
514
IEICE TRANS. ELECTRON., VOL.E103–C, NO.10 OCTOBER 2020

PAPER Special Section on Analog Circuits and Their Application Technologies

Weight Compression MAC Accelerator for Effective Inference of
Deep Learning

Asuka MAKI†a), Daisuke MIYASHITA†, Shinichi SASAKI†, Kengo NAKATA†, Fumihiko TACHIBANA†,
Tomoya SUZUKI†, Jun DEGUCHI†, Nonmembers, and Ryuichi FUJIMOTO†, Senior Member

SUMMARY Many studies of deep neural networks have reported in-
ference accelerators for improved energy efficiency. We propose methods
for further improving energy efficiency while maintaining recognition ac-
curacy, which were developed by the co-design of a filter-by-filter quanti-
zation scheme with variable bit precision and a hardware architecture that
fully supports it. Filter-wise quantization reduces the average bit preci-
sion of weights, so execution times and energy consumption for inference
are reduced in proportion to the total number of computations multiplied
by the average bit precision of weights. The hardware utilization is also
improved by a bit-parallel architecture suitable for granularly quantized
bit precision of weights. We implement the proposed architecture on an
FPGA and demonstrate that the execution cycles are reduced to 1/5.3 for
ResNet-50 on ImageNet in comparison with a conventional method, while
maintaining recognition accuracy.
key words: deep learning, convolutional neural network, quantization,
variable bit width, post-training, inference, accelerator, processor, FPGA

1. Introduction

Deep convolutional neural networks (CNN) have proven
effective in a wide variety of applications, including im-
age recognition [2], [5], [7], object detection [12], and se-
mantic segmentation [4]. With the rapid increase in re-
search on algorithms for various applications, the impor-
tance of hardware-related research is also growing, because
energy efficient hardware is essential for executing algo-
rithms involving huge numbers of computations under prac-
tical power consumption and execution times.

Algorithms employing quantization of weights and ac-
tivations have attracted attention for improving the energy
efficiency for CNN inference. These algorithms are best
suited to massively parallel computing because they reduce
the number of computations without worsening computa-
tional intensity, unlike approaches such as pruning or sep-
arable convolution [6]. Although 1 bit [11], 2 bit [3], and
other extremely low-bit quantization approaches are attrac-
tive in terms of energy efficiency, those approaches signif-
icantly degrade recognition accuracy. For example, com-
pared with the full-precision AlexNet [7] with top-5 accu-
racy of 83% on ImageNet [2], accuracy degradations of
13.8% and 9.9% have been reported for 1-bit and 2-bit quan-
tization, respectively. More than 8-bit precision is generally

Manuscript received November 22, 2019.
Manuscript revised February 19, 2020.
Manuscript publicized May 15, 2020.
†The authors are with Kioxia Corporation, Kawasaki-shi, 212–

8520 Japan.
a) E-mail: asuka.maki@kioxia.com

DOI: 10.1587/transele.2019CTP0007

required in order to maintain accuracy with a uniform bit
width.

Recent works have revealed that layer-wise optimized
quantization is highly effective for reducing the total num-
ber of bits [9], [15]. In practice, however, the required bit
width for computations that maintain accuracy varies not
only among layers but also among pixels (i.e. spatial posi-
tions), channels, and CNN filters. Therefore, we propose an
algorithm that further reduces the number of computations
by applying filter-wise bit precision, i.e. granularly control-
ling bit widths of weights filter by filter.

Although 4-bit or lower quantization usually requires
retraining or quantization-aware training [22]–[24] to main-
tain higher accuracy, it is sometimes difficult to obtain a la-
beled dataset for retraining due to security and/or privacy
reasons [19]. In this paper, therefore, we also propose a
post-training quantization scheme that quantizes weights to
4- or fewer bits while maintaining test accuracy as high as
possible without a labeled dataset for retraining.

Dedicated hardware is required to exploit the granu-
larly optimized bit precision. Ideally, energy efficiency is
improved or the number of execution cycles is reduced in
proportion to the product of the number of bits and the num-
ber of operations. However, this cannot be achieved by us-
ing conventional hardware architectures. Therefore, we pro-
pose a hardware architecture suited to filter-wise quantiza-
tion. To improve the energy efficiency for CNN inference,
we co-designed an algorithm and its supporting hardware
architecture.

The remainder of this paper is organized as follows.
Section 2 proposes some techniques to improve energy effi-
ciency while maintaining recognition accuracy, and presents
details of the proposed quantization algorithm and other
techniques for reducing computations. Section 3 describes
a proposed hardware architecture that is suited to filter-wise
bit precision. Sections 4 and 5 present the FPGA imple-
mentation and experimental results, respectively, and Sect. 6
provides our conclusion.

2. Techniques to Improve Energy Efficiency with
Maintaining Accuracy

We propose a post-training quantization scheme that quan-
tizes weights into 4 bits or lower while maintaining the high-
est possible test accuracy without use of a labeled dataset for
retraining.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

MAKI et al.: WEIGHT COMPRESSION MAC ACCELERATOR FOR EFFECTIVE INFERENCE OF DEEP LEARNING
515

Fig. 1 Weight-quantization techniques (c©2019 IEEE [18]).

2.1 Proposed Filter-Wise Quantization

2.1.1 Concept of Filter-Wise Quantization

We propose a filter-wise quantization that quantizes weights
with variable bit precision according to the filter. Using this
quantization, we can further reduce the number of computa-
tions while maintaining recognition accuracy.

