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A Reinforcement Learning Method for Optical Thin-Film Design

Anqing JIANG†, Nonmember and Osamu YOSHIE†a), Member

SUMMARY Machine learning, especially deep learning, is dramati-
cally changing the methods associated with optical thin-film inverse design.
The vast majority of this research has focused on the parameter optimiza-
tion (layer thickness, and structure size) of optical thin-films. A challenging
problem that arises is an automated material search. In this work, we pro-
pose a new end-to-end algorithm for optical thin-film inverse design. This
method combines the ability of unsupervised learning, reinforcement learn-
ing and includes a genetic algorithm to design an optical thin-film without
any human intervention. Furthermore, with several concrete examples, we
have shown how one can use this technique to optimize the spectra of a
multi-layer solar absorber device.
key words: optical thin-film design, reinforcement learning, neural combi-
natorial optimization

1. Introduction

In recent decades, significant fundamental advances com-
bined with the spectacular progress of nano-scale fabrica-
tion methods have led to a broad range of innovations in
the design of optical thin-film. Many applications, such
as broadband filter [1]–[3], solar absorber [4]–[6], and ra-
diative cooling device [7], [8], increasingly rely on the in-
tricate nanostructure design for greater performance at tar-
get wavelengths. Most of researchers make such designs
based on human intelligence to solve a fundamental pho-
tonic problem: choosing the best combination of materials
and nano-structure of a layered optical thin-film. Human in-
telligence is often limited and the highest performance of se-
lecting a layered thin-film cannot be achieved based solely
on a researcher’s intuition. Human expert-based design is
slow, and the performance of selecting an appropriate film
is “un-perfect”, especially in cases when the design target is
complicated.

With the development of computer-aided design
(CAD) technology, the inverse design has gained significant
attention as a powerful approach to design layered optical
thin-film without human experience. Several computational
algorithms have been proposed to solve the inverse design
problem, such as the evolutionary algorithm [9], a genetic
algorithm (GA) [10], [11], the needle algorithm [12], [13],
and the particle swarm optimization (PSO) [14]. However,
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the design process based on computational algorithms is
often time-consuming or computationally-intensive. For a
complex nano-structure and board wavelength design tar-
get, these computational algorithms take a lot of computa-
tion time that is produced by the electromagnetic (EM) sim-
ulation, such as rigorous coupled-wave analysis (RCWA),
the finite element method (FEM), the finite difference time
domain (FDTD), and transfer matrix method (TMM). All of
these methods are time and computationally expensive. In
contrast, deep learning (DL) based algorithms, which are
considered as being able to “learn” Maxwell’s equations,
were proposed to solve the nonlinear relationships between
the structural parameters and film’s performance by a large
dataset [15]–[18]. Learning the design process by human
experts, and reinforcement learning are other solutions to
solve this problem, which train an agent to learn about the
parameter space of a series by exploration [19]–[21]. While
the previously described algorithms have worked well for
structural parameters optimization (nano-structure size and
layer thickness) for a in thin-film inverse design well, there
is little research on the design of component materials for
these processes.

Generally, the simultaneous optimization of structural
and material parameters is a combinatorial optimization
problem. A challenging problem that arises in this field
is material parameters, such as the complex refractive in-
dex R(λ) = n + ik, where λ is the wavelength. The di-
rect processing of high-dimensional features leads to addi-
tional time and poorer optimizer performance, or even ab-
solute failure of the inverse design. One intuitive method
is to code the materials, which is applied by inverse de-
sign methods on a very small scale [22], [23]. These two
methods address the following materials’ parameter opti-
mization problem. The scope of these searches is complex
and exponentially greater for a larger number of materials.
A variety of component materials, such as metals, semicon-
ductors, alloys, transparent material have been widely used
in layered optical thin films to best match the design tar-
get. Simply encoding materials numerically in the form
of key-value pairs, such as (Au, 1), (Ag, 2), (Cu, 3), is
not a scalable approach. For supervised learning-based in-
verse design methods, such massive class categories result
in an insufficient number of samples that have been used
in the training. For the reinforcement learning based in-
verse design methods, substantial materials result in large
discrete action spaces, that bring reinforcement learning to
a larger class of problems. Unsupervised deep neural net-
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works, e.g. autoencoder (AE) [24] and variation autoencoder
(VAE) [25], work well for feature extraction. These methods
achieve great success in generating abstract features with
high dimensional data [26], [27]. Low-dimensional seman-
tic space can be extracted by unsupervised-learning-based
feature extraction methods from high-dimensional features
by VAE-tSNE (variational autoencoder stochastic neighbor
embedding) method [28]. In this technique, the model au-
tomatically learns a distribution of clusters and naturally
creates a multi-scale representation. In this work, we use
a VAE-tSNE feature reduction method to map the high di-
mensional complex refractive index of a material onto a two-
dimensional semantic space. This method allows the envi-
ronment space size of material not to increase with increas-
ing of alternative materials.

