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SUMMARY We have utilized single-pixel imaging and deep-learning
to solve the privacy-preserving problem in gesture recognition for inter-
active display. Silhouette images of hand gestures were acquired by use
of a display panel as an illumination. Reconstructions of gesture images
have been performed by numerical experiments on single-pixel imaging
by changing the number of illumination mask patterns. For the training
and the image restoration with deep learning, we prepared reconstructed
data with 250 and 500 illuminations as datasets. For each of the 250 and
500 illuminations, we prepared 9000 datasets in which original images and
reconstructed data were paired. Of these data, 8500 data were used for
training a neural network (6800 data for training and 1700 data for valida-
tion), and 500 data were used to evaluate the accuracy of image restora-
tion. Our neural network, based on U-net, was able to restore images close
to the original images even from reconstructed data with greatly reduced
number of illuminations, which is 1/40 of the single-pixel imaging without
deep learning. Compared restoration accuracy between cases using shad-
owgraph (black on white background) and negative-positive reversed im-
ages (white on black background) as silhouette image, the accuracy of the
restored image was lower for negative-positive-reversed images when the
number of illuminations was small. Moreover, we found that the restoration
accuracy decreased in the order of rock, scissor, and paper. Shadowgraph
is suitable for gesture silhouette, and it is necessary to prepare training data
and construct neural networks, to avoid the restoration accuracy between
gestures when further reducing the number of illuminations.
key words: single-pixel imaging, deep-learning, gesture recognition, U-
net, privacy-preserving

1. Introduction

As the recent advances of information communication tech-
nologies, information displays have become pervasive in our
daily lives. These information displays can be used as in-
teractive and rich information interfaces by switching the
images on the display according to the user’s gestures [1].
Examples of gesture detection include the use of high-speed
cameras [2], hand-gesture sensor (Leap motion) [3], and a
3D camera (Kinect) [4]. It is essential for these methods to
detect the user’s gestures.

However, there are many places where gesture detec-
tion using a regular camera cannot be implemented due to
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privacy issues and the risk of information leakage. This
problem is not limited to personal spaces such as wash-
rooms and homes, but also occurs when implementing the
system in public spaces and workplaces, where the system
visually captures the user’s gestures and simultaneously per-
sonal (user’s face and appearance) and highly confidential
information. To solve this problem, several methods have
been proposed, such as reducing the resolution of captured
images [5], or applying masks to areas other than those nec-
essary for gesture detection [6].

In order to solve this privacy-preserving problem, we
propose a method to acquire gestures in consideration of
privacy and confidentiality, by utilizing single-pixel imag-
ing to detect only the silhouette of gestures. Single-pixel
imaging is a method which can reconstruct images by using
a point photodetector and variable illumination patterns [7]–
[9]. The object images are reconstructed with correla-
tion calculation between illumination intensity with variable
mask pattern and light intensity measured by the photode-
tector [10]. Single-pixel imaging does not require a cam-
era module. Thus, a privacy-preserving imaging method by
use of single-pixel imaging can be used in spaces where the
cameras cannot be deployed as described above. The is-
sue of this technology is that it requires a very large num-
ber of illuminations to capture the image, and a very large
computational cost to achieve high resolution. Regarding
gesture recognition, it is enough to keep the resolution low.
To reduce the number of illuminations, illumination meth-
ods [11]–[13], calculation methods [14], [15] and their com-
bination [16], [17] have been proposed. Then, the use of
deep learning for restoration of the original image from data
reconstructed with a small number of illuminations has been
largely explored in the last five years. Typical approaches
are the construction of neural network to reduce the number
of illuminations and improve the restoration accuracy (fully-
connected neural network [18], U-net [19], convolutional
neural network [20], recurrent neural network [21], [22]),
and acceleration of image acquisition which aims at real-
time performance by reducing the number of illumina-
tions [23]–[25]. Most of these previous studies have shown
versatile restoration performance using digits or natural im-
ages on databases such as MNIST [26] or ImageNet [27].