CNNs have many layers, and each layer has many fil-
ters as shown in Fig. 1. Figure 1 (a) shows a conventional
quantization where all weights are quantized to 16 bits,
meaning all calculations are executed with 16-bit precision.
Figure 1 (b) shows a layer-wise, or layer-by-layer, quantiza-
tion. In this case, the weights are quantized with variable
bit precision depending on layers, thus reducing the number
of computations. To further reduce the number of computa-
tions, we proposed a filter-wise quantization algorithm [16]–
[18], [21] that assigns variable bit precision for weights filter
by filter, as shown in Fig. 1 (c).

The right side in Fig. 1 shows distributions of bit pre-
cision in one layer. In the case of layer-wise quantization,
since the bit precision in any one layer is uniform, all the
weights in the layer are represented with, for instance, 4-
bit precision, as shown in the right graph in Fig. 1 (b). On
the other hand, the bit precision distribution in a layer with
filter-wise quantization spreads as shown in Fig. 1 (c). For
quantitatively comparing differences in the bit precision dis-
tributions of the quantization methods shown in Fig. 1 (a)–
(c), we define the average bit precision as

Average bit precision =

∑L−1
l=0
∑Ml−1

ml=0 bml × N̂ml∑L−1
l=0
∑Ml−1

ml=0 Nml

, (1)

where L is the number of layers, Ml is the number of filters
in layer l, bml is the bit precision for weights in filter ml, N̂ml

is the actual number of computations for filter ml, and Nml

is the original number of computations for filter ml. N̂ml can
be smaller than Nml by applying Winograd convolution as
will be explained in Sect. 2.2.2. For the quantization meth-
ods in Fig. 1 (a) and (b), the average bit precision for Nth

Fig. 2 Top-5 accuracy of ResNet-50 on ImageNet vs. average bit pre-
cision when all convolutional layers are quantized. Activations are 8-bit
quantized (c©2018 IEEE [16]).

layer is 16-bit and 4-bit, respectively. However, the aver-
age bit precision under the filter-wise quantization shown in
Fig. 1 (c) is smaller than the 4 bits of the layer-wise quanti-
zation method shown in Fig. 1 (b).

Figure 2 shows the relationship between top-5 accuracy
for ResNet-50 [5] on ImageNet and average bit precision.
The horizontal dashed line at 92.8 % shows the accuracy
when all weights are quantized to 16-bit precision, which is
actually the same accuracy as before quantization. The av-
erage bit precisions for the layer-wise and filter-wise quanti-
zation methods are respectively shown as red and blue sym-
bols in Fig. 2. The average bit precision for the filter-wise
quantization is reduced to 3.6 bits with the top-5 accuracy
of 92.8 %, whereas the accuracy obtained using layer-wise
quantization is decreased to below 50 % at 3.6-bit precision.
These results verify that the filter-wise quantization can re-
duce the average bit precision while better maintaining ac-
curacy than does layer-wise quantization.

We applied the proposed filter-wise quantization to
other neural networks for CIFAR-10 and ImageNet to con-
firm the applicability of our proposed scheme (Fig. 3). We
can apply our proposed method to quantization-aware train-
ing like LQ-Net [23] and ABC-Net [24], but this is left to
future work. Here, we apply our filter-wise quantization to
post-training for comparison. In each evaluation, filter-wise
quantization compresses the average bit precisions much
more than does layer-wise quantization. Figure 2 shows
the results for ResNet-50 on ImageNet. As Fig. 3 (a) shows,
Wide ResNet in particular maintains recognition accuracy at
lower bit precisions, indicating that the Wide ResNet struc-
ture is redundant for CIFAR-10. We can thereby estimate an
appropriate network size.

2.1.2 Readjustment of Quantization Step Δ

We introduce a distribution-based filter-wise quantization
scheme for maintaining accuracy. The quantization step Δ
is readjusted for effective use of the reduced bit width.

As shown in Fig. 4 (a), we assume the quantization step
Δ was initially set such that Filter 1 weights are 4-bit quan-
tized. When applying layer-wise quantization, the weights
for all other filters in the same layer are also covered within
16 bins. This is adequate for the Filter1 in Fig. 4 (a), but
weights in Filters 2 and 3 may sit within only 6 and 4

516
IEICE TRANS. ELECTRON., VOL.E103–C, NO.10 OCTOBER 2020

Fig. 3 Top-1 accuracy vs. average bit precision of several neural net-
works on (a) CIFAR-10 and (b) ImageNet (c©2019 IEEE [18]).

Fig. 4 (a) Layer-wise quantization, (b) filter-wise quantization, and
(c) after readjustment (c©2019 IEEE [17]).

consecutive bins, respectively. In that situation, we individ-
ually assign appropriate bit widths for weights in each filter,
using the filter-wise quantization described in Sect. 2.1.1.
As shown in Fig. 4 (b), we can represent the weights for Fil-
ters 2 and 3 with 3 and 2 bits, respectively, instead of 4. The
bit width for each filter is determined in this manner accord-
ing to the weight distribution, and the resultant average bit
precision becomes smaller than 4 bits.

After determining the bit precision of each filter by the
procedure described above, we readjust Δ to eliminate the
underutilization. In the middle of Fig. 4 (b), for example,
the weights are in 6 bins but represented with 3 bits. To
eliminate this wastefulness and fully exploit the 3-bit rep-
resentation for higher accuracy, we readjust Δ to divide the
weight distribution in the Filter 2 into 8 bins, as shown in
Fig. 4 (c).

