
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023
365

PAPER Special Section on Solid-State Circuit Design — Architecture, Circuit, Device and Design Methodology

Non-Stop Microprocessor for Fault-Tolerant Real-Time Systems

Shota NAKABEPPU†a), Student Member and Nobuyuki YAMASAKI†b), Member

SUMMARY It is very important to design an embedded real-time sys-
tem as a fault-tolerant system to ensure dependability. In particular, when a
power failure occurs, restart processing after power restoration is required
in a real-time system using a conventional processor. Even if power is re-
stored quickly, the restart process takes a long time and causes deadline
misses. In order to design a fault-tolerant real-time system, it is necessary
to have a processor that can resume operation in a short time immediately
after power is restored, even if a power failure occurs at any time. Since cur-
rent embedded real-time systems are required to execute many tasks, high
schedulability for high throughput is also important. This paper proposes
a non-stop microprocessor architecture to achieve a fault-tolerant real-time
system. The non-stop microprocessor is designed so as to resume normal
operation even if a power failure occurs at any time, to achieve little per-
formance degradation for high schedulability even if checkpoint creations
and restorations are performed many times, to control flexibly non-volatile
devices through software configuration, and to ensure data consistency no
matter when a checkpoint restoration is performed. The evaluation shows
that the non-stop microprocessor can restore a checkpoint within 5µsec
and almost hide the overhead of checkpoint creations. The non-stop mi-
croprocessor with such capabilities will be an essential component of a
fault-tolerant real-time system with high schedulability.
key words: non-volatile flip-flop, non-volatile memory, embedded real-
time system, fault-tolerant system, microprocessor architecture

1. Introduction

Many embedded real-time systems such as automobiles,
robots, spacecraft, wearable devices, and sensor networks
are social infrastructures in modern society. Such embed-
ded real-time systems must be designed as fault-tolerant
real-time systems with dependability. In particular, when a
power failure occurs in an embedded real-time system using
a conventional processor, as all flip-flops and the main mem-
ory values are lost, a restart process is required after power
is restored. Even if power is restored quickly, the restart
process takes a long time and causes deadline misses. A
fault-tolerant real-time system requires a processor that can
resume operation in a short time immediately after power
is restored, no matter when a power failure occurs. Check-
pointing with non-volatile devices is one effective method
to achieve such a processor. Since current embedded real-
time systems need to perform many tasks, high schedula-
bility for high throughput is also important. A real-time

Manuscript received August 3, 2022.
Manuscript revised November 6, 2022.
Manuscript publicized January 25, 2023.
†The authors are with the Department of Information and Com-

puter Science, Keio University, Yokohama-shi, 223–8522 Japan.
a) E-mail: beppu@ny.ics.keio.ac.jp
b) E-mail: yamasaki@ny.ics.keio.ac.jp

DOI: 10.1587/transele.2022CDP0005

system should be able to be scheduled by a real-time sched-
uler, including the overhead of checkpoint creations and
restorations. The significant overhead of checkpoint cre-
ations and restorations reduces the number of tasks sched-
uled within a time constraint, reducing schedulability.

This paper proposes a non-stop microprocessor ar-
chitecture for a fault-tolerant real-time system. The non-
stop microprocessor can resume normal operation even if
a power failure occurs at any time, can achieve little per-
formance degradation for high schedulability even if check-
point creations and restorations are performed many times,
can flexibly control non-volatile devices through software
configuration, and can ensure data consistency no matter
when a checkpoint restoration is performed. Specifically,
the non-stop microprocessor significantly reduces the over-
head of the restart process by making the processor pipeline
non-volatile and creating checkpoints on non-volatile de-
vices. The non-stop microprocessor is designed so as to cre-
ate two checkpoint systems to ensure a normal checkpoint
restoration, even if a power failure occurs at any time. The
non-stop microprocessor achieves little performance degra-
dation for high schedulability even if many checkpoint cre-
ations and restorations are performed by significantly reduc-
ing the overhead of checkpoint creations and restorations
and almost hiding the overhead of checkpoint creations. We
design a non-volatile device controller architecture that can
flexibly control non-volatile devices through software con-
figuration in order to support a wide variety of non-volatile
devices. We also design a consistency-aware data cache
to ensure data consistency no matter when a checkpoint
restoration is performed.

The contribution of this paper is to design a control ar-
chitecture for various non-volatile devices to realize a non-
stop microprocessor that can operate normally immediately
after power is restored, even if the power is turned off at any
point in time, with little performance degradation. Further-
more, we have designed the non-stop microprocessor based
on the proposed control architecture.

2. Background

2.1 Checkpointing-Aware Real-Time Scheduling

Checkpointing-aware real-time scheduling has been stud-
ied to realize fault-tolerant real-time systems [1], [2]. Fig-
ure 1 shows an example of checkpointing-aware real-time
scheduling. In this example, a real-time task with a time

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers



366
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

Fig. 1 An example of checkpointing-aware real-time scheduling

constraint is divided into multiple subtasks, and checkpoints
are created periodically. When a power failure occurs,
the operation resumes immediately after a power return by
restoring the most recent and appropriate checkpoint. In or-
der to cope with a power failure, it is necessary to create and
restore sufficient checkpoints using non-volatile devices.

In checkpointing-aware real-time scheduling, the
WCET (Worst-Case Execution Time) is calculated based on
the assumption that transient faults (e.g., a power failure and
single event upsets [3]) occur at most k times, taking into
account the overhead of checkpoint creation and restora-
tion, so that time constraints can be guaranteed even if tran-
sient faults occur m (m <= k) times [1], [2], [4]. Since the
scheduling can tolerate burst faults, the scheduling is use-
ful even if a power failure equal to n (n <= k) times faults
occurs. Since current embedded real-time systems require
high schedulability, the WCET, including the overhead of
checkpoint creation and restoration, should be as short as
possible by reducing the overhead [4].

A fault-tolerant real-time system requires that the sys-
tem can resume normal operation as soon as power is re-
stored, no matter when a power failure occurs. If a fault-
tolerant system creates a single checkpoint, the normal
checkpoint is lost if a power failure occurs during check-
point creation. If multiple checkpoints are created with
slightly different creation times, the normal checkpoints can
be retained even if a power failure occurs during checkpoint
creation. Therefore, to realize a fault-tolerant real-time sys-
tem with high schedulability, it is necessary to create and re-
store checkpoints using non-volatile devices, reduce or hide
the overhead of checkpoint creations and restorations, and
create multiple systems of checkpoints.

2.2 Non-Volatile Memory (NVM)

Non-Volatile Memory (NVM) is a memory that can retain
saved values even when power is turned off. Typical proces-
sors for embedded systems equip volatile memory, such as a
DRAM and an SRAM, as the main memory and non-volatile
memory, such as flash memory, as the secondary mem-
ory. In recent years, processors with a non-volatile memory
such as an MRAM [5], a FeRAM [6], a ReRAM [7], and a
PCM [8], which enable high-speed reading and writing as
the main memory have also been studied. When a processor
equips a non-volatile memory as the main memory, the val-
ues stored in the main memory are retained even when the
power is turned off so that values stored in the main memory
can be excluded from a checkpoint.

2.3 Non-Volatile Flip-Flop (NVFF)

A typical Flip-Flop (FF) is a volatile device whose value
is lost after the power is turned off. A Non-Volatile Flip-
Flop (NVFF) [9]–[15] consists of an FF and a non-volatile
element. The data stored in the FF is volatile, and the
data stored in the non-volatile element is non-volatile. The
NVFF can store the value of the FF in the non-volatile el-
ement or restore the value of the non-volatile element to
the FF. The operation of storing the FF’s value in the non-
volatile element is called a store operation. The operation
of restoring the non-volatile element’s value to the FF is
called a restore operation. The NVFF has control signal
pins to perform a store operation and a restore operation at
the intended timing. Note that the FF’s value and the non-
volatile element’s value are updated at independent times.
On the one hand, the NVFF stores input data into the FF
at the rising edge of a clock, as with a typical FF. On the
other hand, the NVFF stores the FF’s value into the non-
volatile element only when a store operation is performed.
Since a store operation fails with a certain probability [15],
an SoC with many NVFFs must have a function to ver-
ify whether each NVFF has successfully performed a store
operation. Therefore, a VR-NVFF [15] is useful for such
SoCs because it can perform a verify operation that com-
pares whether the non-volatile element’s value is equal to
the FF’s value. A VR-NVFF equips two Magnetic Tunnel-
ing Junctions (MTJs) [16]. Note that a store operation stores
the FF’s 1-bit value into the MTJ pair.

2.4 Non-Volatile Processor (NVP)

Non-Volatile Processors (NVP) that can create checkpoints
on non-volatile devices have been studied [17]–[19]. The
NVPs can resume normal operation immediately after
power restoration by restoring the most recent and appro-
priate checkpoints in the event of a power failure. Most ex-
isting researches focus on reducing power consumption, and
there is no NVP suitable for a fault-tolerant real-time system
with high schedulability.

On the one hand, the NVPs that can create checkpoints
with NVM have been studied. In these NVPs, two main
methods of checkpoint creation have been proposed. One
method is to use a volatile memory as the main memory
and copy the values of the main memory and FFs to an
NVM [20]. The other method is to use an NVM as the main
memory and copy only the values of FFs to an NVM [21]–
[23]. These NVPs can create multiple checkpoints as long
as the NVM capacity allows. The most recent and appro-
priate checkpoint can be restored even if a power failure oc-
curs during a checkpoint creation. However, a checkpoint
creation and a checkpoint restoration require many NVM
read/write operations, and the overhead of a checkpoint cre-
ation and a checkpoint restoration is significant. Therefore,
although these methods can resume normal operation af-
ter the power is restored, even if a power failure occurs at



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
367

any time, the significant overhead of checkpoint creations
and restorations degrades schedulability in real-time sys-
tems. An NVP scheduler [24] has been studied to improve
the schedulability of systems using NVP, but the overhead
of checkpoint creations and restorations still needs to be
addressed.

