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A Feasibility Study of Multi-Domain Stochastic Computing Circuit
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SUMMARY An efficient approximate computing circuit is developed
for polynomial functions through the hybrid of analog and stochastic
domains. Different from the ordinary time-based stochastic computing
(TBSC), the proposed circuit exploits not only the duty cycle of pulses
but also the pulse strength of the analog current to carry information for
multiplications. The accumulation of many multiplications is performed
by merely collecting the stochastic-current. As the calculation depth in-
creases, the growth of latency (while summations), signal power weaken-
ing, and disparity of output signals (while multiplications) are substantially
avoidable in contrast to that in the conventional TBSC. Furthermore, the
calculation range spreads to bipolar infinite without scaling, theoretically.
The proposed multi-domain stochastic computing (MDSC) is designed and
simulated in a 0.18 µm CMOS technology by employing a set of cur-
rent mirrors and an improved scheme of the TBSC circuit based on the
Neuron-MOS mechanism. For proof-of-concept, the multiply and accumu-
late calculations (MACs) are implemented, achieving an average accuracy
of 95.3%. More importantly, the transistor counting, power consumption,
and latency decrease to 6.1%, 55.4%, and 4.2% of the state-of-art TBSC
circuit, respectively. The robustness against temperature and process vari-
ations is also investigated and presented in detail.
key words: stochastic computing, multi-domain, approximate computing,
MAC

1. Introduction

Along with the explosion of artificial intelligence (AI), the
demands of the massive computations grow excessively in
recent years. At the application-end, one of the critical chal-
lenges lies in implementing sophisticated algorithms such
as an artificial neural network (ANN) onto the Internet of
Things (IoT) devices [1]. It is evident that most of the com-
putations for ANN, such as multiply and accumulate calcu-
lations (MACs), are time- and resource-hungry [2] and usu-
ally expected to perform in parallel for the high speed. Un-
fortunately, the circuit integration hardly keeps growing to
increase computing units since the benefits from Moore’s
Law will vanish soon. Therefore, alternative computational
implementations with low cost are seriously on demand.
Trading the computational accuracy (reasonable for most of
AI tasks) by compact hardware resources and low power, the
approximate computing (AC) technology is known as one of
the prospective solutions which offer an efficient implemen-
tation and acceptable quality of services. A common strat-
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egy of the AC is accomplished widely by building specific
analog computing circuits [3], which provide various bene-
ficial features such as compact size and low power. How-
ever, most of the analog computing circuits are sensitive to
the process, voltage, and temperature (PVT) variations [4],
which strictly limits the practical application fields of analog
computing.

To achieve robust noise-tolerance, the stochastic com-
puting (SC) was proposed decades ago [5]–[7]. Early efforts
of SC were mainly made based on bit-stream. Representing
the data by possibility, the multiplication and summation are
implemented by extremely compact circuits (even one sin-
gle logic gate). Although the bit-stream type of SC is low
cost and noise-tolerance, it can hardly be considered as a
perfect solution because of the long latency, reduced data
range, and the inherent limitations on computational depth.
Besides, a necessary module called stochastic number gen-
erator (SNG) is quite expensive in hardware resources and
power [8], eating up the benefit on the low cost of the SC.
As an improved scheme of SC, the time-based representa-
tion carries information by leveraging pulse width (in terms
of duty cycle) instead of counting bits in a stream [9], [10].
Indeed, the time-based stochastic computing (TBSC) tech-
nology helps to shorten the latency and reduce the power
consumption somehow. Our early reports [11], [12] show
that a well designed TBSC circuit wins the costly trade-
off between efficiency and accuracy compared to various
AC strategies. However, conventional TBSC, including our
early works, still suffer from reduced range and limitations
on computational depth. When performing a complex func-
tion such as polynomial, the latency increases significantly,
and the signal becomes sparse. In real-world application of
the MAC, for example, it is difficult to practically apply SC
(regardless of schemes) without additional buffering mech-
anisms.