The purpose of this study is to propose a single-pixel
imaging approach to solve the privacy problem in gesture
recognition for the interactive acquisition of information,
and to investigate the possibility of drastically reducing the
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number of illuminations. Furthermore, we investigate the
accuracy of the restored image when deep learning is ap-
plied to acquire the image of gesture silhouette. For this
purpose, we have acquired silhouette images of the gestures
using a simple method with an information display as the
light source. Next, we have constructed a network that can
accurately restore silhouette images from reconstructed data
of single-pixel imaging with reduced number of illumina-
tions. These experiments have been performed on numer-
ical calculation by use of our acquired silhouette images.
Finally, we have compared the restoration accuracy among
gesture types. To construct the network, Sony Neural Net-
work Console [28] was used, which can be operated graph-
ically and is easy to install even for beginners. At IDW’20,
we presented how to make gesture images, the construction
of the neural network, and the evaluation of the overall im-
age restoration accuracy using a single index [29]. In this
paper, we have detailed our principle and experiments, and
analyzed the differences in restoration accuracy among ges-
tures using multiple indicators.

2. Principle

2.1 Single-Pixel Imaging

The diagram of single-pixel imaging is shown in Fig. 1. The
target object of this study is a subject’s hand. The illu-
mination is modulated an arbitrary number of times by a
randomly generated mask pattern. Summation of the trans-
mitted light intensity is detected by a point photodetector.
By calculating the correlation between the illumination in-
tensity and the detected intensity, it is possible to obtain
a reconstructed image as a result of floating-point arith-
metic [11]. The detected intensity at by k-th illumination,
denoted by Bk and obtained by a single-pixel detector, can
be expressed as:

Bk =

∫∫
S

Ik(x, y)T(x, y) dx dy (1)

where Ik(x, y) represents the light intensity of k-th random
mask pattern at the position (x, y); T(x, y) is the transmit-
tance of the target object on (x, y); Ik(x, y) is given in ad-
vance for k = 1, 2, . . . n; n is the total number of illumina-
tions; the integration of Bk is carried out over the area of the
object S. In order to reconstruct the object image, we use the
correlation function G(x, y). G(x, y) approaches T(x, y) with
increasing the number of illumination n [10]. G(x, y) can be
expressed as:

G(x, y) = 〈ΔBkΔIk(x, y)〉. (2)

〈 〉 represents the ensemble, which is the average of n con-
secutive measurements. ΔIk(x, y) is the deviation between
the light intensity of the k-th random mask pattern and the
ensemble. ΔBk is the deviation between the light intensity
of the k-th measurement and the ensemble. If N consecu-
tive measurements are denoted by Fi, the ensemble can be
expressed as:

Fig. 1 Diagram of single-pixel imaging to detect a silhouette image of a
subject’s hand gesture.

Fig. 2 Example of U-Net architecture. Each box indicates a multi-
channel feature map. Numbers on the top and side of the box indicate
the number of channels and the size of the feature map, respectively. White
boxes are copied feature map on the concatenation. The processes in the
arrow are described in the text.

〈Fi〉 = 1
N

N∑
i=1

Fi. (3)

2.2 U-Net

A neural network model called U-Net [19], [30] is used in
this study. Figure 2 shows the basic structure of this net-
work, where a 28 × 28 pixel image is used as input for
example. In the convolutional process, a filter-based con-
volution is performed on the input to output a feature map.
Maxpooling reduces the resolution of the input by extracting
the maximum value in the filter and aggregating it into one.
Then, unpooling brings the resolution back to the original.
These processes enable capturing the features of an object.
However, since the positional information of the object is
lost in these processes, the feature maps before the convolu-
tion is concatenated to complement the positional informa-
tion, which is called skip-connection. The U-net is suitable
for capturing the position and contour of objects, and is also
used to support single-pixel imaging [19].

3. Experiments

To prepare silhouette images of gestures, we took a video
of changing gestures among three types (‘paper’, ‘rock’ and
‘scissors’), as shown in Fig. 3. A video was recorded for
8 minutes by a digital camera (Nikon 1 J3, ISO 800, F2.5,
60 frames/seconds). A twisted-nematic LCD monitor (Dell
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Fig. 3 Scene of taking movie for training data.

Fig. 4 Example of gesture images. Lower images are negative-positive
reversed images of Upper shadowgraphs.

Fig. 5 Example of reconstructed data of shadowgraph images.