We propose and test an implementation of an end-to-
end reinforcement search system. This technique is the
combination of an reinforcement learning and a genetic al-
gorithm to design a layered optical thin-film from about 300
materials. The reinforcement learning environment space
is based on a two-dimensional semantic space extracted by
VAE-tSNE. In the following sections, we present the details
of this algorithm’s formulation and search space. Further-
more, we use our proposed search system to design and op-
timize a layered solar absorber device.

2. Design Target

The spectrum of an optical thin-film S (λ|R,d) =

[Absorption(λ),Transmission(λ),Re f lection(λ)] is deter-
mined by its component materials’ refractive index R =

[R1, . . . ,Rm], structural parameters (number of layers m,
layer thickness d = [d1, . . . , dm]), and fabrication errors
ε(λ). Fabrication errors often result from detects of the
manufacturing equipment and errors in the manufacturing
processes. In practice, as the wavelength range is contin-
uous, the optimization design problem of thin-film can be
described in Eq. (1), which is used to minimize the nonlin-
ear least square problem between a given structure S (λ|R,d)
and the target spectrum S ∗(λ).

min
R,d

∑

λ

(S(λ|R, d) − S∗(λ))2. (1)

3. Method

Having defined the optimization problem in Eq. (1), we can
now outline the use of the memetic algorithm in finding
the optimal multi-layer structure. Similar to the human de-
sign process, where well-designed films always improve on
previous experience, the algorithmic optimization of optical
films is performed step-by-step and can be considered as a
Markov decision process (MDP). Reinforcement learning, a
branch of machine learning, has been proposed to solve the
MDP problem through an exploration-reward. In this pa-
per, we use a reinforcement learning algorithm, called asyn-
chronous advantage actor-critic (A3C), to find the best opti-
cal thin-film structure, This method allows running multiple

Fig. 1 The reinforcement search system for an optical thin-film inverse
design. With the trained VAE-tSNE model, we mapped the optical con-
stants of more than 300 optical materials into a 2-dimensional environment.
A parallel reinforcement learning agents (A3C) adjusts the position of the
material for different layers. In this system, GA is used to search the best
thickness combinations from the results of each adjustment on the A3C
agents. Each A3C’s agent is a policy gradient agent to approximate the ad-
vantage function by neural networks. The searched film materials are given
as feedback to the agents for further improvement of the performance.

Fig. 2 Environment space generated from VAE-tSNE. Metal and alloys
are distributed in the orange area. Dielectric semiconductors are distributed
in the purple area. Transparency materials are distributed in the blue area.

agents in parallel instead of using only one while updating
the shared network periodically and asynchronously. Fig-
ure 1 shows the material selection system diagram.

3.1 Environment Space

Making a learner-friendly environment is one of the cen-
tral challenges faced by reinforcement learning to solve a
specific problem. With a common reinforcement learning
environment, as Go [29], Atari [30] and Duckietown [31],
the agent explores and learns in a 2D or 3D environment
space. The refractive index of the materials of an optical
thin-film is continuous high-dimensional data, especially in
the case of broadband optimization, and therefore cannot be
directly characterized in 2D or 3D space. In this manuscript,
we present a novel application of VAE-tSNE to embed the
high-dimensional material refractive index to semantically
relevant 2D latent variables. Figure 2 shows the environ-
ment space. Specifically, we trained 2-input 1D-CNN VAE
with 5, 10, 15 and 20 units in a hidden layer. The input of 2-
input 1D-CNN VAE is corresponded optical parameters into
discrete values at 1nm intervals in target wavelength range
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Table 1 Definition of actions used in A3C. Δx is the step in the environ-
ment x axis. Δy is the step in the environment y axis.