In this work, a hybrid implementation of stochas-
tic computing is proposed across analog and time-based
stochastic domains. By tuning the duty cycle and pulse
strength, the signal in terms of the analog current pulse is en-
tangled as the multiplication; the summation/accumulation
is realized by simply collecting the entangled current. In
this manner, the implementation of an extended polynomial
function does not lead to the sparse signal; and latency does
not significantly increase since it is unnecessary to vary the
frequency of pulse for each item-operation. Naturally, the
representation range is elongated to infinite by accumulating
current. By employing the Neuron-MOS mechanism [13],
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a duty cycle tuning module is designed for switching the
current source representing the specific analog value. The
summation is achieved by accumulating multiple entangled
items. For the convenience of observation, a detector circuit
is also designed to translate the MDSC values into voltage
mode. The entire circuit is designed and simulated in a 0.18
µm CMOS technology. The MAC with four variables is in-
troduced for proof-of-concept. From the circuit simulation
results, an average accuracy of 95.3% is achieved. The tran-
sistor counting, power, and latency of the proposed MDSC
circuit are 152, 179.6 µW, and 90 ns, which are 6.1%,
55.4%, and 4.2% of the state-of-art TBSC circuit in a 45 nm
technology, respectively. To investigate robustness against
variations, the random changes on transistors’ threshold,
size, and temperature are simulated in Monte Carlo anal-
ysis. The distribution features and analysis of sensitivity are
presented in detail with various input patterns.

The rest of this paper is organized as follows: in Sect. 2,
the fundamentals of SC is reviewed; Sect. 3 presents our
proposed MDSC circuit and its operational principle; in
Sect. 4, a toy-example of MAC is implemented, and the cir-
cuit simulation results are shown; the conclusion is made in
Sect. 5.

2. Preliminary: Stochastic Computing Fundamentals

2.1 Bit-Stream-Based Stochastic Computing

Originally, SC encodes a value as a sequence of random-
ized bitstreams called a stochastic number (SN) [14]. The
data being represented are dependent upon the occurrence of
logic ‘1’ [15] and the format being used in the bit streams.
For instance, in unipolar format where representation of a
number x is bounded by (0 ≤ x ≤ 1), all distinct arrange-
ment bits of SNs {1, 1, 0, 0, 0}, {0, 1, 1, 0, 0}, {0, 0, 1, 1, 0},
{0, 0, 0, 1, 1} and {1, 0, 0, 0, 1} describe the same real num-
ber, i.e., x = 0.4. On the other hand, the exact composition
of the sequences are interpreted differently, i.e., x = −0.2, in
bipolar format where (−1 ≤ x ≤ 1). Thus, the probability of
each bit to be 1 in bit streams of unipolar and bipolar format
are P(X = 1) = x, and P(X = 1) = x+1

2 , respectively. In
order to generate the SNs, an SNG comprises of a random
number generator (RNG) and a comparator are usually ex-
ploited. Figure 1 shows the SNG of the bit-stream based SC
and two commonly used elements in the stochastic opera-
tions.

One key benefit of the stochastic domain is the capabil-
ity to utilize a simple logic to conduct arithmetic operations,
which implies low hardware cost and power consumption.
In accomplishing an addition, for example, SC can exploit
a multiplexer (MUX) [16] and an OR gate [17]. The MUX
performs a scaled addition by randomly selecting one input
at a time as part of the resulted output and ignoring all other
inputs. Thus, when the input size is large, the operation in-
curs a significant accuracy loss. On the contrary, the output
of an addition using the OR gate is not scaled, but the re-
sult saturates at 1. In order to perform a multiplication of

Fig. 1 Key stochastic components: (a) the stochastic number generator
(SNG), (b) the multiplier, (c) the scaled adder [16]

two unipolar and bipolar stochastic streams, an AND gate
and an exclusive NOR (XNOR) circuit are exploited [18],
respectively.

Another compelling advantage is fault tolerance; the
SC endures a huge number of errors while maintaining
equivalent performance. It corresponds to the unary rep-
resentation of the SNs where every bit in a stream is equally
weighted, suggesting that a bit flip would only cause a small
error. The maximum error from one bit flip in the SC is
1
n where n is the bitstream length of an SN. As a compar-
ison, the same number of soft errors trigger inaccuracy as
much 2n−1 [19] in n size binary radix. Hence, stochastic cir-
cuits can provide more accurate results than conventional
binary circuits under severe error conditions [20]. Addition-
ally, SC offers the capability of changing the computation
time and precision dynamically without any hardware mod-
ifications [21]; the accuracy increases as the length of bit-
streams rises.

