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A Review of GaN MMIC Power Amplifier Technologies for

Millimeter-Wave Applications
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SUMMARY  GaN microwave monolithic integrated circuit (MMIC)
power amplifiers (PAs) technologies for millimeter-wave (mm-wave) ap-
plications are reviewed in this paper. In the mm-wave band, GaN PAs have
achieved high-output power as much as traveling wave tube amplifiers used
in satellite communications. Additionally, GaN PAs have been integrated
enough to be used for 5G and Beyond-5G. In this paper, a high accuracy
large-signal GaN-HEMT modeling technique including the trapping effects
is introduced in mm-waves. The prototyped PAs designed with the novel
modeling technique have achieved RF performance comparable to that of
the state-of-the-art GaN PAs in mm-wave.

key words: GaN, SATCOM, 5G, high power amplifier, MMIC, Doherty
amplifier, millimeter wave

1. Introduction

In recent years, GaN technology is widely used in mi-
crowave applications and its operating frequency limit is
expanding to millimeter-wave (mm-wave). In the satellite
communication (SATCOM) systems, K and Ka-bands (18
to 40 GHz) are used to meet the demand for a high data
rate [1], [2]. In 5G mobile systems [3], [4], a large system
capacity, low latency, and massive connection will be pro-
vided for various applications according with 1000 times
mobile traffic that is predicted in early 2020 compared with
that of 2010. For this system, mm-wave massive multiple-
input multiple-output (m-MIMO) is a promising technol-
ogy [5]. Mm-wave 5G mobile systems, so called Frequency
Range 2 (FR2), is expected to realize new communication
services using large capacity and high throughput with the
SATCOM [6].

Traveling wave tube amplifiers (TWTAs) are generally
used as transmitters in mm-waves, because of their high
power and high efficiency performances. On the other hand,
it is difficult to satisfy highly linear operation for commu-
nication systems with wideband characteristics. The ac-
tive phased array antenna systems with TWTAs require high
power phase shifter and variable gain amplifier. It is not
suitable for a transmitter that require small size [7]. GaN
microwave monolithic integrated circuit (MMIC) power am-
plifiers (PAs) can play a major role in the high linear oper-
ation as well as circuit-size reduction and cost reduction of
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Fig.1  Saturated output power vs. frequency of device technologies [8].

solid-state power amplifiers (SSPAs) by replacing conven-
tional TWTAS in mm-waves.

Figure 1 shows saturated output power versus fre-
quency of device technologies [8]. The operating frequency
of all devices is now extended, and the saturated output
power is improved through the development of device tech-
nology. GaAs and silicon (Si) devices are generally used
in relatively low output power applications. GaN devices
have the advantage of high breakdown voltage for high out-
put power and low output capacitance for high frequency
operation. In addition, high thermal conductivity of SiC
substrates allows GaN MMIC PAs to be implemented in
small circuit size. GaN-based PAs also have the advantage
of low distortion and wideband characteristics, compared to
other technology devices. Consequently, GaN devices are
well suited to high output power and high degree of inte-
gration required for SATCOM and 5G mobile systems in
mm-waves.

This paper provides an overview of recent progress
in GaN-HEMT modeling techniques and mm-wave GaN
MMIC PAs for SATCOM and 5G mobile systems. Sec-
tion 2 describes a large-signal GaN-HEMT model that in-
corporates trapping effects using an RC model and nonlin-
ear capacitance. Section 3 presents the GaN MMIC PAs
developed in K and Ka bands for the SATCOM system. In
Sect. 4, the GaN Doherty MMIC PA developed for 5G mo-
bile systems is described in detail. Finally, Sect. 5 concludes
the paper.
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2. Large Signal GaN-HEMT Modeling Technique in
Mm-Wave

To design GaN MMIC PAs, a large-signal model of GaN
high electron mobility transistor (GaN-HEMT) with a high
accuracy is required. large-signal GaN-HEMT modeling
techniques that take account of the trapping effects on the
model as the drain current and transconductance have al-
ready been reported [9]-[11]. Additionally, it is important
to take account of the trapping effects on the model as non-
linear capacitance in mm-wave band because it directly af-
fects the amplitude modulation (AM) and phase modulation
(PM) characteristics for SATCOM and 5G mobile systems
amplifier design. In this section, a large-signal GaN-HEMT
model that take account of the trapping effects on the model
as nonlinear capacitance is described.

