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Estimating the Birefringence and Absorption Losses of
Hydrogen-bonded Liquid Crystals with Alkoxy Chains at 2.5 THz
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SUMMARY Liquid crystal (LC) device has high tunability with low
power consumption and it is important not only in visible region but also
in terahertz region. In this study, birefringence and absorption losses of
hydrogen-bonded LC was estimated at 2.5 THz. Our results indicate that
introduction of alkoxy chain to hydrogen-bonded LC is effective to increase
birefringence in terahertz region. These results indicate that hydrogen-
bonded LCs are a strong candidate for future terahertz devices because of
their excellent properties in the terahertz region.
key words: terahertz, liquid crystal, hydrogen bonding, optically pumped
gas laser

1. Introduction

Terahertz waves have attracted significant attention for
many years, owing to their promising applications including
communication technologies, security checking, and nonde-
structive testing [1]. Recently, there have been extensive ef-
forts to investigate terahertz wave control devices. Liquid
crystals (LCs) are well known as excellent electro-optic ma-
terials and are strong candidates for high-performance ter-
ahertz wave control devices owing to their low power con-
sumption and controllability at low drive voltages.

A material’s properties in the terahertz frequency range
must be fully understood before it can be used for tera-
hertz applications. Researchers have thus aimed to clarify
the optical properties of LCs in the terahertz region. For
example, Nose et al. [2] reported that LCs exhibit birefrin-
gence in the terahertz frequency range by using an optically
pumped far-infrared gas laser. Many others have since used
terahertz time-domain spectroscopy systems to demonstrate
the refractive indices of LCs in the terahertz range [3]–[15].
Based on these substantiated and attractive terahertz prop-
erties, LCs have attracted attention for usage in a variety
of terahertz wave control devices. Pan et al. [16]–[19] de-
veloped a terahertz-tunable LC phase shifter, whereas Koch
et al. [20] developed a tunable LC filter. Other reported LC-
based tunable terahertz wave control devices have included
a reflection-type phase shifter [21], an LC tunable metama-
terial absorber [22], an LC phase grating device [23], and an
LC-based vortex beam generator [24].

Since terahertz waves have longer wavelengths than
their visible light counterparts, a thick LC layer is often
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needed for LC-based terahertz wave control devices. How-
ever, in general, the LC layer should be as thin as possi-
ble to allow fast operation and high birefringence LCs are
effective to decrease the thickness of the LC layer. As
such, LC materials exhibiting high birefringence in the ter-
ahertz range have been reported [25]–[27]. However, al-
most all previously reported LC materials exhibit dichro-
ism in the terahertz range (i.e., the terahertz wave absorp-
tion varies depending on the polarization of the incident ter-
ahertz wave) [2]–[4], [8]–[13], [25]–[27]. This dichroism
can cause unwanted variations in the intensity of the LC-
based terahertz wave control devices. In our previous work,
we confirmed that hydrogen-bonded LC with alkyl chain
does not exhibit dichroism at 2.5 THz [28]. Nevertheless,
the birefringence of this LC was not large as reported high-
birefringence LCs [25]–[27].

In this study, we focus on hydrogen-bonded LC with
alkoxy chains and estimate the birefringence and absorp-
tion losses at 2.5 THz. Here, the transmittance of the ho-
mogeneous alignment cell is measured using an optically
pumped gas laser and birefringence and absorption losses of
the hydrogen-bonded LC with alkoxy chains is estimated by
using Jones matrix calculations.

2. Experimental

2.1 Measurement Methods

Figure 1 shows structure of a homogeneous alignment cell
for terahertz measurements. To maintain a high transmit-
tance of the terahertz wave, we used z-cut quartz sub-
strates. The LC material 6380 (LCC, Japan) was injected
into a sandwich cell. The 6380 contains the dimer of 4-
alkoxybenzoic acid as shown in Fig. 2. Both of the inner
surfaces of the substrates were treated with antiparallel rub-
bing after coating the planar alignment layer with polyimide
(SE2170, Nissan Chemical Industries, Japan) to obtain ho-
mogeneous alignment. The cell thickness was determined
by using sheet spacers. The LC layer was 800 μm thick.

Figure 3 shows the experiment setup. In this study, the
terahertz wave intensity profiles were measured using an op-
tically pumped gas laser as a terahertz source, as shown in
the experimental setup that is summarized in Fig. 3. This
laser is a coherent continuous wave source and delivers pow-
erful terahertz radiation above 0.3 THz. A CO2 laser was
used to pump the CH2F2 gas, and a frequency of 2.5 THz
was used for the measurements. The LC device was placed

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



ITO et al.: ESTIMATING THE BIREFRINGENCE AND ABSORPTION LOSSES OF HYDROGEN-BONDED LIQUID CRYSTALS WITH ALKOXY CHAINS AT 2.5 THZ
69

between two wire-grid polarizers. To minimize the influ-
ence of laser power variation when measuring the intensity
of the terahertz wave, two pyroelectric detectors were used.
Thus, an accurate transmittance was obtained by normaliz-
ing the intensity of pyroelectric detector 2 by that of detector
1 (see Fig. 3).