Unfortunately, SC also brings about some drawbacks;
for example, it suffers from some accuracy lost when signal
correlation requirement or randomness is not adequately sat-
isfied, or simply because of the existence of random fluctu-
ations. Besides, representing sufficiently accurate numbers
requires a lengthy bitstream, which undoubtedly causes a
high latency in the system.

2.2 Time-Based Stochastic Computing (TBSC)

A TBSC circuit represents an SN using the duty cycle, i.e.,
the ratio between pulse width and the period of a PWM sig-
nal [10]. Figure 2 (a) and (b) show examples of two signals
with duty cycle of 80% (5 ns period) and 50% (6 ns period),
which portray certain values of SNs, namely S 1 = 0.8 and
S 2 = 0.5 respectively. A time-based SNG, so-called PWM
generator [9], as illustrated in Fig. 3, produces the SNs by
regulating the duty cycle and fine-tuning the frequency of
each signal. More specifically, a duty cycle is determined
based on the amount of current received from the sensing
circuit. At the same time, the clock generator adjusts the
frequency by activating a certain number of inverters in the
ring oscillator structure. In this case, as many as 89 inverters
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are mobilized to produce a periodic signal which has a 1 ns
period.

Similar to the conventional SC, the TBSC circuits per-
form multiplication and addition of unipolar SNs by utiliz-
ing an AND gate and a MUX, respectively. However, to
produce a highly accurate resulted output, the dependency
and correlation between input signals must be avoided by
employing distinctive SNGs for each input signal. At the
same time, the output signal has to be observed for the LCM
(least common multiple) period of its input signals. For in-
stance, if input signals of a multiplication operation have 5
ns (Fig. 2 (a)) and 6 ns (Fig. 2 (b)) periods, then the resulted
output with the highest accuracy can only be achieved by
observing the output signal at least for 30 ns. The ratio be-
tween the total time of the output signal is high (12 ns) and
the LCM time (30 ns) of input signal periods, assemble a
resulted output of 0.4, as presented in Fig. 2 (c).

In contrast to multiplication, dependency and correla-
tion between signal representing operands are highly desir-
able in performing addition. These input signals, however,
should be independent and uncorrelated with the select sig-
nal of the MUX circuit performing the addition. In such a
way, the resulted output of the scaled addition eventually is
also examined at least for the LCM period of input signals
and the select signal.

Fig. 2 PWM signals with 80% and 50% duty cycle represent operands
(a) S 1 = 0.8, (b) S 2 = 0.5, respectively, and (c) the output signal of (S 1 ×
S 2) in TBSC

Fig. 3 Design of the PWM Generator in TBSC [9]

3. The Proposed Method

3.1 Representations and Operations

The MDSC designates numbers by utilizing the analog and
stochastic domains. The former expresses a value through
the pulse strength of an analog signal, which is the ratio be-
tween pulse height (Pheight) and a predetermined reference

current (Ire f ); X = Pheight

Ire f
. The latter denotes a number with a

duty cycle or proportion of pulse width (Pwidth) to the period
(t) of a PWM signal; W = Pwidth

t . An example of signals rep-
resenting numbers in the analog (X) and stochastic domain
(W) is shown in Fig. 4 (a) and (b), respectively.

Further, as shown in Eq. (1), a resulted output (O) of
operation in the MDSC is governed by the ratio between
the so-called duty area (Aduty) and reference area (Are f ), in
which the Pheight and the Pwidth of an output signal are taken
into account, simultaneously.

O =
Aduty

Are f
=

Pheight × Pwidth

Ire f × LCM
, (1)

where LCM is the least common multiple of input sig-
nals.