GaN-HEMT takes advantage of two-dimensional elec-
tron gas (2DEG) that is spontaneously formed between an
aluminum gallium nitride (AlGaN) barrier and a GaN buffer.
Figure 2 shows the simplified GaN-HEMT physical mech-
anisms of the proposed trap models under (a) direct cur-
rent (DC) continuous condition and (b) DC pulsed condi-
tion[12]. Under the DC continuous condition, the gate is
biased in the ON state, whereas the drain is continuously bi-
ased in the ON state under the low-voltage condition. How-
ever, in the pulsed condition, the gate and drain are immedi-
ately biased after the stress bias, which means that the gate
voltage (V) is in the OFF state and the drain voltage (Vy) is
high (30 to 50 V). The traps have a significant effect on the
I-V and RF characteristics after stress bias because highly
concentrated electrons are captured by traps owing to the
strong electric field. As shown in Fig. 2, the drain current
(Ig), gate-drain capacitance (Cgq), and drain-source resis-
tance (Rg4s) are strongly affected by the traps. That is, the
acceptor-type traps at the GaN buffer layer are ionized by
the capture of electrons after the stress bias; the concentra-
tion of 2DEG then decreases owing to the increased con-
duction band at the buffer layer. Consequently, I3 and Cgq
decrease and Ry increases. Additionally, the ionized trap
region expands to the drain side because of the high V;, and
Cyq is considered to be more strongly affected by traps than
the gate-source capacitance (Cgg).

Figure 3 shows a schematic of the proposed trap model.
The Angelov-GaN model [13] was used as the fundamental
large-signal model. As shown in Fig. 3, the trap circuit was
loaded onto the drain terminal of the Angelov-GaN model.
The trap circuit consists of a resistance (Rysp), capacitance
(Cuap)» and diode (Dyrap). Rirap is a large value that prevents
the drain current from flowing through the ground. When
the voltage at the drain terminal is excited by a sine wave,
as shown in Fig. 3, Vi, is the only DC component in the
half-wave rectifier of the sine wave. In other words, the
trap circuit operates as a detector. When the amplitude of
the drain voltage is increased under a large-signal operation,
Vbwap also increases. Viyap is fed back to Cgqd, 14, and gp,.
Figures 4a and 4b show the AM-AM and AM-PM char-
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Fig.2  Simplified GaN-HEMT physical mechanisms of the proposed trap
models under (a) DC continuous condition; and (b) DC pulsed condi-
tion [12].
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Fig.3  Schematic of the proposed trap model [12].
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Fig.4 Measured and simulated results of large-signal characteristics. (a)
AM-AM, (b) AM-PM [12].

acteristics at 28 GHz, respectively, to verify the proposed
model. The dotted line represents the measured results, the
solid line represents the simulated results using the proposed
model, and the dotted line represents the simulated results
using the conventional model. The conventional model is a
general large-signal GaN-HEMT model that does not take
account of the trapping effects on nonlinear capacitance.
Therefore, the accuracy of AM-AM and AM-PM at sat-
urated output operation is not good. As shown in Fig.4,
the proposed model is in good agreement with the measure-
ments in both AM-AM and AM-PM characteristics.

