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SUMMARY A surrogate-based electromagnetic (EM) optimization us-
ing neural networks (NNs) is presented for computationally efficient mi-
crowave bandpass filter (BPF) design. This paper first describes the for-
ward problem (EM analysis) and the inverse problems (EM design), and
the two fundamental issues in BPF designs. The first issue is that the EM
analysis is a time-consuming task, and the second one is that EM design
highly depends on the structural optimization performed with the help of
EM analysis. To accelerate the optimization design, two surrogate models
of forward and inverse models are introduced here, which are built with
the NNs. As a result, the inverse model can instantaneously guess initial
structural parameters with high accuracy by simply inputting synthesized
coupling-matrix elements into the NN. Then, the forward model in con-
junction with optimization algorithm enables designers to rapidly find op-
timal structural parameters from the initial ones. The effectiveness of the
surrogate-based EM optimization is verified through the structural designs
of a typical fifth-order microstrip BPF with multiple couplings.
key words: microstrip filters, neural networks, surrogate models, electro-
magnetic optimization

1. Introduction

As the demand for wireless communications increases, elec-
tromagnetic (EM) circuit designs rely more and more heav-
ily on commercially available EM simulators in the last few
decades. Complicated and time-consuming EM design tasks
may stem from a fundamental issue that an inverse prob-
lem of EM circuit cannot be directly solved by any analyt-
ical or numerical approach at this time. Here the inverse
problem is to find an optimal physical circuit from a given
electrical response. Therefore, circuit designers are forced
to find optimal structural parameters by repeatedly updating
the parameters while solving the forward problem of EM
circuit through the EM simulator. The forward model in
EM problems is to calculate an electrical response, i.e. S -
parameters, from a given physical circuit through an EM
analytical method such as the finite-element method [1] and
the method of moments [2].

As a matter of course, microwave bandpass filter (BPF)
design definitely faces the same difficulty. Fortunately,
the filter circuit synthesis theory [3], [4], which determines
the circuit topology and its parameters from a given trans-
fer function, is well established and is widely used in mi-
crowave community. This means that the filter circuit can
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be synthesized by solving the inverse problem of filter cir-
cuit. However, the physical filter structure and its dimen-
sions need to be designed with the aid of EM simulator so
as to acquire the synthesized circuit parameters [4], [5], be-
cause any EM effects like fringing effects and frequency dis-
persion are not considered in the equivalent circuit.

To bridge the gap between the physical structure and
the equivalent circuit, optimization algorithms including lo-
cal and global search optimizations have been utilized in
EM circuit designs. Novel EM optimization approaches,
such as EM design combined with genetic algorithm (GA),
have been vigorously developed so far [6]–[9]. In such op-
timization designs, one of the bottlenecks is the computa-
tion time of EM analysis or EM simulation. In the local
search optimization, on the other hand, designers may make
an extraordinary effort to find good initial structural param-
eters, which is important to get a faster convergence in it-
erative approaches. To tackle the problem of the computa-
tion time, the concept of surrogate-based EM optimization
has been introduced into filter designs. One of well-known
approaches is a space-mapping method [10]–[12], which of-
fers a mathematical link between coarse and fine models and
provides fast computations using the coarse model (equiva-
lent circuit or empirical model) with keeping computational
accuracy by the corresponding time-intensive fine model
(EM simulation). However, this method requires appropri-
ate coarse models.

In recent years, neuro-based surrogate models have
gained much attention [13]–[27] because neural networks
(NNs) has made remarkable progress. The NN can eas-
ily model the relationship between input and output using
a dataset prepared in advance. Furthermore, the NN offers
fast computation once it is constructed. Therefore, an elec-
trical response can be obtained incomparably faster than EM
simulation just by inputting structural parameters of BPF
into the NN. Such a surrogate model may be called forward
model, since the relationship between input and output is the
same as the forward problem of EM analysis. On the other
hand, a surrogate model with the opposite input-output rela-
tionship with respect to the forward model is referred to as
inverse model. By simply reversing the input and output of
the dataset, we can build the inverse model using NN. The
introduction of the inverse model allows us to directly obtain
structural parameters just by inputting an electrical response
into NN [20], [21]. The authors have proposed a novel NN-
based inverse model [23], of which the input is coupling ma-
trix elements and the output is structural parameters of BPF.
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The inverse model cannot necessarily find optimal solutions
to meet design specifications, especially for a higher-order
BPF, because a one-to-one mapping between input and out-
put is not always guaranteed in the inverse model, unlike the
forward one.