Actions number # of layers Δx Δy

0 1 0.01 0
1 1 0 0.01
2 1 −0.01 0
3 1 0 −0.01
4 2 0.01 0
5 2 0 0.01
6 2 −0.01 0
7 2 0 −0.01
8 3 −0.01 0
9 3 0 −0.01
10 3 0.01 0
11 3 0 0.01
12 4 −0.01 0
13 4 0 −0.01
14 4 0 −0.01
15 4 0.01 0

(280nm-800nm). When training the VAE-tSNE method, we
use over 800 materials. The latent space on the 20 units
gets a minimum loss (0.003), after training 1,000 epochs.
The tSNE embeds the 20 units latent vectors from the VAE
generator for space building. By observing the environmen-
tal space, materials with similar properties are distributed
in close proximity in this space after dimensionality reduc-
tion by VAE-tSNE. Considering that some of the materials
have too similar optical performance and have the same ap-
plication properties in practical. We deleted all glass mate-
rials except SiO2. Further, alloy materials can be mixed in
arbitrary proportions, and we have streamlined the propor-
tion of alloy material. Finally, we use 300 materials to build
the environment. For evaluating the design performance of
films, this environment of DQN use on one kind of mul-
tilayer optical film simulation algorithm called the transfer
matrix method (TMM) [32].

3.2 State

The state is a 2D array of the material parameters for struc-
ture. The total number of possible states for a 5 layers film
is, therefore, 1002 ∗1002 ∗1002 ∗1002 ∗1002 = 1010. Manu-
ally searching all of these states is impossible. However, us-
ing A3C can produce desirable results in a reasonable time.

3.3 Actions

Actions determine the material changes that are needed to
be applied to the optical thin-film. It is not feasible to set
the position of material directly as action because the A3C
agent is hard to train with a large number of discrete actions.
To deal with this problem, the material actions are defined
to change the material from the environment space. Table 1
shows a list of all the actions for a design example of a 5-
layer optical thin-film design.

Fig. 3 Proximity material matching for Ti case. The agent walks to a
blank point, the closest material is selected as the current material.

3.4 Rewards

Reward design enables the robustness of an RL system. To
move our material design system in a certain and correct di-
rection, we use both discrete-reward and continuous-reward.
Considering that the environment space is sparse in the op-
timization process, we use this method of reward shaping to
reduce the sparse payoff problem [33].

Observation reward is an RMSE (root mean squarded
error) loss type reward shaping function, which can be ex-
pressed as

RMS EObs(n, k, d) = Σλ,θW(λ)|S (θ, λ; n, k, d)−S ∗(λ, θ)|.
(2)

Reward 0 and Reward 1 can restrict the agent from
choosing meaningless pairwise actions (x minus 0.1, x plus
0.1) to gain a meaningless reward. The observation reward
(Reward 3) provides the agents with a decaying reward sys-
tem, which is designed to perform more exploitation at the
beginning of each agent’s action and more exploration at the
end of each agent’s action.

3.5 Proximity Material Matching

We can see from Fig. 2 that our environment is sparse. This
means that most of the environmental space does not corre-
spond to a single material. To solve this problem, we de-
fine a rule that any point corresponding to a blank point is
regarded as the closest material, as shown in Fig. 3. This
operation maps every point in the environment space to cor-
responding states. As a result the A3C agents will learn the
policy of reinforcement learning.

3.6 Thickness Optimization

In the thickness optimization process, to reduce the amount
of computation in the overall material search, each mate-
rial combination is optimized only once by the thickness
optimization algorithm. Compared with several traditional
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Table 2 Definition of rewards used in A3C.

Reward Number Situation Reward value

1 Film performance is not improved −1
in the threshold step

2 Film performance is not improved −0.01
3 Film performance is improved Observation reward
4 Film performance meets the target 1

Table 3 Results of the thickness optimization by traditional methods. Six heuristic optimization al-
gorithms are used. The column “Best” reports the largest value of absorption for each algorithm. Std
represents the stability of each algorithm. Time is the average execution time to complete the optimiza-
tion (in seconds).

GA GASA PSO

Type Best Std Time Best Std Time Best Std Time

8-layers solar absorber 0.88 0.02 35 0.90 0.04 55 0.87 0.07 20

SA [34] AFSA [35] DQN

Type Best Std Time Best Std Time Best Std Time

8-layers solar absorber 0.87 0.04 210 0.81 0.02 376 0.94 0.01 1180

Fig. 4 Thickness optimization by GA. a) Encoding of thickness of opti-
cal thin-film and mutation operation. b) The crossover operation of encoded
thickness of optical thin-film

methods, as shown in Table 3, the genetic algorithm exhib-
ited the best stability and best film performance in 50 at-
tempts.