Alienware AW2310t) was used for a light source. Its lu-
minance was 225.0 cd/m2, measured by a luminance meter
(Radiant ProMetric IP-PMY29). From the video, 9000 im-
ages were exported, and then trimmed and resized so that
each image has 28 × 28 pixels. To evaluate the effect of the
contrast between the object and its background, we prepared
two types of silhouette images, “shadowgraph” (black on
white background) and “negative-positive reversed images”
(white on black background), in which the personal infor-
mation is removed. Figure 4 shows examples of the shad-
owgraphs and reversed images. These images were called
as ‘original image’ of gestures.

Next, we performed the numerical experiments on
single-pixel imaging and obtained the reconstructed data of
those original images. Figure 5 shows the example of recon-
structed image when the number of random mask illumina-
tion increases. We can see that the reconstructed image will
be closer to the original image if the number of illuminations
is sufficiently large. For the training and the image restora-
tion with deep learning, we prepared reconstructed data with
250 and 500 illuminations as datasets. Figure 6 shows ex-
amples of those datasets. Note that actual reconstructed data

Fig. 6 Example of reconstructed data of shadowgraphs and negative-
positive reversed images.

Fig. 7 Structure of our neural network based on U-net. The number on
the side of each box means the number of channels and the size of the
feature map. This was drawn according to Sony NNC notation.

were float array, while in Fig. 5 and Fig. 6 are shown as im-
ages to visualize the data. The preparation of the original
image and the numerical simulation of single-pixel imaging
were performed by use of Python.

For each of the 250 and 500 illuminations, we prepared
9000 datasets in which original images and reconstructed
data were paired. Of these data, 8500 data were used for
training a neural network (6800 data for training and 1700
data for validation), and 500 data were used to evaluate the
accuracy of image restoration. The reconstructed data were
fed to neural network as float array [31]. All of the con-
struction of neural network, training and image restoration
were performed on SONY Neural Network Console (Sony
NNC) [28]. Figure 7 shows the structure of our neural net-
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Table 1 Detailed parameters in training of deep learning.

work based on U-net. In Sony NNC, we can build a network
by arranging layers represented by blocks like this. Batch
normalization was added to improve the speed of training
convergence. We adopted squared error as the loss func-
tion and used sigmoid as the activation function before the
loss function. In training, Adam [32] was used as updater,
and hyperparameters are shown in Table 1. Those experi-
ments of deep learning were performed on a custom desktop
computer (Windows10, Core i7-6400k and GeForce GTX
TITAN X).

To evaluate the accuracy of image restoration, we used
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [33]. PSNR calculates the difference of luminance
of each pixel between original image and restored image.
The equations for PSNR can be expressed as:

PSNR = 10 · lo�10

(
MAX2

MSE

)
(4)

where MAX refers to the maximum value that each pixel
can take, 255 in this case: MSE indicates mean squared er-
ror between two images. SSIM quantifies the difference in
brightness, contrast, and structure between the two images.
The equations for SSIM can be expressed as:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μx
2 + μy

2 + c1)(σx
2 + σy

2 + c2)
(5)

where μ and σ indicate mean and standard deviation in the
small window, respectively. σxy is the covariance of x and y.
SSIM takes a value from 0 to 1. Both PSNR and SSIM be-
come larger as the restored image gets closer to the original
image. These values were calculated on Python.

4. Results

Figure 8 shows examples of restored images. With these
numbers of illuminations in the reconstruction, especially
with 250 times, our eyes cannot tell which gesture it is from
the reconstructed image. However, in both cases using shad-
owgraph and negative-positive reversed image as original
image, we successfully built a neural network that can re-
store the images close to original images.

Figure 9 and Fig. 10 show the boxplot of PSNR and
SSIM of restored images, respectively. The median PSNR
of restored images was more than 20, and their median
SSIM was more than 0.9 for each combination of the orig-
inal image type and the number of random mask illumina-
tion. The PSNR and SSIM of the image obtained from the
reconstructed data with 10000 illuminations (Fig. 5) were

Fig. 8 Examples of restored images by our neural network, (a) Shadow-
graph image (b) Negative-positive reversed image.

Fig. 9 PSNR boxplot of restored images when using (a) shadowgraph
images and (b) negative-positive reversed images as original images.

