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SUMMARY Reducing power consumption is crucial for edge devices
using convolutional neural network (CNN). The zero-skipping approach for
CNNs is a processing technique widely known for its relatively low power
consumption and high speed. This approach stops multiplication and ac-
cumulation (MAC) when the multiplication results of the input data and
weight are zero. However, this technique requires large logic circuits with
around 5% overhead, and the average rate of MAC stopping is approxi-
mately 30%. In this paper, we propose a precise zero-skipping method that
uses input data and simple logic circuits to stop multipliers and accumula-
tors precisely. We also propose an active data-skipping method to further
reduce power consumption by slightly degrading recognition accuracy. In
this method, each multiplier and accumulator are stopped by using small
values (e.g., 1, 2) as input. We implemented single shot multi-box detector
500 (SSD500) network model on a Xilinx ZU9 and applied our proposed
techniques. We verified that operations were stopped at a rate of 49.1%,
recognition accuracy was degraded by 0.29%, power consumption was re-
duced from 9.2 to 4.4 W (−52.3%), and circuit overhead was reduced from
5.1 to 2.7% (−45.9%). The proposed techniques were determined to be
effective for lowering the power consumption of CNN-based edge devices
such as FPGA.
key words: convolutional neural network (CNN), SSD500 network, deep
neural network (DNN) implementation, low power consumption, embedded
AI technique

1. Introduction

Image recognition technology using deep neural network
has dramatically improved recognition accuracy compared
with previous rule-based algorithms. Such deep neural
network technology is starting to be implemented in edge
devices used in autonomous driving, medical equipment,
robotics, and infrastructure monitoring systems, etc. Widely
used for image classification, object detection, and segmen-
tation a number of convolutional neural network (CNN)
models have been proposed [1]–[6]. Although the recogni-
tion accuracy of a CNN improves as its layer structure be-
comes deeper, the amount of computation increases, and 10
giga to 100 giga-operations (GOP) are generally required
for each image. The enormous power consumption and pro-
cessing time of CNNs are dominated by convolutional op-
erations, so they need to be implemented efficiently by edge
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devices. Network compression methods that do not affect
recognition accuracy have been reported, as well as high-
speed low-power AI accelerators [7]–[9]. However, the mul-
tiplication and accumulation (MAC) occupies 70–90% of
the total convolution operation time, so it needs to be cal-
culated more efficiently to further reduce power consump-
tion. In previously developed zero-skipping techniques, the
MAC operation is skipped when the input data or weight is
zero in the filter unit of the convolution operation. So far,
there are some researches that realize speeding up convo-
lution operation by “zero-skipping technique” with FPGA
circuits [10], [11], and with a dedicated hardware accelera-
tor [12]–[15]. These techniques make good use of the CNN
calculation feature where the output of each layer, i.e., the
input data of the next layer, contains many zeros. This fea-
ture is effective for increasing computation speed and low-
ering power consumption. Some studies have driven the ef-
fective speed of convolution operations beyond the perfor-
mance of the accelerators itself [16]–[18].

In the zero-skipping technique, it is necessary to mon-
itor whether the input data or weight is zero for stopping
MAC operation. However, the CNN model compressed
for implementation in edge device has lower ratio of zero
weight than before compression, this is because the com-
pression process preferentially removes the weights that are
not calculated (that is, when they are zero). We noticed
that stopping each multiplier precisely using each zero in-
put data is more effective for conserving power than stop-
ping the MAC operation using all zero input data, i.e., the
zero-skipping technique. We also found that a large-scale
logic circuit is needed for monitoring both the input data
and weight to stop MAC operation. Thus, we propose the
following two techniques: precise zero-skipping, to stop
the multiplier and accumulator precisely using small-scale
gating-logic circuits that monitor only the input data (not the
weight), and active-skipping, to stop calculation if the input
data is a small value (e.g., 1 or 2 in 8-bit or 16-bit integers)
that does not affect recognition accuracy.

The rest of this paper is organized as follows: Section 2
describes the concepts and architectures of the proposed pre-
cise zero-skipping and active data-skipping methods. Sec-
tion 3 shows the results of implementing CNN on FPGA,
and the evaluation results of recognition accuracy, power
consumption, and circuit overhead in each method. Finally,
Sect. 4 concludes this paper.

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers
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2. Proposed Low Power Implementation Techniques

2.1 CNN Implementation Using Zero-Skip Technique

Figure 1 shows a general CNN configuration and a block
diagram of one neuron for implementation in hardware. In
the convolution layer of CNN, the n-th input data (Dn) and
m-th weight (Wm) based on filter size (F = f × f ) are multi-
plied and accumulated. Then, bit-shift processing is applied,
a bias coefficient is added, and finally, the ReLU (rectified
linear unit), which is one of the activation functions, is pro-
cessed. The ReLU processing outputs the input data with
negative values as zero, increasing the ratio of zero in the
input data of the next layer.