Fig. 5 Even and odd rounding for weight quantization.

Fig. 6 Rounding type for quantization. Recognition accuracy vs. average
bit precision for the 18th layer of ResNet-20 on CIFAR-10. Filter-wise
quantization is applied only to the 18th layer. Weights of other layers are
not quantized.

2.1.3 Adaptive Rounding Method

For adequate quantization of the weights, we introduce a
rounding method we call “adaptive rounding.” Both even
and odd rounding, respectively shown by Eqs. (2) and (3),
are used for adaptive rounding, depending on the relation-
ship between the quantization step Δ and the distribution
range of the weights.

Q(W,Δ) = floor
(W
Δ

)
+ 0.5 (even rounding) (2)

Q(W,Δ) = floor
(W
Δ
+ 0.5

)
(odd rounding) (3)

Here, W is the weight value, Δ is the quantization step, and
Q(W,Δ) is the normalized weight value after rounding. Ex-
amples of the even and odd rounding methods are shown in
Fig. 5 (a) and (b), respectively.

Figure 6 shows the relationship between the bit preci-
sion of various rounding methods and recognition accuracy,
calculated under various quantization steps Δ. Filter-wise
quantization is applied to the 18th layer in ResNet-20 on

MAKI et al.: WEIGHT COMPRESSION MAC ACCELERATOR FOR EFFECTIVE INFERENCE OF DEEP LEARNING
517

Fig. 7 Proposed quantization algorithm.

CIFAR-10, and weights in the other layers are not quan-
tized. The horizontal axis in Fig. 6 indicates the average bit
precision of the weights in the 18th layer.

When the weight distribution is sufficiently larger than
Δ, that is, when the number of bits is large, recognition ac-
curacies using either the odd or even rounding method are
almost the same; since the quantization step Δ is sufficiently
small, differences in the two rounding methods are not dom-
inant for recognition accuracy. With odd rounding, recogni-
tion accuracies rapidly degrade at around 2 bits. However,
even rounding requires at least two bins (Fig. 5 (c)), so it
cannot represent less than 1 bit, as shown in Fig. 6.

To achieve adequate rounding at a wide range of bit
precisions, we developed adaptive rounding that uses even
rounding when Δ is smaller than the weight distribution and
the odd rounding when Δ exceeds the weight distribution.
As shown in Fig. 6, even rounding achieves higher accuracy
in the 1-2 bit range, so we adopt even rounding when Δ is
smaller than the weight distribution. Because even rounding
cannot represent less than 1 bit, as previously mentioned, we
adopt odd rounding as shown in Fig. 5 (d) when Δ exceeds
the weight distribution. As Fig. 6 shows, using adaptive
rounding achieves high recognition accuracy over a wide
range of bit precisions.

2.1.4 Overall Algorithm for Filter-Wise Quantization

Figure 7 shows overall algorithm of the filter-wise quanti-
zation. Input parameter is the quantization step Δ and the
weight values before quantization. In the step 1, the weights
are quantized and normalized using the adaptive rounding
method. The quantization step Δ is readjusted from the step
2 to step 4, and the weights are quantized and normalized
again using the readjusted quantization step.

In actual multiply-accumulate (MAC) computations in
this work, the quantized and normalized weights mq are
used, and the results of the MAC computations are de-
quantized by multiplied by the readjusted quantization step
Δad j.

Fig. 8 Label-free fine tuning by renormalization (c©2019 IEEE [17]).

Fig. 9 Required number of samples for fine tuning (c©2019 IEEE [17]).

2.2 Other Techniques for Improving Energy Efficiency
while Maintaining Accuracy

2.2.1 Label-Free Fine Tuning by Re-Normalizing Activa-
tions

We introduce label-free fine tuning that does not require
backpropagation training using labeled datasets to recover
accuracy degraded by quantization. Figure 8 shows our fine-
tuning approach [17]. We update only normalization param-
eters of μ and σ2 in batch normalization [20] layers for fine
tuning. Typically, when updating parameters in a neural net-
work, backpropagation training using labeled datasets is re-
quired to compute gradients. However, the normalization
parameters of μ and σ2 can be updated by just computing
the mean and variance of the data passing through batch nor-
malization layers during forward propagation. The proposed
fine-tuning method therefore recovers accuracy with no la-
beled dataset and backpropagation computations. By adjust-
ing normalization parameters of μ and σ2 in batch normal-
ization layers, misalignment of the weight distribution due
to the quantization can be corrected, recovering accuracy.

We evaluated our method using ResNet-50 on the
ImageNet dataset, investigating how many image samples
are required for the proposed label-free fine tuning. We
split 50,000 samples from the ImageNet validation data into
16,000 images for fine tuning and 34,000 images for eval-
uating accuracy. Figure 9 shows the recognition accuracies
over numbers of images randomly sampled from among the

518
IEICE TRANS. ELECTRON., VOL.E103–C, NO.10 OCTOBER 2020

16,000 images and utilized for the proposed fine tuning.
This experiment shows that label-free tuning using 500 sam-
ples sufficiently recovers degraded accuracy due to quan-
tization, since the accuracies saturate when the number of
samples exceeds 500 (Fig. 9).