This paper presents a novel EM optimization design
approach of a higher-order microstrip BPF using both for-
ward and inverse models constructed by NNs [25]. In the
first design stage, the inverse model in the proposed design
method is employed for initial guess of structural param-
eters of BPF. The inverse model can find a solution very
close to optimal one, even for a higher-order BPF. In the
second design stage, optimal structural parameters can be
obtained by a structural optimization through iterative eval-
uations of S -parameters using the forward model. These
two design stages are instantly and smoothly executed by
NNs without any manual tunings. The effectiveness of the
surrogate-based EM optimization presented in this paper is
demonstrated through design examples of a fifth-order mi-
crostrip BPF.

2. Forward and Inverse Problems: EM Analysis and
Design

2.1 Forward and Inverse Problems

This section revisits the forward and inverse problems in EM
circuits. As shown in Fig. 1, in general, the circuit analysis
is to calculate electrical parameters y from circuit parame-
ters x as

y = ffor(x) (1)

where ffor expresses the relationship between the input vec-
tor x and the output one y in this forward problem. On the
other hand, the circuit synthesis is to obtain a circuit topol-
ogy and its parameters x from electrical parameters y by

x = finv(y) (2)

where finv denotes the input/output relationship in the in-
verse problem. In the filter design, the filter circuit synthe-
sis theory has already been established to determine the cir-
cuit configuration and circuit parameters that give a desired

Fig. 1 (a) Forward problems in EM and circuit analyses. (b) Inverse
problems in circuit synthesis and EM design.

frequency response [3], [4]. The synthesized circuit is an
equivalent circuit of filter. The filter, in practice, is realized
by a physical circuit such as microstrip lines and waveg-
uides. Therefore, the EM analysis is indispensable to calcu-
lating frequency responses of the physical circuit by solving
Maxwell’s equations under boundary conditions. For the
last few decades, EM simulators have been widely used for
this purpose. Needless to say, the EM analysis or EM simu-
lation is the forward problem, whereas the EM design of the
physical circuit is the inverse problem.

However, there is no straightforward way to directly
obtain optimal physical structure from a desired frequency
response. In other words, the inverse problem of the EM cir-
cuit is considered to be unsolvable. Therefore, we are forced
to use an EM simulator over and over again to evaluate the
frequency response of physical circuit every time the struc-
tural parameters are adjusted. This leads to a huge amount
of computational time in EM design.

2.2 Forward and Inverse Models

To solve the abovementioned issue in the EM design, two
surrogate models are introduced in Fig. 2. One is the for-
ward model to calculate electrical parameters yfor from
structural parameters xfor by

yfor = f̄for(xfor) (3)

as a substitute for EM analysis. The other is the inverse
model to find structural parameters yinv from electrical pa-
rameters xinv with

yinv = f̄inv(xinv) (4)

In Eq. (3) and (4), f̄for and f̄inv express the input/output rela-
tionship of the forward and inverse models, respectively.

The forward model offers a fast computation with the
accuracy enough for design, instead of using EM simula-
tors, but optimal structural parameters cannot be found only
with the forward model. In contrast, the inverse model has
a possibility that it becomes a true design tool since it can
directly solve the inverse problem. However, the existence
and the uniqueness of solutions are not guaranteed in gen-
eral. A surrogate-based EM optimization compensates for
the shortcomings of both models, which will be explained
in the next section.

3. Surrogate-Based EM Optimization for BPF Design

3.1 Design Flow and Surrogate Models

The surrogate-based EM optimization for BPF design has

Fig. 2 Surrogate models. (a) Forward model for EM analysis and
(b) inverse model for EM design.
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Fig. 3 Procedure of surrogate-based EM optimization for BPF design.

Fig. 4 Surrogate models using neural networks for BPF design.
(a) Forward model and (b) inverse model.

two stages, as shown in Fig. 3. The first stage is finding
initial values of structural parameters. The second stage is
optimizing structural parameters from their initial values so
that requirements of filter response can be met. These two
design stages may be totally the same as a well-known BPF
design approach, but they are performed by two surrogate
models of forward and inverse models. This is the reason
why the flowchart given in Fig. 3 is called surrogate-based
EM optimization. In this work, the two surrogate models are
constructed by NNs, significantly reducing computational
burden in the optimization process.