Next, we describe the implementation of zero skipping
on a hardware (HW) device. One way to implement this
technique is to stop operation using clock gating. A circuit
structure using zero skipping with clock gating is shown in
Fig. 2, where the n-th input data is Dn, the m-th weight is
Wm, the bit width of Dn and Wm are K-bit, and the filter
size is F = f × f . The input data and weight read from
the storage unit are judged by the K-bit NOR circuit as to
whether or not they are zero. In this paper, the judgment
logic related to clock gating, such as the NOR circuit, is
called gating logic (GL) circuit. The GL circuit for the n-th
input data is expressed as GLdn, the GL circuit for the m-th
weight is GLwm, and their outputs are expressed as Zdn and
Zwm, respectively. The conditional expressions for Zdn and
Zwm are as follows:

Zdn =

{
true : Dn = 0
false : Dn � 0

(1a)

Fig. 1 CNN structure and block diagram of convolution operation for
each filter

Zwm =

{
true : Wm = 0
false : Wm � 0

(1b)

When the NOR circuits of Zdn and Zwm are true for all MAC
operation units, the clock supply to the MAC operation is
stopped. Logic circuits that determine the clock supply for
the q-th MAC operation is expressed as GLMq. The condi-
tional expression for GLMq to stop MAC is as follows:

ZMq =
(
Zd(n+1) OR Zw1

)
AND

(
Zd(n+2) OR Zw2

)
AND · · ·

· · ·AND
(
Zd(n+F) OR ZwF

)
(2)

This configuration reduces power consumption since the
clock toggles of the flip-flop (FF) circuits in the MAC op-
eration unit, as well as the signal transition toggles for data
and weight, are disabled. However, the following two issues
arise when using the zero-skipping technique in this config-
uration: MAC operation is not stopped frequently, and the
GL circuit overhead is large.

The GL circuits consist of the K-bit NOR for each in-
put and weight data, the 2-bit OR circuits for each multi-
plier, and the F-bit AND circuits for each accumulator. The
GL circuit increases based on the number of parallel MAC
operations that can be implemented in the device. Numer-
ous parallel operations are required to improve processing
speed, so the addition of GL circuit results in a very large
circuit overhead of around 5% for the MAC circuit. The
number of parallel circuits is P and the number of GL cir-
cuit input bits (AND, OR, etc.) are as follows:

BGLtotal = P
(
BGLd + BGLW + BGLM

)
= P{K + K + (2F + F)}

Fig. 2 Overview of clock-gating structure using zero-skipping for MAC
operation circuit
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Fig. 3 Distribution of zero data ratio in each layer of SSD500 (data set:
500 cityscape images)

Fig. 4 Distribution of zero weight ratio in each layer of SSD500 (training
data set: 3,000 cityscape images)

= P(2K + 3F) (3)

where BGLd , BGLW , and BGLM are the number of GLdn, GLwm,
and GLMq input bits, respectively, and BGLtotal is the circuit
overhead using zero-skipping technique. The addition of
GL circuits negates the reduction in power consumption.
Therefore, it is necessary to stop operation units more fre-
quently and implement a clock-gating function with a small
circuit overhead in order to further reduce power consump-
tion.

Figure 3 shows the ratio of the input data to zero in the
each layers 1–21 in the single shot multi-box detector 500
(SSD500) network model using 500 images of Cityscape
dataset. “Ratio of 0 per multiplier” means the ratio of 0 in
the input data to each multiplier, and “Ratio of 0 per MAC”
means the ratio that all the inputs data (Dn+1 ∼ Dn+F in
Fig. 1) to MAC are 0 in the each layers. In zero skipping,
the MAC operation is stopped when the all multiplication
result of the input data and weight is zero. As shown in the
figure, the average rate of MAC stopping is about 30% (red
line), despite the 50–60% ratio of zero per input data (blue
line). Future developments may enable more operations to
be stopped.

On the other hand, Fig. 4 shows the ratio of the weight
to zero for each layers 1–21 in the SSD500 network model.

Fig. 5 Proposed precisely zero-skipping clock-gating structure for MAC
operation

These weight values were trained with 3,000 images of
Cityscape dataset. As shown in the figure, the average ra-
tio of weight to 0 is about only 5% (blue line). The CNN
model compressed for implementation in edge device has
lower ratio of zero weight than before compression, this is
because the compression process preferentially removes the
weights that are not calculated (that is, when they are zero).

In the next subsection, we describe the proposed tech-
niques that efficiently conserve the power consumption of
the compressed CNN model with above features.