On the other hand, the NVPs that replace FFs with
NVFFs and create checkpoints with NVFFs also have been
studied [25]–[27]. These NVPs can reduce the overhead of
checkpoint creations and restorations by performing store
and restore operations in parallel on each NVFF. However,
this method can create only one checkpoint because each
NVFF can store only a one-bit value in its non-volatile de-
vice. If a power failure occurs during a checkpoint cre-
ation, a checkpoint is no longer normal because only some
of a checkpoint is updated, and the rest is not updated.
Therefore, although this method can reduce the overhead
of checkpoint creations and restorations, it cannot resume
normal operation after power is restored if a power failure
occurs during a checkpoint creation.

Thus, highly schedulable fault-tolerant real-time sys-
tems cannot be realized using these NVPs. We design a
non-stop microprocessor that can resume normal operation
immediately after power is restored, even if a power failure
occurs at any time while reducing the overhead of check-
point creations and restorations. In order to achieve these re-
quirements, the microprocessor is designed to use an NVM
as main memory, replace FFs with NVFFs, and create two
sets of checkpoints.

2.5 Consistency-Aware Checkpoint Creation

In architectures that equip an NVM and NVFFs and use
an NVM as main memory, a power failure may cause data
inconsistency because an NVM and NVFFs have different
timings for writing values to non-volatile devices. In the
case of an NVM, all written values are non-volatile, while
in the case of an NVFF, the FF’s value is volatile, and
only the non-volatile device’s value is non-volatile. Fig-
ure 2 shows an example of data inconsistency after a power

Fig. 2 An example of data inconsistency caused by power failure

failure occurs. In order to guarantee data consistency even
if a power failure occurs at any time, the program analy-
sis to insert checkpoint creations that guarantee data con-
sistency has been studied [28]–[32]. A checkpoint cre-
ation to guarantee data consistency is called a consistency-
aware checkpoint creation. Inserting consistency-aware
checkpoint creations can ensure data consistency but in-
creases overhead by creating many checkpoints. Therefore,
some hardware-based approaches to reduce the overhead
of consistency-aware checkpoint creations have been pro-
posed. PROWL [33] is a consistency-aware cache replace-
ment policy to avoid data inconsistency with fewer check-
point creations. COACH [34] and the proposed NVP by
Senni et al. [35] equips two systems of NVMs to resolve data
inconsistencies fundamentally without a consistency-aware
checkpoint creation.

We designed a consistency-aware data cache to guaran-
tee data consistency with as few consistency-aware check-
point creations as possible, no matter when a power failure
occurs.

3. Non-Stop Microprocessor

3.1 Overall Architecture

This section describes the architecture of the non-stop SoC
(NVIOC SoC: Non-Volatile IO Core System-on-Chip). The
NVIOC SoC integrates a non-stop microprocessor designed
using non-volatile devices (NVIOC), a clock control mod-
ule, memories (embedded MRAM and SRAM), and re-
quired IO peripherals (GPIO, UART, SPI, I2C, PWM gener-
ators, and pulse counters) with DMACs. The baseline CPU
architecture of NVIOC is a simple RISC processor (IOC:
IO Core processor). The NVIOC is designed by replacing
all the flip-flops used in the IOC’s pipeline with NVFFs to
make it non-volatile at the pipeline level. In order to elimi-
nate checkpointing for values in the main memory, an NVM,
such as an MRAM, is used as the main memory so that the
main memory values are non-volatile. Since embedded real-
time systems often perform actuator control, restoring the
state of the CPU and the IOs used for motor control is de-
sirable. Therefore, the pulse counter and the PWM input
modules are also designed as non-stop IOs using NVFFs.
The PWM output module is one of the IOs for motor con-
trol. However, it is not designed as a non-stop IO because its
state can be immediately restored by recalculation based on
the values of the PWM input module and the pulse counter
module. The block diagram of the NVIOC SoC is shown in
Fig. 3. The blue parts are volatile, and the yellow parts are
non-volatile.

The NVFFM (Non-Volatile Flip-Flop Module) is a reg-
ister file that consists of NVFFs and a control logic that per-
forms a checkpoint creation and a checkpoint restoration.
The NVDC (Non-Volatile Device Controller) is designed
to control NVFFMs of various configurations with different
bit widths and flexibly absorb and control the differences
in configuration through software settings. The NVIOC



368
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

Fig. 3 The figure shows the block diagram of the NVIOC SoC.

SoC has multiple NVFFM and NVDC channels, and each
NVFFM channel is controlled by its corresponding NVDC
channel.

3.2 NVFFM (Non-Volatile Flip-Flop Module)

A fault-tolerant real-time system should operate normally,
no matter when a power failure occurs. Therefore, we de-
sign the NVFFM to maintain normal checkpoints at any
time. The NVFFM creates a checkpoint on non-volatile de-
vices so that the checkpoint will not be lost even if a power
failure occurs. On the one hand, if the NVFFM creates a sin-
gle checkpoint, the normal checkpoint is lost if a power fail-
ure occurs during a checkpoint creation. On the other hand,
if the NVFFM creates multiple checkpoints with slightly
different creation times, the normal checkpoints can be re-
tained at any time. Therefore, the NVFFM is designed to
have two NVFFs for each 1-bit value (NVFF pair) to cre-
ate two checkpoints with slightly different creation times.
In this paper, one of the NVFF pairs is called a bank (e.g.,
bank0 and bank1). The NVFFM has a valid bit in order
to indicate which bank contains a normal and latest check-
point. For example, if a valid bit is 1, bank1 has the nor-
mal and latest checkpoint. Since the value of a valid bit is
required for a checkpoint restoration after a power failure
occurs, the valid bit is stored in an NVFF. A fault-tolerant
real-time system should achieve little performance degra-
dation for high schedulability even with frequent check-
point creations and restorations. Therefore, we design the
NVFFM to significantly reduce the overhead of checkpoint
creations and restorations by allowing multiple NVFFs to
perform store or restore operations in parallel. In addition,
the NVFFM hides the overhead of checkpoint creations by
alternating store operations with two banks. A fault-tolerant
real-time system should operate normally despite various
failures, such as permanent MTJ failures and failures of
store operations. Therefore, we design the NVFFM with
VR-NVFFs [15] so that we can verify the success or failure
of a store operation to ensure that the non-stop micropro-
cessor with many NVFFs operates properly. In addition, the
NVFFM supports error correction code (ECC) encoding and

Fig. 4 The NVFFM has 2-bank. Input data is assigned to both banks.
Output data is output from the bank selected by the control logic. Even
while one bank is performing a checkpoint creation, the other bank can be
used as a simple register file. The valid bit indicates which bank has a valid
checkpoint.

Fig. 5 The figure shows the NVFF banks when the NVFFM is creating
the jth checkpoint.

decoding to cope with permanent MTJ failures. A (64,72)
Hamming code is used as ECC to perform 1-bit error cor-
rection and 2-bit error detection. Figure 4 shows the block
diagram of the NVFFM. Figure 5 shows the NVFF banks
when the NVFFM is creating the jth checkpoint. While the
bank1 is creating jth checkpoint, the bank0 is performing as
a simple register file for j+1th subtask. On the one hand, the
NVFF0 and NVFF1 in the NVFF unit0 of the bank1 have al-
ready stored the jth checkpoint information into the MTJs.
On the other hand, the other NVFFs in the bank1 still store
the j−2th checkpoint information into the MTJs. Therefore,
if a power failure occurs at this time, the checkpoint infor-
mation stored in the bank1 is inconsistent. Since the bank0
has already stored the j − 1th checkpoint into the MTJs, the
NVFFM can restart j − 1th checkpoint information even in
this case.

3.2.1 Normal Operation

The NVFFM operates as a simple N-bit register file in case
of a normal operation. Each NVFF stores input data into
the FF at the rising edge of a clock, as with a typical FF.
In order to reduce energy consumption, the NVFFM selects



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
369

only either bank to perform read and write operations. The
selected bank is called the active bank.

3.2.2 Checkpoint Creation with an NVFFM

We explain how to perform a checkpoint creation with an
NVFFM.

1. The NVFFM selects which bank to create the check-
point. The selected bank is called the store target
bank. Suppose a checkpoint creation is performed on
the bank indicated by the value of a valid bit. In that
case, the normal and latest checkpoint will be lost if a
power failure occurs. Therefore, the NVFFM selects
the bank indicated by the inverted value of a valid bit.
For example, if a valid bit is 1, the store target bank is
bank0.

2. The NVFFM sends input data to both banks. Each
NVFF of both banks stores input data into the FF, as
with a typical FF. Since both banks have the latest in-
put data, the NVFFM can operate normally regardless
of which bank is selected as the active bank.

3. The NVFFM selects the bank indicated by the valid bit
value as the active bank. Although the store target bank
cannot be accessed during the checkpoint creation, the
other bank can be accessed during the checkpoint cre-
ation. Therefore, the NVFFM can continue to operate
as a simple N-bit register file even while the checkpoint
creation by selecting the other bank as the active bank.
This is why the NVFFM can hide the overhead of the
checkpoint creation.

4. The NVFFM encodes ECC based on the FFs’ values of
the NVFFs in the store target bank.

5. The clock control unit gates the clock of the store tar-
get bank. Therefore, the FF’s value of each NVFF in
the store target bank does not change during the check-
point creation.

6. The NVFFM performs a verify operation on each
NVFF in the store target bank. If the FF’s value and the
MTJs’ value are the same for all NVFFs, the NVFFM
skips the seventh and eighth stages because there is no
need to perform a store operation.