The two surrogate models used in this work are given
in Fig. 4. They have two vectors: one is the vector consisting
of structural parameters as

s = [s1 s2 · · · sL]T (5)

where L is the number of structural parameters, and T stands
for the transposed vector. The other is the vector of coupling
matrix elements

m = [m1 m2 · · · mK]T (6)

in the lowpass-prototype frequency domain [28], where K
is the number of coupling matrix elements. In the forward
model, the input vector xfor is s and the output one yfor is
m. In the inverse model, the input vector xinv is m and the
output one yinv is s. Each model is expressed with a well-
known NN having input, hidden, and output layers.

3.2 Initial-Value Guess Using Inverse Model

The initial-value guess of structural parameters is done by
the inverse model given in Fig. 4 (b). By inputting ideal cou-
pling matrix elements msys into the inverse model, a set of
structural parameters s is instantaneously obtained from the
NN. The ideal coupling-matrix elements can be synthesized
by the filter circuit synthesis theory [28]. In a conventional
filter design approach [5], resonator lengths and gaps need
to be individually designed without considering intrinsically
generated cross couplings between resonators. Such effects
are incorporated in the inverse model given in Fig. 4 (b), of
which the detail will be described later. However, the in-
verse model cannot always find optimal structural parame-
ters from ideal coupling-matrix elements, owing to inherent
nature of inverse problem. Moreover, a physical filter struc-
ture to be designed cannot support all ideal frequency re-
sponses. Nevertheless, this inverse model can output nonop-
timal yet extremely good initial values without depending
on filter designers’ experience. This is of utmost importance
for EM optimization using local search algorithms to ensure
fast convergence in the next design stage.

3.3 Structural Optimization Using Forward Model

The second stage is the structural optimization assisted by
the forward model. The forward model plays a crucial role
for the calculation of S -parameters. By inputting a set of
structural parameters s into the forward model, the NN can
instantly output the corresponding coupling matrix elements
m. Then, S -parameters can be quickly calculated from the
coupling matrix [M] with algebraic computation [28]. No
EM simulators are needed in the two design stages once
the two NNs are constructed. The structural parameters are
optimized starting from the initial values estimated at the
first design stage. Thanks to good initial-value guess, they
rapidly converge to optimal values through a local search
algorithm. In the next section, it will be addressed why the
surrogate models constructed by the NN make it possible to
effectively and accurately design the BPF even if the BPF
has multiple cross couplings.

4. Building Neural Networks for Forward and Inverse
Models

4.1 Circuit Modeling of Multicoupled BPF

As shown in Fig. 4, the NN used for the forward and in-
verse models provides an approximated function connect-
ing structural parameters of BPF with electrical ones of cou-
pling matrix [23].

In the two surrogate models, the BPF is modeled by a
transversal resonator array circuit [28], which is now known
as a general equivalent circuit of coupled-resonator filters.
The transversal coupling matrix is expressed by
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Fig. 5 (a) Black-box macromodeling of BPF. (b) Transversal coupling
topology of coupled-resonator filter. While and black circles represent non-
resonant and resonant nodes, respectively. Lines connecting nodes express
couplings.

[M] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 mS,1 mS,2 · · · mS,N mS,L

mS,1 m1,1 0 · · · 0 m1,L

mS,2 0 m2,2 · · · 0 m2,L
...

...
...
. . .

...
...

mS,N 0 0 · · · mN,N mN,L

mS,L m1,L m2,L · · · mN,L 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

in the normalized frequency domain of lowpass prototype
filter. Here the subscripts S, L, and i (i=1, 2, · · · ,N) denote
source, load, and a resonator number, respectively, where N
is the number of resonators.

Figure 5 shows a transversal coupling configuration
formed by parallelly connected resonators. The resonators
in this filter configuration are interpreted not as physical
one but as eigenmode resonances of coupled resonators [29].
All the inter-resonator couplings of Nth-order filter are ex-
pressed by N eigenmode resonances appearing in filter. That
is to say, undesired but non-negligible cross couplings are
fully taken into consideration in the transversal coupling. If
the transversal coupling matrix is employed for the circuit
modeling of BPF, filter designers do not necessarily need to
know exactly how resonators are coupled to each other in
the physical filter circuit.