The concurrent engagement of both domains in desig-
nating the resulted output allows the latency in the MDSC
is shorter than the TBSC counterpart. As an illustration, the
resulted output of 2-operand multiplication in the MDSC is

Fig. 4 Example of signals representing numbers in the MDSC: (a) sig-
nified in analog domain (X1 = 0.8) (b) denoted in stochastic domain
(W1 = 0.5), output signals of (c) X1 × W1, (d) (X2 = 0.4) × (W2 =

0.25) (input signals not shown), (e) The output signal of MAC operation
((X1 ×W1) + (X2 ×W2))
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Fig. 5 Block diagram of the MDSC circuit for MAC

merely dependent on the period of one input signal, (W1 = 6
ns) and (W2 = 4 ns) for resulted output in Fig. 4 (c) and (d),
respectively. It is contradictory to an equivalent operation
in the TBSC shown previously in Fig. 2 (c), in which all in-
put signals are in the stochastic domain. Hence, each period
(S 1 = 5 ns, S 2 = 6 ns) contributes to the LCM period (30 ns)
of signal observation to gain a reasonably accurate output,
leading to high latency in the TBSC.

A similar principle is also valid in the 4-variable MAC
operation, where the output signal of the MDSC in Fig. 4 (e)
only need to be observed for the LCM period (12 ns) of
two signals denoting W1 and W2. The corresponding oper-
ation in the TBSC, as a comparison, should be assessed for
the LCM period of four input signals, causing an explosion
in the latency and sparser output signal. Subsequently, the
MDSC scheme presents more prevalent merits as the num-
ber of operands escalates, overcoming some essential prob-
lems in the TBSC, namely the rapid growth of latency and
the disparity of output signals.

Basically, the proposed method capable of conducting
all operations possible in either conventional (bit stream-
based) or time-based stochastic computing. One significant
difference is that the resulted outputs from summations in
the proposed method are not scaled. Hence, the range of re-
sulted values can theoretically be extended to any range of
real numbers.

3.2 Hardware Design

Primarily, the MDSC hardware scheme is organized as an
operational circuit and a current detector, as shown in Fig. 5.
The former aims to produce SNs as well as perform arith-
metic operations, while the latter functions to ease the ob-
servation of the output signals. Further, the operational cir-
cuit comprises of a collection of SNG+, which exploit the
neuron-MOS SNG, a current source and a current mirror. In
this manner, one particular SNG+ produces two numbers,
i.e., in stochastic and the analog domain, concurrently and
conducts the multiplication between both operands.

The stochastic element is generated by fine-tuning the
frequency of oscillation based on pco and nco voltage, and
changing the DC level of a particular input in the neuron-
MOS SNG sub-circuit. This scheme avoids the complex
implementation of a comparator and massive utilization of

Fig. 6 A configuration of the MDSC circuit consisting of an operational
circuit with two SNG+ and a current detector

inverters in regulating the frequency of the PWM signal rep-
resenting SNs as that in the TBSC. The analog item, on the
other side, derives from the current source, which is con-
nected to the current mirror component. Eventually, the
SNG+ conducts the multiplication between both numbers
by switching the analog-based input signals.

Instead of relying upon a specific circuit explicitly,
the accumulation operation merely takes advantage of the
KirchhoffCurrent Law (KCL). Hence, the system avoids ob-
taining a scaled, or an approximated resulted output. These
types of outcomes have become a critical source of failure
in either bit-stream based SC and TBSC implementation,
especially when applying the NN algorithm, which requires
many additions.

A MAC operation in the MDSC is carried out by ex-
ploiting multiple SNG+. Specifically, the number of SNG+
circuits activated at a particular time is dependent upon a
target number of operands involved in the operations. The
MAC of four variables illustrated in Fig. 4 (e), for example,
can be achieved by using an arrangement containing two
SNG+ circuits shown in Fig. 6. For completing an operation
consisting of more significant operand numbers, one could
activate an additional SNG+ and plug it to a predetermined
node.

For convenience reason, a current detector interprets a
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signal from the operational circuit as a detected output by
converting the output current into voltage. A comparator
and two capacitors support the translation mechanism. The
comparator serves as a controller of the charging time of
two identical yet separated capacitors. On the one hand, the
reference current of the detector charges the first capacitor
connected to the positive input of the comparator through a
simple current mirror and a switch. On the other hand, the
resulted current from the operational circuit loads the second
capacitor. Once the voltage in the positive input is equal to
a reference voltage in the negative input of the comparator,
the charging process in both capacitors stops momentarily.
Then, the voltage on the second capacitor becomes the de-
tected output of the operations.