2.2.2 Reduction of Computations by Winograd Convolu-
tion

To reduce the number of computations we use the Winograd
convolution [8], which can reduce the number of computa-
tions to 16/36 = 1/2.25 while increasing the weight param-
eters by 16/9. This reduces N̂ml (the actual number of com-
putations for filter ml) in the numerator of Eq. (1), meaning
the average bit precision is also reduced. In the Winograd
convolution, preprocessing is executed before MAC compu-
tation and postprocessing is executed after. Although pre-
and postprocessing induces overhead, it is usually negligi-
ble because the number of MAC computations is sufficiently
large.

Figure 10 shows the relationship between accuracy and
average bit precision when the weights in all the convolu-
tion layers are quantized at various average bit precisions
and activations are quantized at a fixed 8 bits. Applying
distribution-based filter-wise quantization and a readjust-
ing scheme (blue line), the average bit precision is reduced
by around 1 bit in comparison with layer-wise quantiza-
tion (gray line). The improvement from the blue line to the
green line shows the effectiveness of the Winograd convolu-
tion. Accuracy is also recovered by applying the proposed

Fig. 10 Top-1 accuracy with ResNet-50 on ImageNet (c©2019
IEEE [17]).

Table 1 Comparison of the state-of-the-art post-training quantization on
ImageNet (c©2019 IEEE [17]).

label-free fine-tuning (red line). Here, we achieved 74.3%
top-1 accuracy with 3.04 average bits.

Table 1 shows a comparison with the overall perfor-
mance of other methods. Top-1 accuracy of ImageNet is
1.1% better than the results in [19] when the bit widths of
weights and activations are almost the same at 4 bits and
8 bits respectively. The accuracy with 4-bit weights and 4-
bit activations is also better. Furthermore, the proposed tech-
niques can further reduce the average bit precision without
noticeable accuracy loss, e.g., 71.3% with 2.54-bit weights
and 8-bit activations.

3. MAC Processor for Filter-Wise Variable Bit Preci-
sion

Figure 11 conceptually describes the strategy for improving
hardware utilization. The hardware architecture has eight
processing units PE0-PE7 operating in parallel as MAC pro-
cessors. Figure 11 also shows PE utilization, with colored
tiles indicating processing PEs and gray tiles indicating idle
PEs. The bit-serial technique, where multiplication is exe-
cuted bit by bit using multiple cycles as shown in Fig. 11 (a)
and (b), is often used to realize variable bit precision. For
example, if the weights have 5-bit precision, multiplication
requires 5 cycles. With layer-wise quantization, since bit
precisions of weights are the same among the same-layer
filters, computations for same-layer filters are densely as-
signed and can be effectively executed in parallel, as shown
in Fig. 11 (a).

On the other hand, when the proposed filter-wise quan-
tization is employed with the bit-serial technique, the num-
ber of execution cycles varies depending on the bit preci-
sion for each filter, as shown in Fig. 11 (b). Using conven-
tional bit-serial and parallelized hardware architectures does
not improve throughput or processing times, due to the de-
terioration of PE utilization despite the reduced number of
computations. In other words, conventional bit-serial and
parallelized hardware architecture cannot fully exploit the
advantages of filter-wise quantization.

We propose a bit-parallel architecture that can re-
solve this mismatch between the proposed filter-wise quan-
tization and conventional hardware architectures. In the

Fig. 11 Concept of the proposed parallel multiply-accumulate (MAC)
processor with variable bit precision. (a) Bit-serial and layer-wise, (b) bit-
serial and filter-wise, (c) bit-parallel and filter-wise (c©2018 IEEE [16]).

MAKI et al.: WEIGHT COMPRESSION MAC ACCELERATOR FOR EFFECTIVE INFERENCE OF DEEP LEARNING
519

Fig. 12 Example of the proposed parallel multiply-accumulate (MAC)
processor with variable bit precision (c©2018 IEEE [16]).

proposed bit-parallel architecture, MAC computations for
each weight bit are assigned to several PEs in parallel in-
stead of over multiple cycles, as shown in Fig. 11 (c). By
employing this architecture, we can improve throughput and
processing times due to the increased PE utilization.

Figure 12 shows details of the proposed bit-parallel
MAC processor with filter-wise variable bit precision. This
architecture is designed to execute the following algorithm.
A signed B-bit weight is represented as

wn = −2B−1w(B−1)
n + 2B−2wB−2

n

+ · · · + 21w(1)
n + 20w(0)

n , (4)

where w(b)
n is a binary value (0 or 1). Using this representa-

tion, a MAC computation is

N−1∑
n=0

wnxn =

N−1∑
n=0

(
−2B−1w(B−1)

n xn + · · · + 20w(0)
n xn

)
, (5)

which can be rewritten as

= −2B−1
N−1∑
n=0

w(B−1)
n xn+· · ·+20

N−1∑
n=0

w(0)
n xn. (6)

Here, N is the number of accumulations, which is the prod-
uct of the number of channels and the kernel height and ker-
nel width for normal convolution computations, or the num-
ber of channels for Winograd convolution computations [8].
Therefore, a MAC computation with multiple-bit weights
can be computed by summing properly bit-shifted results of
MAC computations by each 1-bit weight as Eq. (6).