7. Each NVFF unit in the store target bank operates
NVFFs’ control signals to perform a store operation.

8. Each NVFF unit in the store target bank operates
NVFFs’ control signals to perform a verify operation.
If the MTJ’s value and the FF’s value are the same for
all NVFFs, the NVFFM goes to the ninth stage. If
the MTJ’s value and the FF’s value are different for
an NVFFs, the NVFFM checks store retry counter. If
the value of store retry counter is not larger than the
user-defined maximum value, the NVFFM increments
store retry counter and goes to the seventh stage. If
the value of store retry counter is larger than the user-
defined maximum value, the NVFFM aborts the check-
point creation and generates interrupts to handle store
failures.

9. The NVFFM updates the value of a valid bit to indicate
the store target bank. The updated value is written to
the FF of the NVFF, which contains a valid bit. If a
power failure occurs until this stage, the value of a valid
bit is not stored in the MTJ of the NVFF. Therefore, the
NVFFM can perform a checkpoint restoration with the
bank, which has a normal checkpoint.

10. The NVFFM performs a store operation on the NVFF,
which contains a valid bit. If a power failure occurs
at this stage, the MTJ’s value may become unstable.
Therefore, we cannot know whether a valid bit will be-
come ‘0’ or ‘1’ on a checkpoint restoration. This seems
like a critical problem, but it is not. Since both banks
have a normal checkpoint at this stage, the NVFFM
can perform a checkpoint restoration normally regard-
less of which bank is used. This ten-step process allows
the NVFFM to maintain a normal checkpoint no matter
when a power failure occurs while hiding the overhead
of a checkpoint creation.

The NVFFM supports Store Only (SO), One Step Store
(OSS) [15], Two Step Store (TSS) [15], and Multi Step Store
(MSS) methodologies for a checkpoint creation. Figure 6
shows the state flows of each methodology. We call a
checkpoint creation with SO method as SO checkpointing.
SO checkpointing must perform store operations on many
NVFFs. It also has to perform a long store operation which
takes a long enough time for all NVFFs to successfully store
the FF’s value to the MTJ in a single store operation. There-
fore, SO checkpointing consumes much power. We call a
checkpoint creation with OSS method as OSS checkpoint-
ing. OSS checkpointing reduces power consumption by
reducing the number of NVFFs that perform store opera-
tions. The NVFFM performs verify operations before per-
forming store operations so that only NVFFs for which the
MTJ’s value differs from the FF’s value are subject to the
store operations. Although, OSS checkpointing must per-
form long store operation. We call a checkpoint creation
with TSS method as TSS checkpointing. TSS checkpoint-
ing reduces power consumption by reducing the time spent
on the first store operation. It takes advantage of the fact
that most NVFFs can write the FF value to the MTJ suc-
cessfully, even with a store operation in a short time. The
first store operation is short store operation which takes a
short time, and the second store operation is long store op-
eration. We propose MSS method as an extension of TSS
method for more fault tolerance. We call a checkpoint cre-
ation with MSS method as MSS checkpointing. The NVFFM
repeats the verify and store operations until all NVFFs suc-
cessfully write the FF’s values to the MTJs. If the number of
verify operations exceeds the user-defined maximum value,
the NVFFM generates an interrupt and terminates a check-
point creation. MSS checkpointing allows users to respond
to failures of a checkpoint creation by handling the interrupt.

Figure 7 shows an example of checkpointing-aware
real-time scheduling with an NVFFM. The overhead of a
checkpoint creation is almost hidden because subtasks are



370
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

Fig. 6 The figure shows the state flows of Store Only (SO), One Step Store (OSS) [15], Two Step Store
(TSS) [15], and Multi Step Store (MSS) methodologies for a checkpoint creation.

Fig. 7 The figure shows an example of checkpointing-aware real-time
scheduling with an NVFFM.

executed with one bank, even while a checkpoint creation
is performed with the other bank. Since at least one bank
always has a normal checkpoint, the microprocessor can re-
sume the normal checkpoint immediately after power is re-
stored, even if a power failure occurs during a checkpoint
creation.

3.2.3 Checkpoint Restoration with an NVFFM

We explain how to perform a checkpoint restoration with an
NVFFM.

1. The NVFFM performs a restore operation on the NVFF
that contains a valid bit to restore the MTJ’s value to the
FF.

2. The NVFFM checks a valid bit to select which bank
has a normal and latest checkpoint. The selected bank
is called the restore target bank. For example, if a valid
bit is 1, the restore target bank is bank1.

3. Each NVFF unit in the restore target bank operates
NVFFs’ control signals to perform a restore operation.

4. The NVFFM decodes ECC based on the FFs’ val-
ues of the NVFFs in the restore target bank. If 1-
bit error correction or 2-bit error detection occurs, the
NVFFM generates the corresponding interruption to
handle them.

5. The NVFFM selects the restore target bank as the ac-
tive bank.

6. The NVFFM acts as an N-bit simple register file us-
ing the active bank. This six-stage process allows the
NVFFM to perform a checkpoint restoration with the
normal and latest checkpoint.

3.2.4 Checkpoint Creation and Restoration with Multiple
NVFFMs

We have discussed the case of a checkpoint creation and a
checkpoint restoration with an NVFFM. However, the mul-
tiple NVFFMs cause problems when they perform a check-
point creation and a checkpoint restoration. Since the time
to complete a checkpoint creation on each NVFFM is dif-
ferent, the time to complete the store operation on each
NVFFM’s valid bit is different. Suppose a power failure
occurs during a checkpoint creation. In that case, some
NVFFMs may perform a checkpoint restoration with bank0
and others with bank1, and the entire system may not restore
checkpoints normally. Therefore, we designed a global
bank selection mode such that the NVFFM select one of the
NVFFMs as the master NVFFM and each NVFFM detects
the bank that has the normal and latest checkpoint using the
valid bit of the master NVFFM. The valid bit of the master
NVFFM is called the global valid bit. Since the value of a
global valid bit is required for a checkpoint restoration af-
ter a power failure occurs, the global valid bit is stored in
an NVFF. In the global bank selection mode, the value of
the global valid bit is stored in the MTJ after all NVFFMs
complete checkpoint creations. Therefore, the entire system
can restore checkpoints normally even if a power failure oc-
curs during a checkpoint creation. Specifically, the master
NVFFM performs a checkpoint creation after all NVFFMs
except the master NVFFM complete checkpoint creations.
This mode guarantees that all NVFFMs perform checkpoint
restorations with the same bank.

An MTJ-based NVFF, such as a VR-NVFF, consists of
an MTJ circuit and a flip-flop circuit. On the one hand, A
flip-flop circuit is stable in operation. On the other hand, an



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
371

MTJ circuits has a certain probability of failure. Therefore,
the MTJ circuit of the NVFF that stores the global valid
bit becomes a single point of failure. In order to address
this problem, we designed a software bank selection mode
such that each NVFFM selects the bank using an address-
mapped control register. The control register that selects the
bank is called bank selection register. In the software bank
selection mode, software flexibly controls each NVFFM us-
ing the management information of each NVFFM located
on non-volatile memory. The bank select register is updated
based on the management information when each NVFFM
performs a checkpoint creation and a checkpoint restoration.
The management information can be located at any address
on the non-volatile memory, thus eliminating single points
of failure. On the other hand, software overhead increases
the overhead of checkpoint creations and restorations.

Although we are also considering another method that
introduces a multi-bit majority voting circuit and an error
correction mechanism to remove single points of failure,
they will be introduced in future work.

3.3 NVDC (Non-Volatile Device Controller)

We design a global NVDC (NVDC channel 0) to con-
trol multiple NVFFMs in a short time and local NVDCs
(other NVDC channels) to control each NVFFM individu-
ally. Global NVDC can control multiple NVFFMs simul-
taneously. On the other hand, local NVDCs can control
only its corresponding NVFFMs (e.g., NVDC channel P
(1 <= P <= 31) controls only NVFFM channel P).

Figure 8 shows the block diagram of the global NVDC.
The values of non-volatile control registers are saved to
NVFFM CH1 so as to retain essential configurations even
if a power failure occurs. The global NVDC has its exclu-
sive interrupt controller that can handle interrupts from the
NVM. The global NVDC can initiate a checkpoint creation
or restoration on multiple NVFFMs via address-mapped
control registers or external control signals from IOs. The
global NVDC can control the control logic of arbitrary local
NVDCs simultaneously so as to control multiple NVFFMs
in parallel.

Figure 9 shows the block diagram of the local NVDCs.
Each local NVDC has its exclusive interrupt controller that
can handle interrupts from its corresponding NVFFM. Each
local NVDC can initiate a checkpoint creation or restora-
tion on its corresponding NVFFM via address-mapped con-
trol registers. Each local NVDC can control whether to
perform ECC encoding and decoding on its corresponding
NVFFM, considering the trade-off between fault-tolerance
and power consumption. Each local NVDC can select the
checkpoint creation method on its corresponding NVFFM
from Store Only (SO), One Step Store (OSS) [15], Two Step
Store (TSS) [15], and Multi Step Store (MSS) methodolo-
gies. As described below, each local NVDC has functions
such as Controlling the switching time of NVFF’s control
signals, unit-interleave function, and auto-store function.
These functions allow the NVDCs to provide flexible con-

Fig. 8 The global NVDC has the interrupt controller and can output in-
terrupt requests (IRQs) to the CPU. Store/restore requests from IO can ini-
tiate a checkpoint creation/restoration. The global NVDC can control mul-
tiple local NVDCs simultaneously.

Fig. 9 The local NVDC has an interrupt controller, which can output
interrupt requests (IRQs) to the CPU. The local NVDC controls its corre-
sponding NVFFM.

trol for various situations through software settings.