3. GaN MMIC PA Technology Trend in K and Ka-
Band for SATCOM System

Three GaN MMIC PAs that can be applied to the SAT-
COM system in the K and Ka-bands are described. Ta-
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Table1  Frequency Band of the SATCOM system

SATCOM Frequency : y Output
Frequency Band | Range Bancyidth Power/ PA
K-Band 17.3-21.2GHz | 3.9 GHz >10W
Ka-Band 27.5-31.0GHz | 3.5 GHz >10W

Application

SATCOM downlink
SATCOM uplink

W g

Fig.5  Chip photograph of the fabricated K-band GaN MMIC PA [18].

ble 1 lists the frequency bands of the SATCOM system. The
SATCOM system is classified in two frequency bands, (a)
17.3 to 21.2 GHz (K-band) for downlink, fixed satellite ser-
vices and broadcast satellite services, (b) 27.5 to 31.0 GHz
(Ka-band) for uplink, SATCOM and 5G mobile systems.
The GaN MMIC PA solution offers competitive advantages,
because it can achieve a high linearity operation with wide-
band characteristics and high accuracy control of phase and
amplitude far above the TWTAs. The transmitter modules
of SSPAs consist of multiple PAs. In order to reduce the size
of transmitter module, a PA with a high output power den-
sity and high efficiency is required. GaN MMIC PAs meet
the demand for both a small size and the high output power.
However, an efficiency of GaN MMIC PAs has a trade-off
relationship with the output power of that caused by a loss
of inner power combiner networks, and the efficiency re-
quirements depends on specifications of each SSPAs which
is derived considering their thermal managements. In this
section, GaN MMIC PAs with several output powers are in-
troduced. First, a high output power K-band GaN MMIC
PA compared with reported PAs [14]-[17] is described [18].
Second, 15 W and 32 W high output power density Ka-band
GaN MMIC PAs compared with reported PAs [19]-[22] are
explained [23], [24]. A high accuracy GaN-HEMT model is
useful to design several output powers GaN MMIC PAs in a
short term.

The GaN MMIC PA was fabricated utilizing a 0.15 yum
gate length GaN process on a 50 um thick SiC substrate with
Individual Source Via (ISV) structure. Figure 5 shows a chip
photograph of the fabricated K-band GaN MMIC PA [18].
The GaN MMIC PA consists of 3 stage Class-AB PAs. The
number of gate fingers of the unit FET cell was 10 with unit
gate width of 80 um for the final stage. The final stage con-
tained 8 FET cells, and 4 FET cells and 2 FET cells were
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Fig.7 Measured performance over frequency [18].

used for the 2" and 1% driver stage. Figure 6 shows the mea-
sured and simulated results of the input-output characteris-
tics under continuous wave condition. The measured results
were in good agreement with the simulated results. A maxi-
mum output power of 44.2 dBm (26 W) and maximum PAE
of 32% were achieved with a power gain of over 25dB at
the best performing frequency. Figure 7 shows the measured
performance over frequency. The junction temperature was
estimated based on the calculated thermal resistance and the
dissipation power was estimated based on the measured re-
sults of the output power and drain current of each stage.
The junction temperature was approximately 170°C, which
corresponded well with the simulated result. For wideband
operation, the power amplifier realized an output power of
42.8dBm (19 W), a PAE of over 26%, and a power gain of
25dB over 17 to 21.4 GHz. Figure 8 shows the measure-
ment results of adjacent channel power ratio (ACPR) and
error vector magnitude (EVM). A modulation signal of 8-
PSK (roff = 0.15, bandwidth = 10 MHz) was applied as a
test signal, and a peak to average ratio (PAPR) of approxi-
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Table 2  State-of-the-art of a K-band GaN power amplifiers
Ref Freq FBW Num. Pout PAE Gain
(GHz) (%) stage  (dBm) (%) (dB)
[14] 17.2-20.2 16.0 2 41-42 36-43 17
[15] 17-20 162 3 40-42  30-36 25
[16] 17-21 21.1 2 40 36 —40 22
[17] 17-20.2  17.2 3 40-41 30-36 22.5
this work 17.2-21.2 20.8 3 428-442 26-32 25

3.05 mm

w677

Fig.9  Chip photograph of the 15 W Ka-band GaN MMIC PA [23].