The following describes concrete processes of the pro-
posed MAC processor shown in Fig. 12. There are 8 verti-
cal MAC units and 2 horizontal MAC units, with each MAC
unit comprising an accumulator and a register. There are
5 filters respective bit widths of 3, 2, 4, 2, and 5 bits. We
unroll each bit width into 1-bit weights for the MAC com-
putation units in parallel. These 1-bit weights are inputs to

Fig. 13 Order of accumulation and bit synthesis (c©2018 IEEE [16]).

an enable signal (EN) port of the accumulator. The accu-
mulator is enabled and accumulates input activation values
only when the weight value is 1. After completing N accu-
mulation cycles, we sum properly bit-shifted results of MAC
computations shown in Eq. (6), a procedure we call “bit syn-
thesis.” In each phase, N accumulation cycles are executed
in each unit without storing and/or loading intermediate re-
sults (output stationary in [1]), the memory bandwidth can
be reduced.

As shown in Fig. 12, input activations x0,n and x1,n are
vertically broadcasted and reused in 8 MAC units for mul-
tiplying with 8 different 1-bit weights. Weights are hori-
zontally broadcasted and reused in 2 MAC units for mul-
tiplying with 2 different input activations. This 2-D reuse
strategy minimizes the amount of weight loading and buffer
activations for executing a certain number of MAC compu-
tations [10]. In the example shown in Fig. 12, since we have
only 8 MAC units in a column, only 8-bit widths are calcu-
lated: 3 bits for Filter 0, 2 bits for Filter 1, and the upper 3
of 4 bits for Filter 2 are calculated in the first phase. In the
second phase, MAC computations for the remaining 1 bit
for Filter 2, 2 bits for Filter 3, and 5 bits for Filter 4 are
executed. After accumulation, bit-synthesis for Filter 2 is
executed with the registered intermediate result computed
in the previous phase. Here, we have a simple codebook for
indicating a delimiting point for the bit widths of each filter,
so we can synthesize the registered MAC results of the pre-
vious phase. Bit synthesis with a simple codebook allows
the proposed MAC processor to greedily utilize PE.

Figure 13 shows the bit-synthesis schedule. The first
above described phase indicates group 1 and the second in-
dicates group 2. Since the MAC computations take many
more cycles than does bit synthesis, even when bit synthesis
is executed in series on a single circuit, the latency due to bit
synthesis is completely hidden behind the next MAC com-
putations (Fig. 13). Therefore, throughput is maximized to
a value determined by only the MAC array.

We perform bit synthesis after accumulation instead of
accumulation after bit-synthesis which is employed in [13],
this computation order enables to reduce the required dy-
namic range of each accumulator as well as to reduce the
number of additions from “B × N” to “B + N”. Note that
the proposed computation order is based on Eq. (6) and is
equivalent to Eq. (5).

Consequently, the proposed architecture both maxi-
mizes the number of simultaneously executed filters and

520
IEICE TRANS. ELECTRON., VOL.E103–C, NO.10 OCTOBER 2020

also keeps resource utilization close to 100%, even if the
number of filter bit-widths is misaligned with the number
of implemented MAC units. The proposed MAC processor
with bit-parallel architecture is thus better suited to parallel
computing with the filter-wise optimized bit precision than
are bit-serial architectures [9].

4. FPGA Implementation

4.1 Architecture of an FPGA-Based MAC Processor

Figure 14 shows details of the proposed MAC processor im-
plemented on an FPGA. The implemented MAC processor
has 16× 16 MAC units with 4 processors on the FPGA. The
bit synthesizer is also implemented on the FPGA, placed in
each column.

To reduce the number of computations, as described in
Sect. 2.2.2 our implementation supports the Winograd con-
volution. Weights are preprocessed for the Winograd con-
volution in advance and stored in memory. The Winograd
preprocessor converts 4 × 4 input activations to 4 × 4 pre-
processed input activations on the fly. These 16 prepro-
cessed input activations are multiplied with 16 different 1-
bit weights and accumulated in parallel (represented as the
16 columns in Fig. 14). The Winograd pre- and postproces-
sors are placed in each plane in Fig. 14. As described in the
previous section, we employ further 2D parallelism, reusing
16 weights for input activation (the 16 rows in Fig. 14) and 4
input activations for reused weights (the 4 planes in Fig. 14).
Furthermore, we can reduce the bandwidth for loading acti-
vations, i.e. by exploiting that parts of input activations are
used in multiple planes, we load only 40 activations instead
of 16 × 4 = 64 activations per cycle. The sliding window
overlap operations of convolutions permit such reuse of the
input activations.

Figure 15 shows the pipeline strategy employed in the
proposed MAC processor. All operations are pipelined to
increase throughput. At first, input activations are prepro-
cessed for the Winograd convolution and fed to the proposed
MAC array. Weights are also preprocessed for the Winograd
convolution in advance and stored in a block RAM (BRAM)
buffer, then directly fed to the MAC array. After completing
MAC computations, outputs are synthesized to obtain the
multiple-bit weight using a codebook with additional bit-
widths information, also loaded from an on-chip buffer. Fi-
nally, the postprocessing for the Winograd convolution is
applied. BN and ReLU are not implemented in this work.

The bottom of Fig. 15 shows the throughput and paral-
lelism. For example, since there are 16×16×4 MAC units in
this MAC processor, its parallelism is expressed as 16PxPW ,
as shown at the bottom of Fig. 15. Px is the degree of paral-
lelism in the depth direction, which as shown in Fig. 14 is 4.
PW is the vertical parallelism, which is 16 in this work. The
bit synthesis has 16×Px MAC units and its parallelism is ex-
pressed as 16Px. As mentioned above, since MAC compu-
tation results are output only N times, throughput is reduced
to 1/N. The following Winograd postprocessing can thus be

Fig. 14 Detailed FPGA architecture of the implemented MAC processor
with filter-wise variable bit precision (c©2018 IEEE [16]).