3.3.1 Control Switching Time of NVFF’s Control Signals

A typical NVFF correlates between the time of switching
control signals and the probability of successfully storing
a value in the MTJ [15]. It will be impossible to create
a checkpoint if the switching time is set to a fixed num-
ber of clock cycles of the NVFFM’s operating frequency
and a store operation does not work well within the switch-
ing time. In addition, if a control method that dynamically
changes the frequency, such as DVFS, is used, the switching
time may vary due to changes in the clock frequency, mak-
ing it impossible to successfully store the value in the MTJ.
In order to cope with this situation, the NVDCs can con-
trol the number of clock cycles required to switch NVFF’s
control signals, considering the trade-off between the check-
point creation or restoration overhead and the probability of
successfully storing or restoring.

3.3.2 Unit-Interleave Function

The fastest way of a checkpoint creation or a checkpoint
restoration is to perform a store or restore operation on
NVFFs simultaneously. However, this method may not
work correctly due to the high peak current. To reduce
peak current, the NVFFM’s bank is divided into NVFF units
that consist of multiple NVFFs as Fig. 4. Furthermore, a



372
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

unit-interleaving function is designed to control the number
of clock cycles (CS or CR) from the start of one unit’s store
or restore operation to the start of the next unit’s store or re-
store operation. As CS or CR is increased, peak power can be
reduced by reducing the maximum number of NVFFs per-
forming simultaneous store or restore operations while the
overhead of a checkpoint creation or a checkpoint restora-
tion increases. The NVDCs can control each NVFFM’s CS

or CR by the unit-interleave function, considering the trade-
off between the checkpoint creation or restoration overhead
and the peak current.

3.3.3 Auto-Store Function

Although the NVDCs can initiate a checkpoint creation and
a checkpoint restoration via address-mapped control regis-
ters, this method includes software overhead. In particu-
lar, a checkpoint creation using this method degrades per-
formance because checkpoint creations are performed fre-
quently. In order to avoid performance degradation by
checkpoint creations, the NVDCs support auto-store func-
tion, which is fully hardware-based automatic and periodic
checkpoint creations. Auto store function has a dedicated
hardware timer and creates a checkpoint each time the timer
value reaches a user-defined value. Since this function is
performed entirely in hardware, the function does not de-
grade performance.

3.4 Consistency-Aware Data Cache

In order to guarantee consistency, a consistency-aware
checkpoint creation is required before a value is written to
the NVM. The data cache cannot write data to the NVM un-
til the consistency-aware checkpoint creation is complete.
On the one hand, as long as the write buffer is free, the data
cache can continue to operate. On the other hand, when the
write buffer is full, the data cache stalls, and the micropro-
cessor processing stops.

We propose two methods to address the consistency
problem. The first method is to have the hardware generate
an interrupt when it detects that a consistency-aware check-
point is needed. Then, the interrupt calls a checkpointing
function to create a checkpoint. This method allows a pro-
grammer to create a checkpoint at the intended time. How-
ever, the overhead of a consistency-aware checkpoint cre-
ation becomes significant because the interruption handling
and the checkpointing function take a long time.

The data cache stalls when the write buffer is full, and
the microprocessor stops processing. This makes it dif-
ficult to estimate the WCET and challenging to schedule
with real-time scheduling. The second method is to create
a checkpoint automatically by hardware. When the hard-
ware detects that a consistency-aware checkpoint creation
is required, it automatically creates a checkpoint. In this
method, WCET changes little because the hardware im-
mediately and automatically performs a consistency-aware
checkpoint creation. However, a programmer cannot know

when a consistency-aware checkpoint creation occurs. An
unintended consistency-aware checkpoint creation could re-
sult in unintended behavior when a checkpoint is restored.
Because of the negative effects of either method, hardware
should be designed to reduce the number of consistency-
aware checkpoint creations as much as possible.

We design the consistency-aware data cache to reduce
the number of consistency-aware checkpoints as much as
possible while ensuring consistency. The fewer writes to
NVM, the fewer consistency-aware checkpoint creation are
inserted. In order to reduce the number of writes to NVM as
much as possible, a write-back/write-buffer/write-allocate
format is employed. Furthermore, when a cache miss occurs
in a store instruction, a typical write allocate cache writes
data to the NVM and cache entry, but this design does not
write data to the NVM but only to the cache entry. As a
result, writing to NVM is only done when a write-back is
required.

When a cache line requests a write-back, the data cache
must determine if data consistency can be maintained by
writing that entry to NVM. If the cache line is already stored
in NVFFs of the data cache, data consistency is maintained
even if the cache line is written to NVM. Otherwise, writing
the entry to NVM may result in data inconsistency. We in-
troduce A stored bit for data consistency check. Each cache
line has its stored bit, and the stored bit determines if the
cache line is acceptable for write-back.

When checkpoint creation is completed, the stored bit
of each cache line whose dirty bit is one is set to one. Since
cache lines whose stored bit is one are already stored in the
MTJ of each NVFF, the memory system maintains consis-
tency even when writing them to the NVM. If the stored
bit is 0, the cache line is not stored in the MTJ of each
NVFF. Therefore a consistency-aware checkpoint creation
is required before writing them to NVM.

3.5 Requirements for the Non-Stop Processor Design

Our proposed non-stop processor design requires an NVM
and an NVFF. This paper adopted an MRAM and a VR-
NVFF for our non-stop processor design. However, any
NVM and any NVFF can be adopted for the non-stop pro-
cessor design. For example, a FeRAM and a ferroelectric-
based NVFF can be adopted for the non-stop processor de-
sign. Note that the NVFFM functions, such as OSS check-
pointing, TSS checkpointing, and MSS checkpointing, re-
quire a verify operation. If the adopted NVFF does not sup-
port a verify operation, the NVFFM cannot support OSS
checkpointing, TSS checkpointing, and MSS checkpoint-
ing. Therefore, the NVFFM can create a checkpoint only
with SO checkpointing. Unfortunately, SO checkpointing
cannot detect a failure of a store operation. Since a store
operation fails with a certain probability [15], we strongly
recommend adopting an NVFF that supports a verify op-
eration for the non-stop processor design. If the adopted
NVFF supports a verify operation, the NVFFM can sup-
port all functions described in this paper. Since MSS



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
373

checkpointing can detect a failure of a store operation, we
can make the non-stop processor fault-tolerant.

4. Implementation

We have designed the NVIOC SoC using SONY’s NVFFs
and an MRAM with SONY 40nm process and taped out the
NVIOC SoC. Figure 10 shows the chip layout of the NVIOC
SoC.

The NVFF [15] is provided as a standard cell by
SONY. The NVFFs are arranged as shown in the blue area
of Fig. 10. Since the NVIOC SoC uses a large number
of NVFFs (approximately 160k), some NVFFs may fail.
Therefore, the NVFFM and NVDC were designed so as to
provide error correction and error detection. The MRAM is
located in the lower right corner and is densely wired for a
power supply to provide sufficient power. We have been
designing the NVIOC SiP (System-in-Package) that inte-
grates the NVIOC SoC, DRAM, flash memory, FPGA, and
power ICs, so as to implement the NVIOC SiP as soon as
the NVIOC SoC is shipped.

5. Evaluation

5.1 Configuration

We evaluate the NVIOC SoC with RTL simulation using
the Synopsys VCS simulator. We emulate the state at power
off such that all reset signals are set to enable, and indef-
inite values are assigned to all NVFFs. The NVIOC SoC
is equipped with SRAM and MRAM, and MRAM is used
as the main memory in the evaluation. The evaluation pa-
rameters are shown in Table 1, Table 2, and Table 3. We
define a Pass Rate (PR) is the probability that an NVFF
will successfully write the FF’s value to the non-volatile el-
ement. The previous paper on an actual chip designed using
VR-NVFFs [36] has evaluated the relationship between the
time of a store operation and the pass rate. We determined
the time of a long store operation (TL), the time of a short

Fig. 10 This figure shows the chip layout of the NVIOC SoC. NVFFs
are placed on the blue parts.

store operation (TS), and the time of a very short store op-
eration (TVS) considering the corresponding pass rate. TL

is set to a long enough time (140ns) for the pass rate on a
long store operation (PRL) to be around 1.00. TS is set to
a short time (40ns) under the condition that the pass rate
on a short store operation (PRS) is around 0.95 on average.
TVS is set to a very short time (20ns) under the condition
that the pass rate on a very short store operation (PRVS) is
around 0.65 on average. We call TSS checkpointing whose
first store operation time is TVS as TSS-VS checkpointing,
TSS checkpointing whose first store operation time is TS as
TSS-S checkpointing, MSS checkpointing whose first store
operation time is TVS as MSS-VS checkpointing, and MSS
checkpointing whose first store operation time is TS as MSS-
S checkpointing. Restore energy, store current, and voltage
in Table 3 refer to those of SSR-NVFF [14] because VR-
NVFF is designed based on the SSR-NVFF. Since a verify

Table 1 NVIOC parameters

Instruction Cache 2KiB, 1-way, 64-set, VIPT

Data Cache
2KiB, 1-way, 64-set, VIPT,
16-entry write buffer, write back, write allocate

SRAM 256KiB
MRAM 3MiB
Frequency 100MHz

Table 2 NVFFM parameters

NVFFM Channel Corresponding module Units NVFFs per unit
NVFFM CH1 Global NVDC 13 288
NVFFM CH2 Pipeline 6 288
NVFFM CH3 GPR 10 576
NVFFM CH4 FPR 10 576
NVFFM CH5 Instruction cache 22 1,152
NVFFM CH6 Data cache 27 1,152
NVFFM CH7 Instruction TLB 6 288
NVFFM CH8 Data TLB 6 288
NVFFM CH9 Control registers 17 288
NVFFM CH20 PWM in CH0 2 288
NVFFM CH21 PWM in CH1 2 288
NVFFM CH24 Pulse counter CH0 2 288
NVFFM CH25 Pulse counter CH1 2 288

Table 3 VR-NVFF parameters

The time of a long store operation (TL) 140ns
The time of a short store operation (TS) 40ns
The time of a very short store operation (TVS) 20ns
The pass rate on a long store operation (PRL) 1.00
The pass rate on a short store operation (PRS) 0.95
The pass rate on a very short store operation (PRVS) 0.65
Restore time (TR) 50ns
Verify time (TV ) 50ns
Store current on the MTJ state transition
from the Parallel (P) state 180µA
to the Anti-Parallel (AP) state (IP→AP)
Store current on the MTJ state transition
from the Anti-Parallel (AP) state 102µA
to the Parallel (P) state (IAP→P)
Restore energy (ER) 2.23pJ
Verify energy (EV ) 2.23pJ
Voltage (V) 1.2V



374
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

Fig. 11 This figure shows the trade-offs with the unit-interleave function on OSS checkpointing, TSS-
VS checkpointing, TSS-S checkpointing, MSS-VS checkpointing, MSS-S checkpointing, and check-
point restoration.

operation is a restore operation that restores the MTJ’s value
to the verification circuit, we assume the energy consump-
tion and time for the verify operation in Table 3 are the same
as for the restore operation.