Adjusting the arrangement of the SNG+, adding and
adding few current mirrors to facilitate variables with neg-
ative values, the operational circuit part of the MDSC can
be exploited to implement a more complicated polynomial
function such as Maclaurin polynomial. Referring to [22],
a nonlinear function such as ln(1 + ax) can be approxi-
mated using a 5th-order Maclaurin polynomial as presented
in Eq. (2).

Figure 7 shows the Maclaurin polynomial implementa-
tion of ln(1 + ax), where a = 1. Each grayed portion of the
operational circuit realizes every term in the equation. Co-
efficients in the terms are represented by the current com-
ponent, while the stochastic domain of the SNG+ denotes
the variable. An additional component such as a distinc-
tive form of the current mirror in the circuit facilitate the
multiplication between terms and support representation of
negative value in the equation.

ln(1 + ax) ≈ ax − a2x2

2
+

a3x3

3
− a4x4

4
+

a5x5

5
(2)

Similar to the MAC operation, every term in the
Maclaurin polynomial is implemented by exploiting SNG+.
Following the basic structure of the SNG+, each term in the
equation is treated as a multiplication between coefficient

Fig. 7 Block diagram of the MDSC circuit for 5 − th order Maclaurin
polynomial implementing ln(1 + x)

and variable. High order variables are multiplied repeatedly
using the current mirror component of the SNG+. For in-
stance, the term a2 x2

2 is multiplied as ( 1
2 × x) × x. Afterward,

the resulted output of all terms is integrated through a set of
current mirrors that enable charging and discharging states,
thus facilitating terms with negative values. The total cur-
rent from the integration is then connected to the current
detector.

4. Experimental Results

For proof-of-concept, the proposed circuit was implemented
in a 0.18 µm CMOS technology using HSPICE. The perfor-
mance in terms of accuracy and the robustness of the circuit
in response to temperature and process variations were ver-
ified by conducting numerous operations.

4.1 Accuracy Assessment and Sampling Method

In assessing the accuracy, the experiment was managed hi-
erarchically. For every stage, the performance is expressed
in terms of the average accuracy as a reverse of the mean ab-
solute error (MAE), which is calculated using Eq. (3). First,
observing signals which depict 11 distinctive values in both
analog and stochastic domains, we obtained results shown
in Fig. 8 with the average accuracy of 98.6% and 96.4%, re-
spectively.

MAE =

∑n
i=1 |zi − yi|

n
(3)

where MAE, n, zi and yi are the mean absolute error,
number of sample, expected output and detected output, re-
spectively.

Secondly, 2-variable multiplication was performed by
exploiting a single SNG+. Assuming that each representa-
tion consists of 11 members (from 0 to 1 with step 0.1), the
operation was carried out for every possible combination of
the values in both representations, making 121 diverse oper-
ations with the average accuracy of 96.6% or MAE of 3.4%,
which distribution is shown in Fig. 9.

Fig. 8 Detection of 11 distinctive values in the analog and stochastic do-
mains
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Fig. 9 The distribution of MAE in 121 multiplication operations

Fig. 10 Organization of population and the selected samples of the 4-
variable MAC operations

Furthermore, the performance of the proposed circuit
in completing 4-variable MAC operations was evaluated.
Since each variable in the MAC operations could represent
any SNs between 0 and 1, the overall combination of vari-
ables as the population members in operation becomes un-
limited, testing all population members would be impossi-
ble. Therefore, we accomplished the experiment in a set of
selected samples by following the three stages of the statisti-
cal method called systematic sampling [23] and regularizing
the values from 0 to 1 with step 0.1, resulting 11 numbers
for each variable.