In Fig. 4 (a), we implement the genetic algorithm to op-
timize and improve the spectral performance of the layered
optical thin-film with a population size of 100 and 500 gen-
erations. In the genetic thickness optimization algorithm,
the chromosome represents the layer thickness of the thin-
film. The variables of thickness are constructed from values
that a boundary value (10nm− 200nm) is assigned. Another
four key parameters of GA are the selection rate (0.3), mu-
tation rate (0.1), crossover rate (0.5) and the elitist selec-
tion rate (0.1), to improve the solution of the GA. For the
crossover operation in Fig. 4 (b), a random number is gener-
ated to determine the crossover position. For the mutation
operation, the thickness is a random number between the
boundary value. The elitist selection operation selects the
best 10% chromosomes for the next generation in an itera-
tive process, which is a slight variant of the general process
of constructing a new population.

Fig. 5 The A3C algorithm begins by constructing the global network.
This network will consist of layers to process spatial dependencies. Each
agent have their own network and environment and run on a separate pro-
cessor thread. The global network is constantly being updated by each of
the agents, as they interact with their environment.

3.7 A3C

A3C is a parallel policy gradient algorithm in reinforce-
ment learning to learn a policy π (at | st; θ) and to esti-
mate the value function V (st; θv) by agents. The policy
and value function is updated by a mix of n-step returns
(states and actions) when a terminal state is reached. The
update that is performed by the algorithm can be seen as
∇θ′ log π (at | st; θ′) A (st, at; θ, θv), where A (st, at; θ, θv) is an
estimate of the advantage function. The expression is given
by:

k−1∑

i=0

γirt+i + γ
kV (st+k; θv) − V (st; θv) .

The value function is learned by the critics in A3C, while
multi-actors are updated by the parameters in the master
model. These updates are performed in parallel. After sev-
eral episodes, the agents get synced with the master model
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and the parameters are updated. The gradients are accu-
mulated as part of training for stability like the parallelized
stochastic gradient descent in the deep learning training pro-
cess. In this parallel architecture, each agent in the same
episode is sample from different experiences. Such a mech-
anism can have a better chance of improving the optimiza-
tion results for combinatorial optimization problems such as
material selection problem.

In our implementation, the actor-network consists of
4 layers fully connected neural network with (5, 32, 16, 1)
units. The critic-network consists of 5 layers fully connected
neural network, with (5, 32, 16, 16 1) units. The activation
function used in these two networks is the Relu. The Adam
gradient descent for optimizing the networks.

4. Experiments and Results

4.1 Optimization of Solar Absorber Device

To demonstrate this material search system, we analyze a so-
lar absorber device that can convert solar energy to thermal
energy. This device uses multilayered thin-film structures
consisting of alternating metal/alloys/semiconductor and di-
electric layers. These layers have the advantage of excellent
spectral properties in both broad solar spectral and wide in-
cident angle regions, low thermal emittance, and high ther-
mal stability.

We have performed a complete study of 4/6/8-layer
SSR thin-film devices in our previous research [36]–[39].
The SSR with 5-layer structures have not been extensively
studied. Figure 6 (a) shows that solar energy is highest near
the visible wavelengths. At an angle of normal light, the
goal is 100% absorption at the wavelength range from 250
nm to 800 nm and no absorption at other wavelengths. We
aim to achieve this performance with our studies.

From our search for 1000 epochs, we plot in Fig. 6 (b)
the best and cumulative absorption in each epoch. The
agents develop the best material structure for a 5-layer struc-
ture with the material composition the thickness shown in
Fig. 6 (d). The algorithm selects materials in the follow-
ing order [MgF2,TiO2, S i,Ge,Cu],respectively, thickness
of each layer with the following order [35.3nm, 27.1nm,
112.5nm, 172.0nm, 200.0nm]. The designed absorber can
achieve broadband absorption due to the characteristics of
selected materials as shown in Fig. 6 (c). The average ab-
sorption in the wavelength range, 250 nm to 800 nm, is
above 91%. In contrast to other thin film optimization al-
gorithms that can only handle thickness optimization prob-
lems, our algorithm selects effective constituent materials
from a huge range of materials.