4.2 Generation of Dataset

To build the forward and inverse models using the NN, the
dataset composed of a pair of s and m is prepared in ad-
vance. The dataset can be generated with the help of a para-
metric sweep function of a commercially available EM sim-
ulator. First, a variable range [si,min, si,max] of each struc-
tural parameter si (i = 1, 2, · · · , L) to be designed is given,
and then the S -parameters are calculated with the EM sim-
ulator for every set of structural parameters in a parameter
space defined. After that, the transversal coupling matrix
[M] or its matrix elements m are extracted from the EM-
simulated S -parameters with a parameter-extraction tech-
nique [30]. Interestingly, any pre-designed BPF results are
not needed for the dataset.

Each structural parameter is normalized for efficiently
constructing the NN by

s̄i =
si − si,min

si,max − si,min
. (8)

In the next section, the denormalized structural parameters

will be given for a better understanding of filter layout.
On the other hand, the extracted coupling-matrix ele-

ments are also normalized using a arbitrary center angualr
frequency f0,data and fractional bandwidth FBWdata by [24]

mi,i = − Ωc

FBWdata

(
ω0i

ω0,data
− ω0,data

ω0i

)
(9)

mS,i =

√
Ωc

FBWdata · Qext,i
(10)

mi,L =

⎧⎪⎪⎨⎪⎪⎩mS,i for even mode

−mS,i for odd mode
(11)

where ω0i and Qext,i for i = 1, 2, · · · ,N represent the ex-
tracted resonant angular frequency and external Q factor, re-
spectively; Ωc is the cutoff angular frequency in the lowpass
prototype frequency domain, which is normally 1. The syn-
thesized coupling matrix elements will be presented with the
above normalized values.

4.3 Supervised Learning

The two NNs for the forward and inverse models are sepa-
rately constructed with a supervised learning using the same
dataset of s and m. As described in the previous section, the
input and output vectors of the forward model are s and m,
respectively, and vice versa for the inverse model. Each NN
is trained with an error backpropagation algorithm [13], un-
til the mean squared error (MSE) is enough small to design
the structural parameters of BPF. The MSE is defined by

MSE =
1

NdataNout

Ndata∑
t=1

Nout∑
k=1

(yk,t − dk,t)
2 (12)

where Ndata and Nout denote the number of data prepared in
advance and the output nodes in the NN, respectively; yk,t

is kth element of the output from the NN when tth dataset
is input into the NN; dk,t is the training data prepared in ad-
vance. The next section demonstrates a microstrip BPF de-
sign through the surrogate-based EM optimization.

5. Design Examples

5.1 Microstrip Filter Structure

As an example, a microstrip BPF shown in Fig. 6 is de-
signed by the surrogate-based EM optimization technique.
The BPF has a typical symmetric filter structure that can be
found in textbooks. However, it may be hard to obtain an
ideal passband response with conventional design methods
owing to unexpected cross couplings, resulting in the gener-
ation of transmission zero (TZ) at stopband.

The BPF has six structural parameters l1, l2, l3, g1, g2,
and lq to be designed on a dielectric substrate of relative
permittivity εr = 2.6 and thickness t = 1.0 mm. The width
w of resonators is fixed to be 2.00 mm. The material losses
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Fig. 6 Top view of fifth-order microstrip BPF layout to be designed.

and radiation loss are neglected in this demonstration for
simplicity.

5.2 Building Surrogate Models

5.2.1 Generation of Dataset

Next, the training data is prepared to construct the surrogate
models in the parameter space of 33.00 ≤ l1, l2, l3 ≤ 35.00,
1.50 ≤ g1, g2 ≤ 4.00, and 11.00 ≤ lq ≤ 13.00 in mm with
0.5-mm step. The validation data is also generated in the
ranges of the parameter space of 33.25 ≤ l1, l2, l3 ≤ 34.75,
1.75 ≤g1, g2≤ 3.75, and 11.25 ≤ lq≤ 12.75 in mm with 0.5-
mm step. These variable ranges of the structural parameters
are roughly estimated from design specifications (center fre-
quency 3 GHz) described later. However, since the number
of all combinations is very large, the variable ranges of res-
onator lengths are limited to the case of l1 ≥ l2 ≥ l3. This
is because it is empirically known that designed structural
parameters may be fallen into the ranges of l1 ≥ l2 ≥ l3 in
the case of BPF shown in Fig. 6. As a result, the numbers of
training and validation data are 6300 and 2000, respectively,
in this demonstration. The S -parameters used for the dataset
are calculated with the EM simulator Sonnet em.