Fig. 15 Pipeline strategy of the proposed CONV engine. Px = 4 and
Pw = 16 in this work. N and M are the number of input channels and the
number of filters, respectively (c©2018 IEEE [16]).

Fig. 16 System architecture of the proposed MAC processor, imple-
mented on an FPGA (c©2018 IEEE [16]).

sequentially executed, reducing the dimension of circuits.
When 1 × 1 filters are employed in convolutional layers, we
cannot exploit the Winograd convolution. In this case, the
Winograd operation can be skipped.

4.2 FPGA System Architecture

We implemented the proposed architecture on a Xilinx
ZCU102 Zync UltraScale+MPSoC board. Figure 16 shows
the system architecture implemented in this work. Weights
and activations input to the proposed MAC processor are

MAKI et al.: WEIGHT COMPRESSION MAC ACCELERATOR FOR EFFECTIVE INFERENCE OF DEEP LEARNING
521

loaded from external DRAM to BRAM buffers in advance
by a DMA controller, and a codebook is loaded as well.
Weights and activations are then fed to the MAC proces-
sor in the proper order under control of the programmable
sequencer. Although our design includes 1024 parallel 1-
bit MAC processors, FPGA gate utilization is only around
20%, and it is notable that DSP48 instances are not used at
all.

5. Experimental Results

To validate the effectiveness of the proposed architecture,
we measured execution times of the proposed implemen-
tation and a conventional implementation of fixed 16-bit
weights. We first quantize the pretrained weights of ResNet-
50 on ImageNet for the filter-wise optimized bit precision.
As shown in the upper panel of Fig. 17, compared with
layer-wise quantization, the product of the number of MAC
operations and the number of bits for weights (“MAC × bit,”
below) for the filter-wise optimized bit precision is signifi-
cantly reduced under the same penalty of top-5 accuracy.

In the lower graph in Fig. 17, the gray solid line shows
the theoretical lower limit on execution cycles assuming
hardware with 64 MAC units for 16-bit weights, with ex-
ecution cycles ideally proportional to MAC × bit. As shown
in the figure, the execution cycles measured in our imple-
mentation are very close to the theoretical limits, with aver-
age utilization of the MAC units exceeding 97%. Compared
with the case of 16-bit fixed bit precision and the case of a
layer-wise optimized implementation, numbers of execution
cycles are reduced (i.e. the throughput is increased) by 5.3x
and 1.4x, respectively. Note that the throughput itself is not
very large compared to e.g. [25] due to the limited number
of MAC units and low clock frequency of 100 MHz and the
improvement of them is our future work.

Figure 18 shows a comparison of the numbers of ex-
ecution cycles for each layer under the proposed architec-
ture and a conventional architecture. Numbers of execution
cycles are significantly reduced under the proposed archi-
tecture. Our design fully supports convolutional computa-
tion with filter-wise quantized weight-bit precision, which
reduces computations with no accuracy penalty.

Figure 19 shows the experimental setup. We ran
ResNet-50 for the image classification task on the ZCU102
board. All 52 convolutional layers, except for the first layer
with a 7×7 kernel, are executed on the FPGA where the pro-
posed architecture is implemented. Other operations such as
element-wise add in ResNet-50 and data movement between
external DRAM and the FPGA are executed on a Zynq CPU.
The screen in Fig. 19 shows an image of a rabbit to be clas-
sified, and the bar plot indicates that the image is correctly
inferred as “wood rabbit, cottontail, cottontail rabbit.”

6. Conclusion

We proposed filter-wise quantization of weights to re-
duce the number of computations for convolutional

Fig. 17 Top: top-5 accuracy vs. normalized MAC × bit. The horizon-
tal axis shows the product of the number of computations and the number
of weight bits normalized to that number before applying our quantization
method (16-bit weight). Bottom: number of execution cycles vs. normal-
ized MAC × bit (c©2018 IEEE [16]).

Fig. 18 Comparison of numbers of execution cycles under the proposed
architecture vs. a conventional architecture, assumed as a 64-bit parallel ar-
chitecture for a 16-bit-fixed MAC that consumes hardware resources simi-
lar to the proposed one (c©2018 IEEE [16]).

Fig. 19 Experimental setup (c©2018 IEEE [16]).

neural-network inference while maintaining high accuracy.
Specifically, we introduced distribution-based filter-wise
quantization as a concrete quantization method, readjust-
ing the quantization step Δ to maintain accuracy, applying
a rounding method to adequately reduce bit precision, and

522
IEICE TRANS. ELECTRON., VOL.E103–C, NO.10 OCTOBER 2020

fine-tuning method without backpropagation using a labeled
dataset. Furthermore, we proposed a bit-parallel architec-
ture that fully exploits the reduced bit precision, reducing
execution time in proportion to the number of operation bits.
We implemented the proposed architecture on an FPGA and
demonstrated that applied in the case of ResNet-50 runnning
on ImageNet, the number of execution cycles is reduced by
5.3x without penalty in top-5 accuracy in comparison with
the 16-bits fixed case.

Acknowledgments

The authors would like to thank Takahisa Kaihotsu, Takeshi
Kumagaya, and Yoshio Masubuchi for their supports.