Fig. 10 SSIM boxplot of restored images when using (a) shadowgraph
images and (b) negative-positive reversed images as original images.
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7.86 and 0.56, respectively.
Thus, our neural network was able to restore images

much closer to the original images even from the recon-
structed data with 1/40 of the illumination numbers. In
the actual experiment, we plan to use high speed LEDs
at 4320 Hz [34] to illuminate the mask patterns. In order
to make the mask pattern imperceptible to the human eye,
it is necessary to integrate spatio-temporally coded images
and alter them at a sufficiently high frame rate [35]. Thus,
the number of masks displayed will be doubled and it will
take 4629 milliseconds for 10000 mask patterns (20000 dis-
play images). On the other hand, the time required for
250 mask patterns (500 display images) is 116 millisec-
onds. Processing time to obtain gesture silhouette image
is largely reduced, however, to integrate systems for image
reconstruction, restoration, and gesture recognition and to
achieve their real-time processing, the image should be re-
constructed with fewer illuminations.

When shadowgraph images were used, the median
value of the evaluation index of restored images did not
change even with the reduced number of mask patterns,
as shown in Fig. 9 (a) and Fig. 10 (a). On the other hand,
when negative-positive reversed images were used, the me-
dian value of the evaluation index of restored images be-
came lower as the number of mask pattern decreased. The
same trend was observed when using PSNR and SSIM were
used, as shown in Fig. 9 (b) and Fig. 10 (b). These results
suggest that shadowgraph is more suitable as original image
for restoration by our neural network, compared to negative-
positive reversed image, when the number of random mask
illumination is smaller. One of the reasons of this difference
is asymmetric processing on positive and negative values in
our network. Maxpooling keeps only positive correlation
peak values.

Tables 2 and 3 show the median values of PSNR and
SSIM of the restored images according to the type of ges-
ture, for shadowgraph and negative-positive reversed im-
ages. In both evaluation indices, there was a trend that
the restoration accuracy decreased in the order of Rock,
Scissor, and Paper. This trend was more significant when
the number of illuminations was 250, and when the original

Table 2 Median values of PSNR and SSIM of restored images when
using shadowgraph image according to gesture types

Table 3 Median values of PSNR and SSIM of restored images when
using Negative-positive reversed images according to gesture types

image was the negative-positive reversed image. This result
suggests that the restoration accuracy decreases as the struc-
tural complexity of the gesture increases. The difference in
restoration accuracy between gestures may have a negative
impact when implemented in gesture recognition devices.
If the number of illuminations is further reduced, it will be
necessary to devise methods to keep the restoration accu-
racy close between gestures when preparing training data
and building neural networks.

5. Conclusion

Single-pixel imaging was introduced to solve the privacy
problem in gesture recognition for interactive acquisition of
information. Deep learning drastically reduced the number
of illuminations to reconstruct silhouette images of gestures.

By using a simple method with a display as a light
source, we were able to prepare a large number of silhou-
ette images of gestures on our own as the source of train-
ing data. Our neural network, based on U-net, was able to
recover images close to the original images even from re-
constructed data with greatly reduced illumination counts
of 250 or 500. We also prepared two patterns of silhouette
images of the gesture: shadowgraph (black on white back-
ground) and negative-positive reversed images (white on
black background) and examined the difference in restora-
tion accuracy. As a result of our numerical experiments, we
found that the accuracy of the restored image was lower for
negative-positive-reversed images when the number of illu-
minations was small. This result indicates that using shad-
owgraph as a silhouette image of the gesture is suitable for
further reducing the number of illuminations in our neural
network. Moreover, we compared the restoration accuracy
among gestures and found that the restoration accuracy de-
creased in the order of rock, scissor, and paper. Since the
difference in the restoration accuracy between gestures may
have a negative impact on the implementation of gesture
recognition devices, it is necessary to prepare training data
and construct neural networks with care to avoid the restora-
tion accuracy between gestures.

In future research, if the neural network alone cannot
provide sufficient restoration accuracy when the number of
mask patterns is further reduced, one solution would be to
combine it with other illumination methods proposed for
single-pixel imaging [36], [37]. It is also important to verify
the restoration of gesture images using single-pixel imag-
ing on actual devices, although only numerical simulations
were performed in this study. As a result, when the imaging
area needs to be enlarged for accurate gesture recognition,
single-pixel imaging may become possible by applying our
proposed aerial display technology [38]–[40].
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