5.2.2 Building Neural Networks

The dataset in the design examples has a pair of the follow-
ing s and m.

s = [l1 l2 l3 g1 g2 lq]T (13)

m = [mS,1 mS,2 mS,3 mS,4 mS,5 m1,1 m2,2 m3,3 m4,4 m5,5]T

(14)

where mi,L (i = 1, 2, · · · , 5) is omitted from m because of
the relationship between in mS,i and mi,L in Eq. (11). mS,L

is also unused because it does not significantly affect the
passband response. In the forward model, the input into the
NN is xfor = s and the output from the NN is yfor = m,
while the input is xinv = m and the output is yinv = s in
the inverse model. In this BPF design, the absolute value
of S 11 in passband needs to be calculated to about two dec-
imal places. To this end, the convergence goal of MSE of
the output yfor = m in Eq. (12) is set to 10−4 or less. In the
inverse model, the structural parameters s are designed with

0.05-mm step, which is the cell size used in the EM sim-
ulator Sonnet em for this microstrip BPF, so that the MSE
of the output yinv = s (in mm) in Eq. (12) is required to be
converged to less than about 10−4.

The NNs to be built for the forward and inverse models
has basic three layers of input, hidden, and output layers.
The number of hidden layers is one, since the goal of the
MSE can be achieved. In the NNs, the sigmoid function is
chosen as the activation function because we confirmed that
there are no significant differences even when the activation
function is changed to other one. The number of units in
the hidden layers is set to 60 in the forward model and 70
in the inverse model, so that the MSE of both training and
validation data can be minimized. In the forward and inverse
models, the resultant MSEs of the training data are 3.9×10−5

and 9.2 × 10−5, respectively, while those of the validation
data are 7.7 × 10−5 and 9.8 × 10−5, respectively. Each value
is less than the target MSE.

5.3 EM Optimization Design Using Surrogate Models

The surrogate-based EM optimization for the BPF design is
performed using the constructed forward and inverse mod-
els. In this section, three microstrip BPFs are designed un-
der the following specifications. The specifications common
to the three designs are as follows.

• Number of resonators: N = 5
• Transfer function: generalized Chebyshev function
• TZ frequency: fTZ = 3.15 GHz

In the same parameter space as the dataset, the same for-
ward and inverse models are employed for three designs.
The TZ frequency is included in the specification since one
TZ are generated at upper stopband because of couplings be-
tween non-adjacent resonators in the BPF shown in Fig. 6.
The purpose of adding the TZ frequency is not to generate
the TZ at the specified frequency, but to estimate the initial
structural parameters with the inverse model. The passband
responses of the three designs A, B, and C are listed below.

Design A:

• Center frequency: f0 = 3.00 GHz
• Fractional bandwidth: FBW = 5 %
• In-band return loss: RL ≥ 20 dB

Design B:

• Center frequency: f0 = 3.00 GHz
• Fractional bandwidth: FBW = 4 %
• In-band return loss: RL ≥ 25 dB

Design C:

• Center frequency: f0 = 2.95 GHz
• Fractional bandwidth: FBW = 6 %
• In-band return loss: RL ≥ 20 dB

The aim of the design examples is to form the specified
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Table 1 Initial and optimized structural parameters.

Struc.
params

Design A Design B Design C
Initial Optimized Initial Optimized Initial Optimized
(mm) (mm) (mm) (mm) (mm) (mm)

l1 34.05 34.05 34.05 34.10 34.65 34.65
l2 33.55 33.45 33.55 33.50 34.20 34.05
l3 33.40 33.45 33.45 33.50 33.95 34.00
g1 2.15 2.15 2.45 2.55 1.65 1.70
g2 3.25 3.10 3.70 3.60 2.85 2.60
lq 12.80 12.70 12.85 12.85 12.80 12.75

passband. Therefore, the passband response is evaluated by
the objective function in the structural optimization. The
objective function F is defined by

F =
Ns∑

k=1

(∣∣∣S̄ 11( fk)
∣∣∣ − ∣∣∣∣S (ideal)