References

[1] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,”
43rd Annual International Symposium on Computer Architecture
(ISCA), pp.367–379, 2016.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” CVPR09,
2009.

[3] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, “Accelerating low
bit-width convolutional neural networks with embedded FPGA,”
2017 27th International Conference on Field Programmable Logic
and Applications (FPL), 2017.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,”
ArXiv:1703.06870, March 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” ArXiv:1512.03385, Dec. 2015.

[6] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
ArXiv:1704.04861, April 2017.

[7] A. Krizhevsky, I. Sutskever, and H.E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, pp.1097–1105, 2012.

[8] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural
Netwo Networks,” ArXiv:1509.09308, Sept. 2015.

[9] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6TOPS/W unified deep neural network accelerator with 1b-
to-16b fully-variable weight bit-precision,” 2018 IEEE International
Solid – State Circuits Conference - (ISSCC), Feb. 2018.

[10] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang,
“Mixed-signal circuits for embedded machine-learning applica-
tions,” 2015 49th Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, pp.1341–1345, 2015. doi: 10.1109/
ACSSC.2015.7421361

[11] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural net-
works,” Computer Vision ECCV, pp.525–542, 2016.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Net-
works,” ArXiv:1506.01497, June 2015.

[13] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Compos-
able Architecture for Accelerating Deep Neural Network,” 2018
ACM/IEEE 45th Annual International Symposium on Computer Ar-
chitecture (ISCA), Los Angeles, CA, pp.764–775, 2018. doi:
10.1109/ISCA.2018.00069

[14] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based accelerator design for deep convolutional neural

networks,” Proc. 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp.161–170, 2015.

[15] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P.
Frossard, “Adaptive Quantization for Deep Neural Network,”
ArXiv:1712.01048, Dec. 2017.

[16] A. Maki, D. Miyashita, K. Nakata, F. Tachibana, T. Suzuki, and
J. Deguchi, “FPGA-based CNN processor with filter-wise-opti-
mized bit precision,” IEEE Asian Solid-State Circuit Conference
(A-SSCC), pp.47–50, 2018. A-SSCC2018.

[17] S. Sasaki, A. Maki, D. Miyashita, and J. Deguchi, “Post Training
Weight Compression with Distribution-based Filter-wise Quantiza-
tion Step,” Cool Chips, 2019.

[18] J. Deguchi, D. Miyashita, A. Maki, S. Sasaki, K. Nakata, and F.
Tachibana, “Can in-memory/analog accelerators be a silver bullet
for energy-efficient inference?,” 2019 IEEE International Electron
Devices Meeting (IEDM), 2019.

[19] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post training
4-bit quantization of convolution networks for rapid-deployment,”
arXiv:1810.05723v2, Jan. 2019.

[20] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
arXiv:1502.03167v3, March 2015

[21] K. Nakata, A. Maki, D. Miyashita, F. Tachibana, T. Suzuki, and J.
Deguchi, “Live Demonstration: FPGA-based CNN Accelerator with
Filter-Wise-Optimized Bit Precision,” IEEE International Sympo-
sium on Circuits and Systems (ISCAS), 2019.

[22] R. Krishnamoorthi, “Quantizing deep convolutional networks for ef-
ficient inference: A whitepaper,” arXiv:1806.08342v1, June 2018.

[23] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned Quan-
tization for Highly Accurate and Compact Deep Neural Networks,”
The European Conference on Computer Vision (ECCV), Sept. 2018.

[24] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Convolu-
tional Neural Network,” Advances in Neural Information Processing
Systems 30 (NIPS 2017), pp.343–353, 2017.

[25] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella,
M. Blott, L. Lavagno, K. Vissers, J. Wawrzynek, and K. Keutzer,
“Synetgy: Algorithm-hardware Co-design for ConvNet Accelera-
tors on Embedded FPGAs,” Proc. 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA’2019),
Feb. 2019.

Asuka Maki received the B.E. and M.E. de-
grees in electronic engineering from the Tokyo
University of Science, Tokyo, Japan, in 2000
and 2002, respectively. In 2002, she joined Re-
search and Development Center, Toshiba Cor-
poration, Kawasaki, Japan, where she has been
engaged in the design of RF and analog cir-
cuits for wireless communications. In 2017, she
joined Kioxia Corporation, Kawasaki, Japan.
She has been engaged in research and develop
of efficient hardware and algorithms for deep

learning.

http://dx.doi.org/10.1109/isca.2016.40
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.23919/fpl.2017.8056820
http://dx.doi.org/10.1109/isscc.2018.8310262
http://dx.doi.org/10.1109/acssc.2015.7421361
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1109/isca.2018.00069
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1109/asscc.2018.8579342
http://dx.doi.org/10.1109/coolchips.2019.8721356
http://dx.doi.org/10.1109/iedm19573.2019.8993500
http://dx.doi.org/10.1109/iscas.2019.8702208
http://dx.doi.org/10.1007/978-3-030-01237-3_23
http://dx.doi.org/10.1145/3289602.3293902

MAKI et al.: WEIGHT COMPRESSION MAC ACCELERATOR FOR EFFECTIVE INFERENCE OF DEEP LEARNING
523

Daisuke Miyashita received the B.E. and
M.E. degrees in electronic engineering from the
University of Tokyo, Tokyo, Japan, in 2001 and
2003, respectively. In 2003, he joined Center
for Semiconductor Research and Development,
Toshiba Corporation, Kawasaki, Japan, where
he was engaged in the design of RF and ana-
log circuits for wireless communications. He is
now with the Institute of Memory Technology
Research & Development, Kioxia Corporation,
Kawasaki, Japan. His research interests include

efficient mixed-signal/digital hardware for machine learning applications
and algorithms designed for such hardware. From 2015 to 2016, he was a
visiting scholar at Stanford University, Stanford, CA, USA, where he has
engaged in the research on the efficient implementation of deep learning
algorithms on hardware.