5.2 The Trade-off between the Overhead and the Peak
Current on Checkpoint Creations and Restorations

On checkpoint creations and restorations, the more NVFFs
stored simultaneously, the smaller the overhead and the
larger the peak current. Since the NVIOC should sup-
port various applications, we must consider cases where we
want to reduce overhead while increasing peak current and
cases where we want to reduce peak current while increas-
ing overhead. Therefore, We designed the unit-interleave
function to control the trade-off between the overhead and
the peak current on checkpoint creations and restorations.
We design the function based on the fact that the smaller
the number of NVFFs performing checkpoint creations or
restorations simultaneously, the smaller the peak current.
Precisely, the function controls the number of clock cycles
from the start of one unit’s checkpoint creation or restora-
tion to the start of the next unit’s checkpoint creation or
restoration, respectively. We evaluate the trade-off with
the unit-interleave function on OSS checkpointing, TSS-VS
checkpointing, TSS-S checkpointing, MSS-VS checkpoint-
ing, MSS-S checkpointing, and checkpoint restoration.

5.2.1 OSS Checkpointing

We evaluate the trade-off between the overhead and the peak
current on OSS checkpointing. The time of the first store
operation is set to TL (140ns). The blue lines of Fig. 11
show the trade-off between the overhead (OOSS) of OSS

checkpointing and the maximum number (NOSS) of NVFFs
that perform checkpoint creations simultaneously when the
number of clock cycles (COSS) from the start of one unit’s
checkpoint creation to the start of the next unit’s check-
point creation is varied. While OOSS is always linearly pro-
portional to COSS, NOSS is inversely proportional to COSS.
In the range, 0 <= COSS <= 7, the value of NOSS de-
creases rapidly as the value of COSS increases. In the range,
8 <= COSS <= 21, the value of NOSS decreases a little as
the value of COSS increases. In the range, 22 <= COSS,
the value of NOSS remains constant as the value of COSS in-
creases. Therefore, even when NOSS is minimized, OOSS is
only 14.25µsec.

Note that even if COSS is 0, OOSS takes 1.44µsec. In
case COSS is 0, OOSS is qual to the OSS checkpointing over-
head of a single unit since all units start checkpoint creations
at a time.

5.2.2 TSS-VS Checkpointing

We evaluate the trade-off between the overhead and the peak
current on TSS-VS checkpointing. The time of the first store
operation is set to TVS (20ns). The time of the second store
operation is set to TL (140ns). The orange lines of Fig. 11
show the trade-off between the overhead (OTSS−VS) of TSS-
VS checkpointing and the maximum number (NTSS−VS) of
NVFFs that perform checkpoint creations simultaneously
when the number of clock cycles (CTSS−VS) from the start of
one unit’s checkpoint creation to the start of the next unit’s
checkpoint creation is varied. While OTSS−VS is always lin-
early proportional to CTSS−VS, NTSS−VS is inversely propor-
tional to CTSS−VS. In the range, 0 <= CTSS−VS <= 11, the
value of NTSS−VS decreases rapidly as the value of CTSS−VS

increases. In the range, 12 <= CTSS−VS <= 33, the value of



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
375

NTSS−VS decreases a little as the value of CTSS−VS increases.
In the range, 34 <= CTSS−VS, the value of NTSS−VS remains
constant as the value of CTSS−VS increases. Therefore, even
when NTSS−VS is minimized, OTSS−VS is only 21.81µsec.

Note that even if CTSS−VS is 0, OTSS−VS takes 1.68µsec.
In case CTSS−VS is 0, OTSS−VS is equal to the TSS-VS check-
pointing overhead of a single unit since all units start check-
point creations at a time.

5.2.3 TSS-S Checkpointing

We evaluate the trade-off between the overhead and the
peak current on TSS-S checkpointing. The time of the first
store operation is set to TS (40ns). The time of the sec-
ond store operation is set to TL (140ns). The gray lines of
Fig. 11 show the trade-off between the overhead (OTSS−S)
of TSS-S checkpointing and the maximum number (NTSS−S)
of NVFFs that perform checkpoint creations simultaneously
when the number of clock cycles (CTSS−S) from the start
of one unit’s checkpoint creation to the start of the next
unit’s checkpoint creation is varied. While OTSS−S is always
linearly proportional to CTSS−S, NTSS−S is inversely propor-
tional to CTSS−S. In the range, 0 <= CTSS−S <= 12, the value
of NTSS−S decreases rapidly as the value of CTSS−S increases.
In the range, 13 <= CTSS−S <= 35, the value of NTSS−S de-
creases a little as the value of CTSS−S increases. In the range,
36 <= CTSS−S, the value of NTSS−S remains constant as the
value of CTSS−S increases. Therefore, even when NTSS−S is
minimized, OTSS−S is only 23.07µsec.

Note that even if CTSS−S is 0, OTSS−S takes 1.72µsec. In
case CTSS−S is 0, OTSS−S is equal to the TSS-S checkpoint-
ing overhead of a single unit since all units start checkpoint
creations at a time.

5.2.4 MSS-VS Checkpointing

We evaluate the trade-off between the overhead and the
peak current on MSS-VS checkpointing. The time of the
first store operation is set to TVS (20ns). The time of
the second store operation is set to TL (140ns). The yel-
low lines of Fig. 11 show the trade-off between the over-
head (OMSS−VS) of MSS-VS checkpointing and the maxi-
mum number (NMSS−VS) of NVFFs that perform checkpoint
creations simultaneously when the number of clock cycles
(CMSS−VS) from the start of one unit’s checkpoint creation
to the start of the next unit’s checkpoint creation is varied.
While OMSS−VS is always linearly proportional to CMSS−VS,
NMSS−VS is inversely proportional to CMSS−VS. In the range,
0 <= CMSS−VS <= 14, the value of NMSS−VS decreases
rapidly as the value of CMSS−VS increases. In the range,
15 <= CMSS−VS <= 40, the value of NMSS−VS decreases
a little as the value of CMSS−VS increases. In the range,
41 <= CMSS−VS, the value of NMSS−VS remains constant
as the value of CMSS−VS increases. Therefore, even when
NMSS−VS is minimized, OMSS−VS is only 26.22µsec.

Note that even if CMSS−VS is 0, OMSS−VS takes 1.82µsec.
In case CMSS−VS is 0, OMSS−VS is equal to the MSS-VS

checkpointing overhead of a single unit since all units start
checkpoint creations at a time.

5.2.5 MSS-S Checkpointing

We evaluate the trade-off between the overhead and the peak
current on MSS-S checkpointing. The time of the first
store operation is set to TS (40ns). The time of the sec-
ond store operation is set to TL (140ns). The black lines of
Fig. 11 show the trade-off between the overhead (OMSS−S) of
MSS-S checkpointing and the maximum number (NMSS−S)
of NVFFs that perform checkpoint creations simultaneously
when the number of clock cycles (CMSS−S) from the start of
one unit’s checkpoint creation to the start of the next unit’s
checkpoint creation is varied. While OMSS−S is always lin-
early proportional to CMSS−S, NMSS−S is inversely propor-
tional to CMSS−S. In the range, 0 <= CMSS−S <= 14, the
value of NMSS−S decreases rapidly as the value of CMSS−S in-
creases. In the range, 15 <= CMSS−S <= 42, the value of
NMSS−S decreases a little as the value of CMSS−S increases.
In the range, 43 <= CMSS−S, the value of NMSS−S remains
constant as the value of CMSS−S increases. Therefore, even
when NMSS−S is minimized, OMSS−S is only 27.48µsec.

Note that even if CMSS−S is 0, OMSS−S takes 1.86µsec. In
case CMSS−S is 0, OMSS−S is equal to the MSS-S checkpoint-
ing overhead of a single unit since all units start checkpoint
creations at a time.

5.2.6 Checkpoint Restoration

We evaluate the trade-off between the overhead and the peak
current on checkpoint restorations. The time of a restore
operation is set to TR (50ns). The green lines of Fig. 11
show the trade-off between the overhead (OR) of checkpoint
restorations and the maximum number (NR) of NVFFs that
perform checkpoint restorations simultaneously when the
number of clock cycles (CR) from the start of one unit’s
checkpoint restoration to the start of the next unit’s check-
point restoration is varied. While OR is always linearly pro-
portional to CR, NR is inversely proportional to CR. In the
range, 0 <= CR <= 5, the value of NR decreases rapidly as
the value of CR increases. In the range, 6 <= CR, the value
of NR remains constant as the value of CR increases. There-
fore, even when NR is minimized, OR is only 4.99µsec.