Calculating the number of population. Given that
each variable has 11 primary elements, possible combina-
tion of values in ((X1 x W1) + (X2 x W2)), are Pn = nk = 114

embodying 14641 population members.
Identifying and organizing the population. The pop-

ulation members were identified and organized in such a
way to avoid redundancy. We grouped the members into
sub, set, and subset, as exhibited in Fig. 10. These opera-
tions are then organized into 11 subs (by changing the value
of one particular operand at a time) of 1331 operations each
(organized as 11 sets of 11 subsets which is further elabo-
rated to 11 operations in each subset).

Selecting samples. Statistically, two determining fac-
tors in producing representative samples are the sample

Fig. 11 Example of the simulation signals: (a) two output signals of mul-
tiplication between two pairs of input values (analog and stochastic do-
main), (b) the output signal of MAC operation of the two signals in (a), (c)
a signal representing the detected output of the current detector

frame (the origin of samples in an organized population) and
the sample size. Aiming to select the samples which evenly
distributed in each hierarchy of the entire population, we
select 121 operations in the diagonal positions of every sub
(marked by the yellow rectangle in Fig. 10), harvesting 1331
operations in which is later added by another 121 operations
from an additional sub in order to make up 1452 operation
(about 10% of the identified population which statistically
is considered as a reasonable proportion of representative
samples).

Figure 11 illustrates an example of a 4-variable MAC
operation. Two output signals of operation (X1 x W1) and
(X2 x W2) is provided in Fig. 11 (a). Both signals are ac-
cumulated and measured for the LCM period (90 ns) of
stochastic domain-based (W1 = 30 ns, W2 = 45 ns) repre-
sentation. The output signal of the MAC operation is shown
in Fig. 11 (b) and interpreted by converting the resulted cur-
rent into voltage using the current detector. The output sig-
nal of the detector appears in Fig. 11 (c), showing the de-
tected output 0.976.

The distribution of the MAE in every subset consti-
tuting the total sample, are shown in Fig. 12. In general,
the inaccuracy is diverse and highly dependent on the ex-
pected output; the higher the expected output of operations,
the higher the error rate. Besides that, many other factors
could contribute to the variation of error; one of them is the
detection mechanism in the current detector. Overall, the
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Fig. 12 Mean absolute error (MAE) of 1452 MAC operations organized
in 12 subs

Fig. 13 Expected and detected output of 5 − th Maclaurin polynomial
implementing ln(1 + x)

MAE of the operations is 4.7% or the average accuracy of
95.3%.

Furthermore, the performance of the proposed method
in terms of accuracy, is evaluated in resolving a complex
polynomial function. The expected and detected output of
the 5− th order Maclaurin polynomial approximating ln(1+
ax) are illustrated in Fig. 13. Overall, the resulted output is
considerably accurate, except in the point where the input
value is the highest. It contributes significantly to the MAE
of the calculation (3.9%). Presumably, the variation of error
in several points is the effect of the mechanism applied in
the current detector.

4.2 Verification of Circuit Robustness

In order to evaluate the robustness, we observe the circuit’s
response to the temperature variations and the extremes of
the manufacturing process. The circuit tenacity is measured
based on the detected output standard deviations. When the
variation in one particular condition is observed, other con-
ditioning variables are kept at the default values. For exam-
ple, the effect of transistor length variation to the detected
output is inspected by setting the temperature to 250C and

Fig. 14 The detected output of three distinctive operations under the ef-
fect of temperature variations

providing the supply voltage of 1.8 V.

4.2.1 Temperature Variations

It is worth noting that the average error rate shown previ-
ously in Fig. 12 reveals the performance of the circuit oper-
ating in the default temperature of the simulation environ-
ment (250C). In order to identify the influence of heat fluc-
tuations on the detected output, the simulation was condi-
tioned to run in 500C and 750C. Inspecting the detected out-
puts of 1452 operations under each temperature, we found
that the average standard deviation was only 0.017 V, sug-
gesting that the circuit was reasonably robust to temperature
variations. Three examples of operations with the expected
and detected output of circuit operating in the three different
temperatures, provided in Fig. 14.

If the error is calculated using a typical error percent-
age formula, the error appears reasonably significant. As far
as we are concerned, however, such a method is arguably
unjustifiable in dealing with relatively small numbers like
stochastic computing, where values only range from 0 to
1. In this regard, the error of the detected output in all
tested temperatures is calculated using the mean absolute
error (MAE), resulting in a 4.8% error. This percentage is
slightly lower than the maximum acceptable error (5%) [24]
of approximate computing in which stochastic computing is
categorized.