11 ( fk)
∣∣∣∣)2

(15)

In Eq. (15), S̄ 11 is the reflection coefficient calculated from
the coupling matrix output by the forward model at a sam-
pling frequency fk (k=1, 2, · · · ,Ns), where Ns is the number
of sampling frequencies. S (ideal)

11 represents a target reflec-
tion coefficient that can be calculated from a coupling matrix
synthesized from the design specification. The frequency
range and the number of sampling frequencies are 2.925–
3.075 GHz and Ns = 301 for the design A, 2.94–3.06 GHz
and Ns = 241 for the design B, and 2.8615–3.0385 GHz and
Ns = 355 for the design C, respectively.

The synthesized coupling matrix elements msyn are ob-
tained from the above specifications of the designs A, B, and
C as

A: msyn = [0.374 0.521 0.317 0.537 0.474

1.276 −0.172 −1.206 0.783 −0.957]T (16)

B: msyn = [0.417 0.561 0.371 0.587 0.432

1.407 −0.154 −1.322 0.904 −1.049]T (17)

C: msyn = [0.372 0.520 0.322 0.533 0.478

1.273 −0.151 −1.212 0.793 −0.945]T (18)

Inputting msyn into the inverse model as xinv, the output yinv

or the initial structural parameters s are instantly obtained as
shown in Table 1. After optimizing the structural parame-
ters using the quasi-Newton method in conjunction with the
forward model, the optimized values shown in Table 1 are
acquired within about 10 iterations. The values of all struc-
tural parameters shown in Table 1 are rounded to 0.05 mm†.
It takes less than about 20–40 seconds (CPU: Intel Xeon
3.4 GHz) to get the optimized values, even though the for-
ward model is repeatedly called in the optimization process
for the calculation of function values and derivatives in our
homemade program. Furthermore, it must be emphasized in
Table 1 that the initial values are very close to the optimized
ones, which suggests that the initial-value guess by the in-
verse model works very well. The uniqueness of solution in

†0.05 mm comes from the cell size used in the EM simulator.
The values less than 0.05 mm are interpolated by the NNs.

Fig. 7 Comparison of frequency responses between EM-simulated re-
sults and theoretical ones of synthesized coupling matrix (design A).
(a) Initial structural parameters and (b) optimized ones.

the inverse model is not a problem in these designs because
a parameter space is not so wide.

Figures 7, 8, and 9 show the comparison of frequency
responses between EM simulation results of the designed
filters and the theoretical ones of the synthesized coupling
matrices for the designs A, B, and C, respectively. In each
figure, the frequency responses with initial and optimized
structural parameters are plotted. Although the return loss
level of the initial structural parameters is not suppressed
as specified, it is clearly improved after the structural opti-
mization, and five reflection zeros successfully appear in the
passband. Some discrepancies between the synthesized S 11

and the optimized one are observed, especially in the de-
sign B. In general, as the bandwidth becomes narrower, the
higher design accuracy of structural parameters is needed.
In the design B with the narrowest bandwidth, a finer param-
eter step may be required to meet the specification. Nonthe-
less, these design results support that once the forward and
inverse models are constructed, the structural optimization
is drastically accelerated by the forward and inverse models
using the NNs.

6. Conclusion

A new surrogate-based EM optimization using the NNs has
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Fig. 8 Comparison of frequency responses between EM-simulated re-
sults and theoretical ones of synthesized coupling matrix (design B).
(a) Initial structural parameters and (b) optimized ones.

been demonstrated for the microwave filter design. In con-
ventional filter designs, each initial structural parameter is
estimated by filter designers, and the structural parame-
ters are adjusted with the aid of time intensive EM sim-
ulations. For fast computation, the two surrogate models
of forward and inverse models have been introduced in this
paper, which have been constructed by the NNs from the
dataset simply prepared with the parametric sweep func-
tion of EM simulator. The initial structural parameters can
be easily found just by inputting the synthesized coupling
matrix elements into the inverse model. The structural pa-
rameters are rapidly optimized, thanks to the high-speed S -
parameter calculation using the forward model, instead of
EM simulator. As an example of this design approach, three
fifth-order microstrip multicoupled BPFs with different de-
sign specifications have been successfully designed, thereby
proving the effectiveness of the surrogate-based optimiza-
tion method.
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