2.2 Proposed Precise Zero-Skipping Method

In conventional zero skipping, many OR circuits are re-
quired for Zdn and Zwm, as shown in Eq. (2), which increases
the circuit overhead. If the OR circuits are removed and
only Zdn is used, the stopping ratio of MAC is reduced by
about 5% as shown in Fig. 4. Our proposed approach stops
the multipliers using only Zdn (as shown in Fig. 5) instead
of stopping the MAC operation entirely. We propose a pre-
cise zero-skipping method that increases the stop ratio of
multipliers to around 60%. The accumulators implement F
(filter size) additions by incorporating multiple additions to
the tournament formula. In order to stop the F-input accu-
mulator precisely, we arranged a logic circuit that stops if
the input data is all zeros in the first-stage adder unit. If all
the first-stage adders are stopped, the second-stage adders
can also be stopped, which is the same MAC stop condition
for conventional zero-skipping.

As explained above, GLwm was removed by judging
the operation stop using only the input data, and the cir-
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Fig. 6 Distribution of 0 and 1 input data ratio in each layer of SSD500
(data set: 500 cityscape images)

cuit overhead of GLMq was reduced. The operation unit
was stopped more precisely than when using the conven-
tional zero-skipping. All multipliers with input data zero
were stopped, and the accumulators were also stopped if
the input data was zero in the adder unit. By implement-
ing CNNs using these techniques, power consumption and
circuit overhead can be significantly reduced. So the num-
ber of GL circuit input bits (AND, OR, etc.) are as follows:

BGLtotal = P
(
BGLd + BGLM

)
= P{K + (F + F)}
= P(K + 2F) (4)

For example, when the number of bits of input data (K) is 8
and the filter size (F) is 9, the number of GL input bits can
be reduced by about 40% according to Eqs. (3) and (4).

2.3 Active Data-Skipping Clock-Gating Method

To further reduce power consumption, we propose another
method that slightly sacrifices recognition accuracy. As
shown in Fig. 6, the ratio of input data of 1 occupies ap-
proximately 10% (green line). Therefore, if the multiplier
is stopped not only input data of 0 but also at 1, the power
consumption can be further reduced. By using only the up-
per k bits of the K-bit input data to stop computation, the
GLdn circuit overhead and power consumption are reduced
to k/K. However, the result of the convolution operation will
contain errors to some extent. Multipliers and accumulators
with input data below threshold Dth are stopped, so the out-
put of the MAC operation is zero under this condition. The
Dth can be expressed as following;

Dth = 2K−k − 1 (0 ≤ k ≤ K) (5)

After setting Dth, the CNN model is retrained to miti-
gate the effects of calculation errors. In addition, as shown
in Fig. 7, clock gating is disabled by ENLayer signal at layers
with a small amount of input data and few zero data values
(e.g. layer 11–21), since power consumption is not expected
to be reduced. In this paper, we call this technique active

Fig. 7 Proposed active data-skipping for reading and k bit checking for
n-th input data

Fig. 8 Architecture of SSD500 implemented on FPGA (Xilinx ZU9)

data-skipping clock gating method, and in the next section,
we discuss the dependence of k (or Dth) on accuracy degra-
dation and the effects of reduced power consumption.

3. Implementation and Evaluation Result

3.1 Implementation of CNN and Proposed Techniques on
FPGA

This section describes the conditions in which the CNN is
implemented and the configuration of the MAC operation
circuit using the proposed techniques. We selected Xilinx
ZU9 FPGA as the edge device for processing CNN calcula-
tions in this study. This device is assuming advanced driver
assistance systems (ADAS) and autonomous driving (AD)
an electrical control unit (ECU), for example. SSD500 was
used as the CNN model for object detection with F = 3 × 3
filter, and 88% of the channels were pruned for implementa-
tion in the ZU9 circuit resource. In addition, the model size
was compressed by quantizing the input data and weight
from a floating point to 8-bit integers (K = 8). The cal-
culation was reduced from 182 GOP to 22 GOP. To train the
model, 3,000 images from the Cityscapes dataset were used,
and 500 images were used to evaluate recognition accuracy.

Figure 8 shows the architecture of SSD500 network
model implemented on ZU9. The convolution process that
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requires high-speed processing is implemented in the pro-
gramable logic (PL) section. The transmitter (Tx) and the
receiver (Rx) for exchanging input data, calculated data and
weight data with external RAM are also implemented here.
In addition, the scheduler that manages these circuits is also
implemented. The calculation of the position of the bound-
ing box of SSD500 is processed by the CPU of the process-
ing system (PS) section. In order to implement a large-scale
neural network with limited circuit resources, all calcula-
tions of convolution layer could not be done simultaneously
in PL section. For this reason, the parallel number of the
MAC circuit was 512, so the weight and bias data were read
out layer by layer or channel by channel, and the image data
was read out every 612 pixels as shown in Fig. 9.