4.2 Method Comparison

On the solar absorber design task, we conducted an com-
parison study to compare our proposal with other method.
We trained another two different models: 1) random search

Fig. 6 The design of solar absorber by our proposed search system. a)
The target absorptivity spectrum of the solar absorber is compared to the
solar spectrum. The operating principles of the multi-layer solar selective
absorber. b) The best absorption in the search process. c) The absorption
spectrum of designed film d) The material composition and thicknesses for
the material search system

Fig. 7 Searching trajectory of random search and DQN. Triangles indi-
cate that the absorption be improved.

(RS): the action is totally by random agent, 2) deep Q learn-
ing (DQN): the action is selected from Q-value from DQN
agent by ε-policy. For each model, the search process is
1000 epoches. The maximum absorption values discovered
by each model are reported in Fig. 7.

In Fig. 7, we plot the absorption and maximum absorp-
tion of the structures generated in each epoch over the en-
tire searching trajectory. The result of A3C (91%) is more
significant than other reinforcement learning agent as the
random search (78%) and DQN (82.4%). We compare the
searching trajectory of three models: 1) A3C find the best
result around 200 epoch, 2) random search find the best re-
sult around 400 epoch, 3) DQN find the best result around
900 epoch. The A3C significantly achieves the best perfor-
mance in our reinforcement learning environment.
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5. Conclusion and Future Research

To conclude, this paper has created an RL based on A3C and
GA to optimize the design of a multi-layer solar absorber.
Using the VAE-tSNE method with more than 300 different
materials, to reduce the continuous material optical parame-
ters to the two-dimensional reinforcement learning environ-
ment space. This technique selected the most appropriate
one by joint material search system. The material search
system can automatically search material composition and
structure to achieve a target optical spectrum based on A3C
and GA. Compared with previous work, our approach can
handle and select material from a significantly larger dataset
without any human intervention. The VAE-tSNE model
takes the optical material constant as the training samples
and can generate the 2D features with material related. Op-
tical films consist of materials whose features are distributed
in the adjacent field also tend to have similar performance.
Using the generated 2D material features, we propose a re-
inforcement learning environment can select materials and
optimal thickness for each layer of a multi-layer structure.
By comparing RS, DQN and A3C, we developed the A3C
agent to achieve the best performance in solving our optical
thin-film design problem. As a demonstration, we have used
it to design a solar selective absorber. By using a diverse set
of materials, the multi-layer structure has excellent solar ab-
sorption of 91% in visible light. Because of its versatility
and effectiveness, our material search system proves to be a
state of the art tool for multi-layer optical thin-film design.
It can be not only used for thermal and energy applications,
but also for other optical device designs and optimization.
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Appendix: Environment features comparison

In this paper, we compared multiple methods for 2d feature
generation. In app.Fig. A· 1, we choose three feature reduc-
tion methods (PCA, VAE, VAE-tSNE). The app.Fig. A· 1.a
shows extracted feature by PCA. We keep the most im-
portant information by top-2 principal components. Met-
als and alloys are well represented in the feature map, but

Fig. A· 1 2D feature map generated by three different feature reduction
methods methods. a) The environment space generated by PCA. b) The
environment space generated by VAE. c) The environment space generated
by VAE-tSNE. The VAE-tSEN enables the material’s point more semanti-
cally comprehensible. converge to better solutions than models without the
gating.

the vast majority of the semiconductor materials are dis-
tributed in very close area. Further, we trained a VAE with
2 hidden units, Similarly with PCA result, the mutual po-
sitions of metals and alloys are related to their properties
and some of the semiconductors correctly represent the rel-
ative relationships associated with the optical properties. To
solve the problem that semiconductor materials cannot be
well distinguished, we propose feature extraction by (fea-
ture representation-feature reduction) VAE-tSNE approach.

In our implementation, shown in app.Fig. A· 1.c, plas-
monic matels (Ag, Au, Cu, Ag-Au) distributed in close
field. The strong absorbing metals (Mo,Ti,Zn) are indi-
cated in the upper right corner. Interestingly, insulators (vis-
ible transparent materials) and semiconductor materials are
completely distinguished in different regions. Among them,
the visible transparent material is distributed near the red
dots, while the green area is dominated by the semicon-
ductor material. Most importantly, semiconductor materi-
als with different optical properties are well differentiated.
Wide gap semiconductors (AlN) and compound semicon-
ductors (GaAs, InAs) are significantly distinguished. Intu-
itively, the features generated by VAE-tSNE are more uni-
formly distributed throughout the feature space.
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