Shinichi Sasaki received the B.E. and M.E.
degrees in electrical engineering from Kyushu
University, Fukuoka, Japan, in 2007 and 2009,
respectively. In 2009, he joined the Center
for Semiconductor Research and Development,
Toshiba Corporation, Kawasaki, Japan, where
he was engaged in SRAM and RF analog circuit
design. He has been joined Institute of Memory
Technology Research and Development, Kioxia
Corporation, Yokohama, Japan, since 2017. His
current research interests include computer ar-

chitecture and energy-aware signal processing algorithm for deep learning.

Kengo Nakata received the B.E. degree
in electrical and electronic engineering and the
M.E. degree in physical electronics from the
Tokyo Institute of Technology, Tokyo, Japan,
in 2014 and 2016, respectively. In 2016,
he joined the Center for Semiconductor Re-
search and Development, Toshiba Corporation,
Kawasaki, Japan, where he was involved in the
design of analog circuits for wireless communi-
cations. In 2017, he joined Kioxia Corporation,
Kawasaki, Japan. His current research interest

includes efficient hardware for machine learning applications.

Fumihiko Tachibana received the B.E. and
M.E. degrees in electronics engineering from
the University of Tokyo, Tokyo, Japan, in 2003
and 2005, respectively. In 2005, he joined the
Center for Semiconductor Research and Devel-
opment, Toshiba Corporation, Kawasaki, Japan,
where he was engaged in research and devel-
opment of low-power digital circuits, embed-
ded SRAMs, image sensors, and high speed I/O.
From 2013 to 2014, he was a Visiting Scholar
with Stanford University, Stanford, CA, USA,

where he was involved in research on energy efficient image sensors. In
2017, he joined Kioxia Corporation, Kawasaki, Japan, where he has been
engaged in research and development of efficient hardware and algorithms
for machine learning applications, and data converter for high speed I/O.
His current research interests include data converter for high speed I/O.

Tomoya Suzuki received the M.E. from
Nara Institute of Science and Technology, Japan
in 2006. From 2006 to 2017, he worked at Cen-
ter for Semiconductor Research and Develop-
ment in Toshiba Corporation to design hardware
and software for wireless communications. In
2017, he moved to Institute of Memory Tech-
nology Research and Development in Kioxia
Corporation, where he is currently working to
design new computing systems using emerging
memories.

Jun Deguchi received the B.E. andM.E. de-
grees in machine intelligence and systems engi-
neering and the Ph.D. degree in bioengineering
and robotics from Tohoku University, Sendai,
Japan, in 2001, 2003, and 2006, respectively. In
2004, he was a Visiting Scholar at the University
of California, Santa Cruz, CA, USA. In 2006, he
joined Toshiba Corporation, and was involved
in design of analog/RF circuits for wireless
communications, CMOS image sensors, high-
speed I/O, and accelerators for deep learning.

From 2014 to 2015, he was a Visiting Scientist at the MIT Media Lab,
Cambridge, MA, USA, and was involved in research on brain/neuro sci-
ence. In 2017, he moved to Kioxia Corporation (formerly ToshibaMemory
Corporation), and has been a Research Lead of an advanced circuit design
team working on high-speed I/O, deep learning/neuromorphic accelerators
and quantum annealing. Dr. Deguchi has served as a member of the tech-
nical program committee (TPC) of IEEE International Solid-State Circuits
Conference (ISSCC) since 2016, and IEEE Asian Solid-State Circuits Con-
ference (A-SSCC) since 2017. He has also served as a TPC vice-chair of
IEEE A-SSCC 2019, and a review committee member of IEEE Interna-
tional Conference on Artificial Intelligence Circuits and Systems (AICAS)
2020.

Ryuichi Fujimoto received his B.E., M.E.,
and Dr. Eng. degrees from Waseda University,
Tokyo, Japan, in 1988, 1990, and 2003, respec-
tively. He joined the Mobile Communication
Laboratory, Corporate Research and Develop-
ment Center, Toshiba Corporation, Kawasaki,
Japan, in 1991. Since then, he has been en-
gaged in the research and development of inte-
grated circuits and device models. In 2005, he
was transferred to Wireless & Multimedia LSI
Development Department, Toshiba Corp. Semi-

conductor Company. From 2009 to 2011, he was on loan to Semiconduc-
tor Technology Academic Research Center (STARC). After that, he was
with Center of Semiconductor Research & Development, Semiconductor
& Storage Products Company, Toshiba Corporation. Currently, he is with
Institute of Memory Technology Research and Development in Kioxia Cor-
poration. Dr. Fujimoto was an Associate Editor of IEICE Transactions on
Electronics from 2001 to 2004, IEICE Electronics Express (ELEX) from
2003 to 2008, and IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences from 2005 to 2009. He was a
secretary of the Japan Chapter of IEEE Circuits and Systems Society from
2008 to 2009. Currently, he is a chair of the Japan Chapter of IEEE Solid-
State Circuits Society. He is a member of the IEEE, IEEJ and JAAS.

