, low power con-
sumption, and high temperature operation. The advantages
of the optical I/O core, including hybrid integration of quan-
tum dot LD and optical pin, allow to achieve 300-m trans-
mission at 25 Gbps per channel when an optical I/O core is
mounted around FPGA without CDR. This optical I/O core
will contribute to high bandwidth density and low power
consumption interconnection among FPGAs in data center
systems and HPC systems.
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