4.2.2 Process Variations

The response of the circuit to process variations was verified
by varying the transistor length and threshold voltage. The
simulation utilized a statistical model, i.e., the Monte Carlo
analysis. The sample was 121 operations derived from sam-
ples in the prior temperature variation experiment by select-
ing operation with the most significant standard deviation in
every subset. Referring to [25], we conducted 121 iterations
and used three sigmas Gaussian distribution as a process pa-
rameter for each operation. Thus, the confidence level of the
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Fig. 15 The best-case, typical-case and the worst-case of average stan-
dard deviations in the detected output of MACs due to transistor length
variations, simulated by Monte Carlo analysis with 121 iterations

simulation is 99.7%, and estimated yields are 90%, while
the lower bound, and upper bound of actual yields are 83%
and 97%, respectively.

Since the simulation of each operation produced 121
discrete detected outputs, the disparity is presented in the
form of average standard deviations. Further, to avoid con-
fusion, we present the least, average, and the most signif-
icant average standard deviations among all operations as
the best, typical, and worst-case variations, accordingly.

Transistor Length Variations. In assessing the cir-
cuit’s response to variability of the transistor length, the re-
sulted experiment depicted in Fig. 15 was retrieved by con-
ditioning each transistor’s length in the circuit to vary by
2%. Despite this variation, other conditioning variables such
as transistor’s corner conditions, temperature, and supply
voltage remain at the default values, namely 250C for the
temperature and 1.8 V for the supply voltage. In this way,
any discrepancy in the detected output is more likely to be
affected by transistor length variations. Typically, such vari-
ations in transistor length cause a significant disparity in the
detected output, even when executed with a small number of
iterations of MC analysis. Since the experiment involving
numerous samples with a distinctive magnitude of values,
those samples get affected by the variations to a different
degree. Thus, we use the term of the best case, typical case
and the worst case to reflect the least affected (smallest vari-
ations), the average affected (typical average variations) and
the most affected (the most significant variations) samples
by the corresponding conditions.

Figure 15 presents the best-case (0.0013 V), typical-
case (0.0054 V), and the worst-case (0.0334 V) of average
standard deviations in the detected output of MACs due to
the transistor length variations. It shows that, even when
observed in a large number of iterations, the circuit is suffi-
ciently robust to the fluctuation of transistor length, demon-
strated by a relatively narrow disparity even in the worst-
case. More importantly, as shown in Fig. 16, about 95% of
the operation samples have an average deviation of less than

Fig. 16 Distribution of average standard deviations of 121 distinctive de-
tected output as transistor length varies, each operation simulated by 121
iteration Monte Carlo analysis

Fig. 17 The best-case, typical-case and the worst-case of average stan-
dard deviations in the detected output of MACs due to threshold voltage
variations, simulated by Monte Carlo analysis with 121 iterations

0.01 V, which is much lower than the worst-case, 0.034 V,
and involving only about 5% of the sample operations.

Threshold Voltage Variations. By assuming that ab-
solute variation in the threshold voltage of the transistors in
the circuit was 2%, we also simulated 121 iterations Monte
Carlo analysis on 121 operations. As shown in Fig. 17, the
pattern of the best-case (0.0006 V), typical-case (0.009 V),
and the worst-case (0.0311 V) of average standard devia-
tions are almost similar to those in transistor length varia-
tion, where the detected output for many iterations still pro-
duces relatively close variations. The distribution of the av-
erage deviations of the detected output, though, is slightly
sparser (only about 90% of average deviation is below 0.015
V) than that of the transistor length variations, as shown in
Fig. 18.