Table 1 shows each circuit utilization of digital-signal-
processor (DSP), look-up-table (LUT) and flip-flop (FF) of
implemented SSD500 network model on PL part of ZU9
without proposal gating logic in this paper. Almost of the
DSP circuits are used for multiplier in convolution process.
Since the DSP include two multipliers, the 2,304 DSPs have
4,608 multipliers, which in 512 MACs. The FF circuit re-

Fig. 9 Data flow processed of convolution circuit in one cycle

Fig. 10 Implementation of MAC and proposed GL circuit for reduced power consumption and over-
head

sources use less than 30%, but the LUT uses nearly 70%,
of which about 90% is used for convolution circuit. That
is, most of the power consumption of FPGA is occupied by
convolution circuit. The power consumption of the convolu-
tion calculation circuits was 9.2 W (54% of total) as shown
in Table 2.

Figure 10 shows the MAC operation and the proposed
GL circuit implemented in the convolution operation shown
in Fig. 8. An FF was also installed in the GL to match the
timing with the FF inside the MAC operation. To stop each
operation by clock gating, the clock buffer (CB) was stopped
by using the logic output from the GL.

The operating clock of ZU9 for convolution opera-
tion was 300 MHz, and the frame rate was 110 fps, so
the SSD500 processing speed of ZU9 was 2,420 GOP per
second (GOPS). The operation performance per power con-
sumption of only the convolution circuit is 263.0 GOPS/W.

Table 1 SSD500 circuit utilization of programable logic (PL) part of
Xilinx ZU9 (without proposal gating logic)

Table 2 Breakdown of power consumption of SSD500 circuit imple-
mented on Xilinx ZU9 (without proposal gating logic)
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Fig. 11 Relationship between gating threshold and power consumption,
and accuracy degradation for gating logic

3.2 Evaluation Results

Figure 11 shows the relationship between the threshold of
input data for stopping computation, power consumption,
and recognition accuracy degradation. The power consump-
tion is the result of measuring the current in the power sup-
ply of the logic circuit system on the evaluation board of
ZU9. We assumed that the logic circuit occupies 80% of the
measured current. The ratio of the power consumption of
the logic circuit to the convolution circuit was calculated us-
ing the FPGA design tool “Vivado”. The conventional zero-
skipping circuit, which is implemented equivalent to [18] for
example, consumed 6.4 W (reduced from 9.2 W which is the
power consumption of convolution circuits only). Naturally,
there is no recognition accuracy degradation. The number
of GL circuits was 8,426 LUTs (with an overhead for con-
volution circuit of 5.1%) as shown in Fig. 12.

By applying the proposed precise zero-skipping
method, the power consumption of the convolution calcula-
tion circuits was reduced to 5.1 W, and recognition accuracy
was no degradation as shown in Fig. 11. Moreover, the cir-
cuit overhead was reduced to 2.9% (−43.1%) as shown in
Fig. 12. We verified that the precise zero-skipping method
is more effective in reducing power consumption and circuit

Fig. 12 Relationship between gating threshold and circuit overhead for
LUT

overhead than the conventional zero-skip method.
Next, the results of applying both precise zero-skipping

and active data-skipping are described. At Dth equal to 1 and
2 for all layers, the degradation of recognition accuracy was
0.59% and 2.91%, and the power consumption of the con-
volution calculation circuits was 4.1 W and 3.6 W, respec-
tively. Next, we applied the methods to the layers in which
the ratio of zero data (R.Z.) was >5% and >10% of the to-
tal zero data of all layers, that is, layers 1–7 and layers 1–4,
respectively. When Dth was 1 and R.Z. was >10%, the accu-
racy degraded 0.29% and the power consumption of the con-
volution calculation circuits was 4.4 W (−52.3%). Further-
more, the circuit overhead was reduced to 2.7% (−45.9%)
compared to when conventional zero-skipping circuit was
used, as shown in Fig. 12 (c). The operation performance
per power consumption of only the convolution circuit with
precise and active skipping methods is 550.0 GOPS/W.

4. Conclusion

We proposed two methods, precise zero-skipping and ac-
tive data-skipping, to reduce power consumption and circuit
overhead for CNN-based edge devices. We selected Xil-
inx ZU9 FPGA assuming ADAS and AD ECU, as exam-
ple of an edge device processing CNN, and implemented
SSD500 on this device. By combining the two proposed
methods, we verified reduced power consumption (−52.3%)
and low circuit overhead (−45.9%) with only slight accu-
racy degradation (−0.29%) compared with the conventional
zero-skipping method. The results indicate that our pro-
posed methods are useful for processing CNNs by means
of edge devices such as FPGA.
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