Note that even if CR is 0, OR takes 1.94µsec. In case
CR is 0, OR is equal to the checkpoint restoration overhead
of a single unit since all units start checkpoint restorations
at a time.

5.3 The IPC of Benchmark Executions with Checkpoint
Creations

We evaluated the overhead of checkpoint creations by run-
ning benchmarks with periodic checkpoint creations and
measuring each benchmark’s IPC (Instruction Per Clock cy-
cle). We used adpcm, bitcount, qsort, string search, sha, and



376
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

Fig. 12 This figure shows the IPC of the adpcm benchmark execution
with periodic checkpoint creations.

Fig. 13 This figure shows the IPC of the bitcount benchmark execution
with periodic checkpoint creations.

Fig. 14 This figure shows the IPC of the patricia benchmark execution
with periodic checkpoint creation.

patricia from Mibench [37], a benchmark for embedded sys-
tems. Since we assume the case of minimizing peak current,
the value of the unit-interleaving function is set to 21 clock
cycles for OSS checkpointing, 33 clock cycles for TSS-VS
checkpointing, 35 clock cycles for TSS-S checkpointing, 40
clock cycles for MSS-VS checkpointing, and 42 clock cy-
cles for MSS-S checkpointing. Therefore, the OSS check-
pointing overhead is 14.25µs, the TSS-VS checkpointing
overhead is 21.81µs, the TSS-S checkpointing overhead is
23.07µs, the MSS-VS checkpointing overhead is 26.22µs,
and the MSS-S checkpointing overhead is 27.48µs based on
Fig. 11.

Figure 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, and Fig. 17
show the IPC of each benchmark execution with periodic
checkpoint creations. For the baseline evaluation, we exe-
cuted the benchmark without a checkpoint creation. For the

Fig. 15 This figure shows the IPC of the qsort benchmark execution with
periodic checkpoint creation.

Fig. 16 This figure shows the IPC of the sha benchmark execution with
periodic checkpoint creations.

Fig. 17 This figure shows the IPC of the stringsearch benchmark execu-
tion with periodic checkpoint creation.

other evaluations, we executed benchmarks while perform-
ing periodic checkpoint creations with various periods and
various checkpoint creation methods. The NVDCs perform
periodic checkpoint creations using the auto-store function.
We discuss the evaluations without consistency checks (w/o
cc) and the evaluations with consistency checks (w/ cc).

5.3.1 Without Consistency Checks

We focus on the evaluations which do not perform consis-
tency checks. Although the data cache can check data con-
sistency using the stored bit, we disable this function to eval-
uate the IPC when only periodic checkpoint creations are
performed. The evaluations show that each benchmark exe-
cution achieves the same IPC as the baseline IPC, even with
any checkpoint creation period and any checkpoint creation



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
377

method. Since each checkpoint creation method has a dif-
ferent overhead, the evaluations also show that each bench-
mark execution achieves the same performance as the base-
line, even with any checkpoint creation overhead. These
results show that the NVFFM can hide the checkpoint cre-
ation overhead because it has two banks, and while one bank
performs a checkpoint creation, the other bank operates as a
simple register file.

5.3.2 With Consistency Checks

We focus on the evaluations which perform consistency
checks. The data cache automatically checks data con-
sistency and creates a checkpoint when it detects that a
consistency-aware checkpoint creation is required. Fig-
ure 13 shows that the bitcount benchmark achieves the same
IPC as the baseline IPC for any checkpointing period and
any checkpointing method. The bitcount benchmark gener-
ates very little write-back. Therefore, the additional condi-
tion of write-back did not affect IPC for any configurations.
In contrast, the other figures show that the other benchmarks
achieve an IPC slightly different from the baseline IPC for
each checkpointing period and each checkpointing method.
These benchmarks generate many write-back. Therefore,
the additional condition of write-back had some effect on
IPC for each configuration.

The IPC difference was caused by allowing write-back
only when the stored bit is 1 for data consistency checks.
If a cache line with a stored bit of 0 requests a write-
back, it will wait in the write buffer until a checkpoint cre-
ation is complete and the stored bit becomes 1. Therefore,
data consistency checks may reduce the frequency of writes
from the write buffer to the MRAM. In this case, perfor-
mance may be improved because the instruction cache is
more likely to acquire a bus grant. Data consistency checks
may also cause more entries to accumulate in the write
buffer. The CPU stalls if the write buffer is full, resulting
in performance degradation. In either case, it is undesir-
able for data consistency checks to vary performance be-
cause WCET estimation becomes difficult. Furthermore, a
consistency-aware checkpoint creation occurs at times unin-
tended by the user to maintain data consistency, which may
lead to unintended behavior on a checkpoint restoration. To
solve these problems, we should introduce a mechanism
like COACH [34] that guarantees data consistency without
a consistency-aware checkpoint creation in future work.

5.4 The Energy Consumption of Checkpoint Creations

We evaluate the energy consumption of checkpoint creation
with SO, OSS, TSS, and MSS methodologies. We calculate
the energy consumption of checkpoint creation by consider-
ing only the store operation’s energy consumption and the
verify operation’s energy consumption. We assume NS is
the total number of NVFFs that should perform checkpoint
creation, N1S is the number of NVFFs such that the FF’s
value is different from the MTJ’s value after the first verify

operation, and N2S is the number of NVFFs such that the
FF’s latch value is different from the MTJ’s value after the
second verify operation. Other parameters are defined in Ta-
ble 3. In case a VR-NVFF performs a store operation, the
state of one MTJ transitions to the Anti-Parallel (AP) state
in the first half-time of the store operation, then the state
of the other MTJ transitions to the Parallel (P) state in the
second half-time of the store operation [15], [16]. Regard-
less of the FF’s value, the current (IP→AP) flows in one MTJ
during the first half of the store operation, then the current
(IAP→P) flows in the other MTJ during the second half of
the store operation. In the case of SO method, the energy
consumption (Eso) is calculated as:

ESO−store = NS ∗ V ∗ TL

2
∗ (IAP→P + IP→AP) (1)

In the case of OSS method, the energy consumption (EOSS)
is calculated as:

EOSS−veri f y = NS ∗ EV (2)

EOSS−store = N1S ∗ V ∗ TL

2
∗ (IAP→P + IP→AP) (3)

EOSS = EOSS−veri f y + EOSS−store (4)

In the case of TSS method, the energy consumption (ETSS)
is calculated as:

ETSS−1st−veri f y = NS ∗ EV (5)

ETSS−1st−store = N1S ∗ V ∗ T1st−store

2
∗ (IAP→P + IP→AP)

(6)

N2S = N1S ∗ (1 − PRS) (7)

ETSS−2nd−store = N2S ∗ V ∗ T2nd−store

2
∗ (IAP→P + IP→AP)

(8)

ETSS = ETSS−1st−veri f y + ETSS−1st−store

+ ETSS−2nd−veri f y + ETSS−2nd−store (9)

In the case of MSS method such that the user-defined maxi-
mum value is set to zero, the energy consumption (EMSS) is
calculated as:

EMSS−1st−veri f y = NS ∗ EV (10)

EMSS−1st−store = N1S ∗ V ∗ T1st−store

2
∗ (IAP→P + IP→AP)

(11)

EMSS−2nd−veri f y = N1S ∗ EV (12)

N2S = N1S ∗ (1 − PRS) (13)

EMSS−2nd−store = N2S ∗V ∗ T2nd−store

2
∗ (IAP→P + IP→AP)

(14)

EMSS−3rd−veri f y = N2S ∗ EV (15)

EMSS = EMSS−1st−veri f y + EMSS−1st−store

+ EMSS−2nd−veri f y + EMSS−2nd−store

+ EMSS−3rd−veri f y (16)



378
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

Fig. 18 This figure shows the energy consumption of checkpoint cre-
ations on the adpcm benchmark execution. The vertical axis is a logarith-
mic scale.

Fig. 19 This figure shows the energy consumption of checkpoint cre-
ations on the bitcount benchmark execution. The vertical axis is a logarith-
mic scale.

Fig. 20 This figure shows the energy consumption of checkpoint cre-
ations on the patricia benchmark execution. The vertical axis is a logarith-
mic scale.

The energy consumption of TSS-S checkpointing
(ETSS−S) is ETSS calculated by substituting TS for T1st−store

and TL for T2nd−store. Similarly, the energy consumption of
TSS-VS checkpointing (ETSS−VS) is ETSS calculated by sub-
stituting TVS for T1st−store and TL for T2nd−store. The energy
consumption of MSS-S checkpointing (EMSS−S) is EMSS cal-
culated by substituting TS for T1st−store and TL for T2nd−store.
Similarly, the energy consumption of MSS-VS checkpoint-
ing (EMSS−VS) is EMSS calculated by substituting TVS for
T1st−store and TL for T2nd−store. We execute the benchmarks
with periodic checkpoint creations, measure NS and N1S for
each checkpoint creation, and calculate total energy con-
sumption.

Figure 18, Fig. 19, Fig. 20, Fig. 21, Fig. 22, and Fig. 23

Fig. 21 This figure shows the energy consumption of checkpoint cre-
ations on the qsort benchmark execution. The vertical axis is a logarithmic
scale.

Fig. 22 This figure shows the energy consumption of checkpoint cre-
ations on the sha benchmark execution. The vertical axis is a logarithmic
scale.

Fig. 23 This figure shows the energy consumption of checkpoint cre-
ations on the stringsearch benchmark execution. The vertical axis is a log-
arithmic scale.

show the energy consumption of checkpoint creations on
each benchmark execution with periodic checkpoint cre-
ations. For the baseline evaluation, we executed the bench-
mark without a checkpoint creation. For the other eval-
uations, we executed benchmarks while performing peri-
odic checkpoint creations with various periods and various
checkpoint creation methods. The NVDCs perform peri-
odic checkpoint creations using the auto-store function. We
discuss the evaluations without consistency checks (w/o cc)
and the evaluations with consistency checks (w/ cc).