Comparing the best-case, typical-case, and the worst-
case of detected values which are conditioned to run in a
wide range of transistor’s length and threshold voltage, the
detected output in the proposed circuit seems to be dis-
persed. However, by keeping in mind that an analog circuit
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Table 1 Comparison of hardware implementation

Categories Bit-stream SC [7] Conventional TBSC [9] Our TBSC [12] MDSC (this work)

IC Technology 40 nm 45 nm 180 nm 180 nm

Representation bit-stream duty cycle duty cycle pulse strength & duty cycle

Input digital signal analog current analog current analog current & analog voltage

Multiplier AND gate AND gate AND gate switch

Adder MUX (scaled) MUX (scaled) MUX (scaled) KCL (not scaled)

Output [0, 1] [0, 1] [0, 1] [-∞, +∞]

SNG Power (µW) 13350 323.5 299 179.6 *

Average Accuracy (%) of
Mul. & MAC** N/A 98.6 & 98.6 96.6 & 96.6 96.7 & 95.3

#SNG for
Mul. & MAC** 2 & 4 2 & 5 2 & 5 1 & 2

#transistor for
Mul. & MAC** 1559 & 3118 967 & 2479 140 & 350 76 & 152

Latency (ns) for
Mul. & MAC** N/A 7 & 245*** 7 & 245*** 45 & 90

* The SNG+ works on a lower frequency (10MHz-40Mhz)
** Mul. (2 variable multiplication) & MAC (4-variable multiply and accumulate calculations)
*** In order to achieve highly accurate output, all signals represent operands in the TBSC must be independent and uncorrelated, e.g.,

2.24, 3.13, 5, 7ns period, and the resulted output is observed for the LCM period of all of the signals.

Fig. 18 Distribution of average standard deviations of 121 distinctive de-
tected output as transistor threshold voltage varies, each operation simu-
lated by 121 iteration Monte Carlo analysis

is commonly acknowledged as highly sensitive to the pro-
cess variation, the disparity in the proposed circuit is accept-
able. Besides, the circuit was tested in numerous iteration of
the Monte Carlo simulation. Among 121 iterations for every
operation, few iterations have significant variations, affect-
ing the detected voltage’s overall mean. For these reasons,
while we agree that the accuracy and the variation of the
proposed method should be improved, we believe that the
disparity of error in the process variation of the proposed
circuit is acceptable.

4.3 Comparison

Table 1 presents the characteristics of the hardware im-
plementation of various strategies. The diverse input and

unique representation of the proposed circuit allow the mul-
tiplication and addition to be completed simply by the mean
of switches and the KCL, accordingly. Hence, the resulted
output is not scaled or approximated, and potentially un-
limited [-∞, +∞], achieved by accumulating and changing
the direction of the current flow. Furthermore, to accom-
plish the operations with the same number of operands, the
proposal exploits fewer SNGs as half of the operands are
in the analog domain. Besides, its summation mechanism
does not need an additional SNG to produce the select sig-
nal as that in the MUX scaled adder of the TBSC. Eventu-
ally, these lead to a fewer number of transistors is required
in the MDSC. Likewise, the total latency in the proposed
circuit takes the LCM period of signals of operands in the
stochastic domain only, instead of for the entire operand’s
signal LCM period (which also must be independent and
uncorrelated) as that in the TBSC. As the operand numbers
grow, the proposal quickly outperforms the latency of ear-
lier methods, even though the MDSC operates at the lowest
frequency among all. The growth in latency resulting from
the increase in LCM, though, is inevitable and can not be
totally eliminated because it is an intrinsic consequence of
the proposed mechanism. For the same reason, prior deter-
mination of the maximum period in operation would also be
highly unlikely to do.

5. Conclusion

In this paper, we proposed a multi-domain stochastic com-
puting circuit. The multiply operation is implemented by
analog current pulses, where the strength and duty cycle rep-
resent two variables. The summation is performed by sim-
ply accumulating the current pulses. Employing the origi-
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nal Neuron-MOS based TBSC module and current mirrors,
the entire MDSC circuit is designed and simulated in a 0.18
µm CMOS technology. A toy-example is demonstrated for
MAC operations. From the circuit simulation results, aver-
age accuracy of 95.3% is achieved. The performances over
data range, circuit complexity, power consumption, and la-
tency are all improved in contrast to the state-of-art TBSC
implementations. Besides, the robustness against temper-
ature and process variations is investigated and analyzed
through Monte Carlo simulations.
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