2.2 Calculation Methods

The birefringence and absorption losses of the LC were
evaluated by calculating the transmittance of the homoge-
neous cell using the Jones matrix method [28], [29]. Since
the LCs have absorption loss in the terahertz region, we con-
sider the influence of absorption loss in the Jones matrix
calculation as follows [28]. Here, the electric field of the
terahertz wave passing through the homogeneous cell can
be written as[

Ex

Ey

]
= PAQWQ

[
cosΨP

sinΨP

]
, (1)

where PA, Q, and W represent the Jones matrices of the
analyzer, z-cut quartz substrate, and homogenous cell, re-
spectively, and ΨP is the angle of the polarizer. Here, PA is
calculated as

PA = R(ΨA)

[
1 0
0 0

]
R(−ΨA), (2)

where ΨA is angle of the analyzer and R(Ψ ) is the rotation
matrix,

Fig. 1 Homogeneous alignment cell used in terahertz measurements.

Fig. 2 Molecular structure of the hydrogen-bonded liquid crystal with
alkoxy chains.

Fig. 3 Experimental setup.

R(Ψ ) =

[
cosΨ − sinΨ
sinΨ cosΨ

]
. (3)

Further, the Jones matrix of the z-cut quartz substrate (i.e.,
Q), is written as

Q = exp

(
−2πn′′qdq

λ

) [
1 0
0 1

]
, (4)

where dq and n”q are the thickness and imaginary part of the
refractive index of the z-cut quartz substrate, respectively,
and λ is wave length of the terahertz wave.

The Jones matrix of the homogeneous cell (W) is writ-
ten as follow.

W = R(ΨLC)

[
a 0
0 b

]
R(−ΨLC), (5)

Here, a and b are written as

a = exp

(
− iΓ

2

)
exp

(
−2πn′′edLC

λ

)
, (6)

b = exp

(
iΓ
2

)
exp

(
−2πn′′odLC

λ

)
, (7)

where dLC is the thickness of LC layer, n”e and n”e are the
imaginary part of the extraordinary and ordinary refractive
indices of the LC, respectively, and Γ can be calculated as

Γ =
2πΔnd
λ
, (8)

where Δn is the birefringence of the LC.

3. Result and Discussion

Figure 4 shows the experimental and calculated terahertz
transmittance values of the homogeneous cell using 6380
at 2.5 THz. The graph shows the transmittance as a function
of analyzer angle ΨA when the direction of the polarizers
ΨP = 90 deg and the direction of LC director ΨLC = 0, 45,
and 90 deg as shown in Fig. 3. The measured and calcu-
lated data were in good agreement when n”e = n”o = 0.028
and Δn = 0.19. Here, n”q = 0.0005, corresponding with

Fig. 4 Experimental and calculated terahertz transmittance of the homo-
geneous cell using LC 6380 at 2.5 THz, where the solid lines show the
calculated results using the Jones matrix method.
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αq = 4π n”q/λ = 0.5 cm−1, and is consistent with previously
reported values [30]. The tendency of n”e = n”o is con-
sistent with reported results of hydrogen-bonded LCs with-
out alkoxy chains [28]. The estimated Δn of LC 6380 was
0.19, slightly greater than the reported value of 0.17 in a
hydrogen-bonded LC without alkoxy chains [28]. The in-
censement of birefringence in the terahertz region by intro-
ducing alkoxy chain has been reported in LCs without hy-
drogen bonding [11]; the results presented here thus indicate
that alkoxy chains can enhance birefringence in hydrogen-
bonded LCs, as well. Further, the lower n”e and n”o value
(i.e., 0.028 vs. 0.035 by [28]) is attractive for the devel-
opment of future LC-based terahertz wave control devices.
More-detailed measurements are in progress to character-
ize the broadband terahertz properties of hydrogen-bonded
LCs.

4. Conclusions

The absorption losses and birefringence of a hydrogen-
bonded LC at 2.5 THz were measured by using optically
pumped gas laser. The experimental and calculated re-
sults indicate that the introduction of an alkoxy chain can
increase the birefringence and ensure no dichroic absorp-
tion at 2.5 THz. Furthermore, the absorption loss of the
hydrogen-bonded LC with alkoxy chains is lower than that
of hydrogen-bonded LCs with alkyl chains. This work thus
represents a significant step toward the development of LC-
based terahertz wave control devices used in terahertz ap-
plications, which require no dichroism, low losses, and high
birefringence.
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