5.4.1 Without Consistency Checks

We focus on the evaluations which do not perform



NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
379

consistency checks. Although the data cache can check
data consistency using a stored bit, we disable this function
to evaluate the energy consumption of checkpoint creations
when only periodic checkpoint creations are performed.

The evaluation shows that the shorter the cycle, the
greater the energy consumption in any checkpoint method.
SO checkpointing performs store operation on all NVFFs.
Therefore power consumption of SO checkpointing in-
creases significantly as the number of checkpoints increases.
OSS checkpointing significatly reduces energy consumption
compared to SO checkpointing in any period. This is be-
cause OSS checkpointing performs a verify operation before
performing a store operation so that only NVFFs for which
the MTJ value differs from the FF value are subject to the
store operation. TSS checkpointing and MSS checkpointing
reduce energy consumption compared to OSS checkpoint-
ing in any period. They can effectively reduce energy con-
sumption due to lower the time of the first store operation.
Since MSS checkpointing performs a third verify operation,
EMSS−S is slightly larger than ETSS−S, and EMSS−VS is also
slightly larger than ETSS−VS. In the case of MSS-VS check-
pointing or TSS-VS checkpointing, the first store operation
time is very short. Therefore, in the first store, the energy
consumption decreases while the pass rate decreases. Be-
cause of the low pass rate, the number of NVFFs required to
perform the second store operation are increased. As a re-
sult, the total energy consumption of MSS-VS checkpoint-
ing or TSS-VS checkpointing is more significant than that
of MSS-S checkpointing or TSS-S checkpointing. We can
reduce the total energy consumption by determining the first
store operation time, considering the trade-off between the
energy consumption of the first store operation and the pass
rate of the first store operation.

5.4.2 With Consistency Checks

We focus on the evaluations which perform consistency
checks. The data cache automatically checks data con-
sistency and creates a checkpoint when it detects that a
consistency-aware checkpoint creation is required.

The evaluations show that as the period increases, the
energy consumption is greater than the energy consump-
tion for the case without consistency checks. The longer
the period, the greater the number of cache lines whose
stored bit is zero. The NVIOC performs a consistency-
aware checkpoint creation if a cache line whose stored bit
is 0 requests a write-back. Therefore, the longer the pe-
riod, the greater the number of consistency-aware check-
point creations, resulting in increased energy consumption.
On the one hand, ALU-intensive benchmark such as bit-
count generates few write-back. Therefore, it causes few
consistency-aware checkpoint creations, resulting in almost
the same energy consumption as for the case without consis-
tency checks. On the other hand, Memory-intensive bench-
marks such as qsort generate many write-backs. There-
fore, they cause many consistency-aware checkpoint cre-
ations, resulting in higher energy consumption than the case

Table 4 The energy consumption of a checkpoint restoration

Restore energy 2.23pJ
NR 80,598
ER 179,733.54pJ

Fig. 24 This evaluation compares the area of a one-bank NVFFM with
the area of a two-bank NVFFM while changing the bit width of the
NVFFMs.

without consistency checks.

5.5 The Energy Consumption of a Checkpoint Restoration

In a checkpoint restoration, the valid bit is restored to se-
lect a bank with a valid checkpoint, and then the restore
operation is performed. Therefore, the energy consump-
tion of a checkpoint restoration (ER) is calculated as ER =

NR ∗ restore energy using the number of NVFFs perform-
ing the restore operation (NR) and restore energy. The cal-
culation results are shown in Table 4. From this calculation
result, the energy consumption for a checkpoint restoration
is only about 180nJ.

5.6 Area Overhead

We compared the area of a 1-bank NVFFM with the area
of a 2-bank NVFFM while changing the bit width of the
NVFFMs. The number of NVFF units in each bank is set to
one. Therefore, the bit width of the NVFF unit is the same
as that of the NVFFM. We used Synopsys Design Compiler
to perform logic synthesis and compare the netlist area.

Figure 24 shows the evaluation results. The smaller the
bit width, the smaller the ratio of 2-bank NVFF to 1-bank
NVFF. This is because the circuit overhead, independent of
the number of banks, is relatively large when the bit width is
small. Therefore, when creating an NVFFM with a certain
bit width (e.g., 8,192 bits wide), the total area will be smaller
if the number of NVFF bits per unit is as large as possible.
In addition, as the number of NVFF bits per unit increases,
the number of NVFFs that simultaneously create and restore
checkpoints increases, leading to an increase in peak cur-
rent and a decrease in the overhead of checkpoint creations



380
IEICE TRANS. ELECTRON., VOL.E106–C, NO.7 JULY 2023

and restorations. Thus, NVFFM parameters should be de-
termined by considering various trade-offs, such as the area
overhead, the peak current, and the checkpoint creation and
restoration overhead.

The area overhead of the 2-bank NVFFM is signifi-
cantly large. However, the 2-bank NVFFM is desirable for
a fault-tolerant real-time system in order to hide the over-
head of checkpoint creations and to perform a checkpoint
restoration normally even if a power failure occurs at any
time, even considering the increase in area. NV register
file, which combines multiple NVFFs, and NV-SRAM [38]
may be useful for area-reduced designs while maintaining
a 2-bank configuration. In particular, since the NVIOC
uses many NVFFs for the data cache and the instruction
cache, using NV-SRAM for the data cache and the instruc-
tion cache may significantly reduce the area while maintain-
ing a 2-bank configuration.

6. Conclusion and Future Work

We design a control architecture for various non-volatile de-
vices to realize a non-stop microprocessor that can oper-
ate normally immediately after power is restored, even if
the power is turned off at any time, with little performance
degradation. We also design the non-stop microprocessor
based on the control architecture for non-volatile devices.
The microprocessor also has a flexible control mechanism
for non-volatile devices that can accommodate various situ-
ations while considering trade-offs. In conclusion, the non-
stop microprocessor with such capabilities will be an essen-
tial component of a fault-tolerant real-time system with high
schedulability.

In future work, we will research to achieve a non-stop
system by making all system components, such as memory
interfaces, IOs, buses, and networks, non-volatile.

Acknowledgements

This work was supported by the following people:
Sony Semiconductor Solutions Corporation

Mr. Kazuhiro Bessho
Mr. Kenta Suzuki
Mr. Keizo Hiraga

This work was supported by JST SPRING, Grant Number
JPMJSP2123.

References

[1] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpointing
for real-time systems,” Real-Time Systems, vol.20, no.1, pp.83–102,
Jan. 2001.

[2] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power
management and fault recovery in real-time systems,” IEEE Trans.
Comput., vol.53, no.2, pp.217–231, 2004.

[3] A. Ejlali, B.M. Al-Hashimi, M.T. Schmitz, P. Rosinger, and S.G.
Miremadi, “Combined time and information redundancy for seu-
tolerance in energy-efficient real-time systems,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol.14, no.4,
pp.323–335, 2006.

[4] M. Salehi, M.K. Tavana, S. Rehman, M. Shafique, A. Ejlali, and
J. Henkel, “Two-state checkpointing for energy-efficient fault toler-
ance in hard real-time systems,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol.24, no.7, pp.2426–2437,
2016.

[5] S. Ikegawa, F.B. Mancoff, J. Janesky, and S. Aggarwal, “Magne-
toresistive random access memory: Present and future,” IEEE Trans.
Electron Devices, vol.67, no.4, pp.1407–1419, 2020.

[6] T. Mikolajick, U. Schroeder, and S. Slesazeck, “The past, the
present, and the future of ferroelectric memories,” IEEE Trans. Elec-
tron Devices, vol.67, no.4, pp.1434–1443, 2020.

[7] Y. Chen, “Reram: History, status, and future,” IEEE Trans. Electron
Devices, vol.67, no.4, pp.1420–1433, 2020.

[8] T. Kim and S. Lee, “Evolution of phase-change memory for the
storage-class memory and beyond,” IEEE Trans. Electron Devices,
vol.67, no.4, pp.1394–1406, 2020.

[9] N. Sakimura, T. Sugibayashi, R. Nebashi, and N. Kasai, “Non-
volatile magnetic flip-flop for standby-power-free socs,” 2008 IEEE
Custom Integrated Circuits Conference, pp.355–358, 2008.

[10] J. Wang, Y. Liu, H. Yang, and H. Wang, “A compare-and-write fer-
roelectric nonvolatile flip-flop for energy-harvesting applications,”
The 2010 International Conference on Green Circuits and Systems,
pp.646–650, 2010.

[11] M. Qazi, A. Amerasekera, and A.P. Chandrakasan, “A 3.4-pj fer-
am-enabled d flip-flop in 0.13-µm cmos for nonvolatile process-
ing in digital systems,” IEEE J. Solid-State Circuits, vol.49, no.1,
pp.202–211, 2014.

[12] K. Ali, F. Li, S.Y.H. Lua, and C.-H. Heng, “Energy- and area-effi-
cient spin-orbit torque nonvolatile flip-flop for power gating archi-
tecture,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.26, no.4, pp.630–638, 2018.

[13] M. Kudo and K. Usami, “Nonvolatile power gating with mtj
based nonvolatile flip-flops for a microprocessor,” 2017 IEEE
6th Non-Volatile Memory Systems and Applications Symposium
(NVMSA), pp.1–6, 2017.

[14] M. Kudo, “Low Power technology of LSI by Fine-Grain Power Gat-
ing and Magnetic Tunnel Junction (in Japanese),” Ph.D. thesis, 2016.

[15] K. Usami, J. Akaike, S. Akiba, M. Kudo, H. Amano, T. Ikezoe,
K. Hiraga, Y. Shuto, and K. Yagami, “Energy efficient write ver-
ify and retry scheme for mtj based flip-flop and application,” 2018
IEEE 7th Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA), pp.91–98, 2018.

[16] J.-G.(J.) Zhu and C. Park, “Magnetic tunnel junctions,” Materials
Today, vol.9, no.11, pp.36–45, 2006.

[17] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang,
S. John, Y. Xie, J. Shu, and H. Yang, “Ambient energy harvest-
ing nonvolatile processors: From circuit to system,” 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp.1–6,
2015.

[18] S. Ahmed, N.A. Bhatti, M. Brachmann, and M.H. Alizai, “A survey
on program-state retention for transiently-powered systems,” Jour-
nal of Systems Architecture, vol.115, p.102013, 2021.

[19] K. Ma, X. Li, S. Li, Y. Liu, J.J. Sampson, Y. Xie, and V. Narayanan,
“Nonvolatile processor architecture exploration for energy-harvest-
ing applications,” IEEE Micro, vol.35, no.5, pp.32–40, 2015.

[20] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” SIGARCH Com-
put. Archit. News, vol.39, no.1, pp.159–170, March 2011.

[21] H. Jayakumar, A. Raha, and V. Raghunathan, “Quickrecall: A low
overhead hw/sw approach for enabling computations across power
cycles in transiently powered computers,” 2014 27th International
Conference on VLSI Design and 2014 13th International Confer-
ence on Embedded Systems, pp.330–335, 2014.

[22] Texas instruments, “MSP430FRxx microcontrollers,” 2018.
[23] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M.

Herzog, R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and
B.O. Eversmann, “An 82 µa/mhz microcontroller with embedded

https://doi.org/10.1023/A:1026589200419
http://dx.doi.org/10.1109/tc.2004.1261830
http://dx.doi.org/10.1109/tvlsi.2006.874355
http://dx.doi.org/10.1109/tvlsi.2015.2512839
http://dx.doi.org/10.1109/ted.2020.2965403
http://dx.doi.org/10.1109/ted.2020.2976148
http://dx.doi.org/10.1109/ted.2019.2961505
http://dx.doi.org/10.1109/ted.2020.2964640
http://dx.doi.org/10.1109/cicc.2008.4672095
http://dx.doi.org/10.1109/icgcs.2010.5542984
http://dx.doi.org/10.1109/jssc.2013.2282112
http://dx.doi.org/10.1109/tvlsi.2017.2787664
http://dx.doi.org/10.1109/nvmsa.2017.8064472
https://core.ac.uk/download/pdf/235184068.pdf
http://dx.doi.org/10.1109/nvmsa.2018.00023
http://dx.doi.org/10.1016/s1369-7021(06)71693-5
http://dx.doi.org/10.1145/2744769.2747910
http://dx.doi.org/10.1016/j.sysarc.2021.102013
http://dx.doi.org/10.1109/mm.2015.88
http://dx.doi.org/10.1145/1961295.1950386
http://dx.doi.org/10.1109/vlsid.2014.63
https://www.ti.com/lit/ds/symlink/msp430fr69891.pdf
http://dx.doi.org/10.1109/isscc.2011.5746342


NAKABEPPU and YAMASAKI: NON-STOP MICROPROCESSOR FOR FAULT-TOLERANT REAL-TIME SYSTEMS
381

feram for energy-harvesting applications,” 2011 IEEE International
Solid-State Circuits Conference, pp.334–336, 2011.

[24] C. Pan, M. Xie, Y. Liu, Y. Wang, C.J. Xue, Y. Wang, Y. Chen,
and J. Hu, “A lightweight progress maximization scheduler for
non-volatile processor under unstable energy harvesting,” vol.52,
no.5, pp.101–110, June 2017.

[25] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan,
B. Sai, and H. Yang, “A 3us wake-up time nonvolatile processor
based on ferroelectric flip-flops,” 2012 Proceedings of the ESSCIRC
(ESSCIRC), pp.149–152, 2012.

[26] Y. Wang, Y. Liu, S. Li, X. Sheng, D. Zhang, M.-F. Chiang, B. Sai,
X.S. Hu, and H. Yang, “Pacc: A parallel compare and compress
codec for area reduction in nonvolatile processors,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol.22, no.7,
pp.1491–1505, 2014.

[27] A. Roohi and R.F. DeMara, “Nv-clustering: Normally-off comput-
ing using non-volatile datapaths,” IEEE Trans. Comput., vol.67,
no.7, pp.949–959, 2018.

[28] M. Xie, M. Zhao, C. Pan, Jingtong Hu, Y. Liu, and C.J. Xue,
“Fixing the broken time machine: Consistency-aware checkpointing
for energy harvesting powered non-volatile processor,” 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp.1–6,
2015.

[29] M. Xie, C. Pan, M. Zhao, Y. Liu, C.J. Xue, and J. Hu, “Avoiding data
inconsistency in energy harvesting powered embedded systems,”
ACM Trans. Des. Autom. Electron. Syst., vol.23, no.3, pp.1–25,
March 2018.

[30] Q. Liu and C. Jung, “Lightweight hardware support for transparent
consistency-aware checkpointing in intermittent energy-harvesting
systems,” 2016 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), pp.1–6, 2016.

[31] F. Li, K. Qiu, M. Zhao, J. Hu, Y. Liu, Y. Guan, and C.J. Xue,
“Checkpointing-aware loop tiling for energy harvesting powered
nonvolatile processors,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol.38, no.1, pp.15–28, 2019.

[32] W.S. Lim, C.-H. Tu, C.-F. Wu, and Y.-H. Chang, “icheck: Pro-
gressive checkpointing for intermittent systems,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol.40, no.11,
pp.2224–2236, 2021.

[33] A. Hoseinghorban, M. Abbasinia, and A. Ejlali, “Prowl: A
cache replacement policy for consistency aware renewable pow-
ered devices,” IEEE Trans. Emerg. Topics Comput., vol.10, no.1,
pp.476–487, 2022.

[34] A. Hoseinghorban, A.M.H. Monazzah, M. Bazzaz, B. Safaei, and
A. Ejlali, “Coach: Consistency aware check-pointing for nonvolatile
processor in energy harvesting systems,” IEEE Trans. Emerg. Topics
Comput., vol.9, no.4, pp.2076–2088, 2021.

[35] S. Senni, L. Torres, G. Sassatelli, and A. Gamatie, “Non-volatile
processor based on mram for ultra-low-power iot devices,” J. Emerg.
Technol. Comput. Syst., vol.13, no.2, pp.1–23, Dec. 2016.

[36] A. Kamei, T. Kojima, H. Amano, D. Yokoyama, H. Miyauchi, K.
Usami, K. Hiraga, K. Suzuki, and K. Bessho, “Energy saving in a
multi-context coarse grained reconfigurable array with non-volatile
flip-flops,” 2021 IEEE 14th International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC), pp.273–280,
2021.

[37] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “Mibench: A free, commercially representa-
tive embedded benchmark suite,” Proceedings of the Fourth An-
nual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. no.01EX538), pp.3–14, Dec. 2001.

[38] S. Yamamoto, Y. Shuto, and S. Sugahara, “Nonvolatile flip-flop us-
ing pseudo-spin-transistor architecture and its power-gating appli-
cations,” 2012 International Semiconductor Conference Dresden–
Grenoble (ISCDG), pp.17–20, 2012.

Appendix A: Abbreviations Summary

This paper uses many abbreviations. Therefore, we prepare
Table A· 1 to show the abbreviations for clarity.

Table A· 1 Abbreviations table

Abbreviation Full word
WCET Worst-Case Execution Time
FF Flip-Flop
NVM Non-Volatile Memory
NVFF Non-Volatile Flip-Flop
MTJ Magnetic Tunneling Junction
NVP Non-Volatile Processor
IOC IO Core
NVIOC Non-Volatile IO Core
SoC System-on-Chip
SiP System-in-Package
NVFFM Non-Volatile Flip-Flop Module
NVDC Non-Volatile Device Controller
ECC Error Correction Code
SO Store Only
OSS One Step Store
TSS Two Step Store
MSS Multi Step Store
IRQ Interrupt ReQuests
PR Pass Rate
IPC Instruction Per Clock cycle
w/o cc Without Consistency Check
w/ cc With Consistency Check
AP state Anti-Parallel state
P state Parallel state

Shota Nakabeppu received B.S. and M.S.
degrees from Keio University, Japan, in 2018
and 2020. Since April 2020, he has been pur-
suing the Ph.D degree in Electrical Engineering
at Keio University.

Nobuyuki Yamasaki received a Ph.D.
in engineering from Keio University in 1996.
He is a professor in the Department of Infor-
mation and Computer Science at Keio Univer-
sity. His research interests include real-time pro-
cessing and communication, parallel and dis-
tributed processing, computer architecture, op-
erating systems, embedded systems, and SoC
design. He is a member of IEICE, IPSJ, RSJ,
and IEEE.

http://dx.doi.org/10.1109/isscc.2011.5746342
http://dx.doi.org/10.1145/3140582.3081038
http://dx.doi.org/10.1109/esscirc.2012.6341281
http://dx.doi.org/10.1109/tvlsi.2013.2275740
http://dx.doi.org/10.1109/tc.2018.2795601
http://dx.doi.org/10.1145/2744769.2744842
http://dx.doi.org/10.1145/3182170
http://dx.doi.org/10.1109/nvmsa.2016.7547183
http://dx.doi.org/10.1109/tcad.2018.2803624
http://dx.doi.org/10.1109/tcad.2020.3046571
http://dx.doi.org/10.1109/tetc.2020.3031114
http://dx.doi.org/10.1109/tetc.2019.2961007
http://dx.doi.org/10.1145/3001936
http://dx.doi.org/10.1109/mcsoc51149.2021.00047
http://dx.doi.org/10.1109/wwc.2001.990739
http://dx.doi.org/10.1109/iscdg.2012.6360000