Proposed ISMN using the BPF configuration [23].

mately 8.4 dB. An average output power of 42.4 dBm, PAE
of 28.9%, gain of 26.5dB, EVM of 5.4%, and ACPR of
—30 dBc were achieved. Table 2 shows the state-of-the-
art of K-band GaN power amplifiers. The output power of
the fabricated power amplifier is comparatively higher than
other reported K-Band GaN MMIC PAs.

The Ka-band GaN MMIC PAs were also fabricated by
the 0.15 um gate length GaN process on a 50 um thickness
SiC substrate with the ISV structure. Figure 9 shows the
chip photograph of the 15 W Ka-band GaN MMIC PA [23].
The GaN MMIC PAs consist of three stage Class-AB PAs.
The number of gate finger of the unit FET cell was 8 with a
70 um unit gate width for each stage. For the final stage,
4 FET cells were combined. Figure 10 shows the pro-
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Fig.11  Simulated results of the proposed ISMN and a conventional
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Fig.12  Measured input-output characteristics of 15W GaN MMIC
PA[23].

posed inter stage matching network (ISMN) using the band-
pass filter (BPF) configuration. The proposed ISMN con-
sists of shunt inductors (L1, Linl, Lin2), series capacitors
(C2, C3) and transmission lines (TL4, TL5, TL6). The
proposed ISMN divides an output transistor impedance of
driver stage into two of input transistor impedance of the
final stage. These circuit elements can be modified as an
equivalent circuit of Butterworth BPF circuits. The pro-
posed ISMN is designed with including the parasitic capac-
itances of the transistors for the final and driver stages. Fig-
ure 11 shows the simulated results of the proposed ISMN
and a conventional ISMN using low-pass filter (LPF) con-
figuration. The insertion loss of the proposed ISMN is lower
than that of the conventional ISMN. Moreover, the proposed
ISMN provides wider frequency response than the conven-
tional ISMN. Consequently, a high efficiency and wideband
Ka-band GaN MMIC PA was realized by applying the pro-
posed ISMN. Figure 12 shows the measured input-output
characteristics of 15 W GaN MMIC PA. The measured max-
imum output power of 41.8 dBm, peak PAE of 31% and gain
of 21 dB were obtained under pulse operation (pulse period
= 1 ms, pulse duty = 10%) in 28 GHz. Figure 13 shows the
measured performance over frequency. The measured max-
imum output power of 41.0 to 41.8 dBm and a peak PAE of
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Fig.13  Measured performance over frequency [23].
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Fig.14  Chip photograph of a 40 W Ka-band GaN MMIC PA [24].

27 to 32% and gain of 20.0 to 22.0 dB were obtained over
26 to 31 GHz (FBW = 17.5%).

The output power of the Ka-band GaN MMIC PA
shown in Fig. 9 is sufficient for replacing the TWTAs. There
is a requirement for higher output power GaN MMIC PAs.
Figure 14 shows a chip photograph of a 40 W Ka-band GaN
MMIC PA [24]. The number of gate finger of the unit FET
cell was 8 with a 80 um unit gate width for each stage.
In order to achieve high output power, 16 FET cells were
combined at the final stage. The total gate width of this
GaN MMIC PA approximately four times than that of the
PA shown in Fig.9. Figure 15 shows the measured input-
output characteristics of the 40 W GaN MMIC PA. A mea-
sured maximum output power of 46.2dBm, peak PAE of
30.2%, and gain of 18 dB were obtained under pulse oper-
ation (pulse period = 1ms, pulse duty = 10%) at 28 GHz.
Figure 16 shows the measured performance over frequency.
The measured maximum output power of 45.0 to 46.2 dBm
(31.6 to 41.7W) and peak PAE of 23 to 30.2% and gain
of 17.4 to 20.7 dB were obtained over 26 to 31 GHz (FBW
= 17.5%). Table 3 shows the state-of-the-art of a Ka-band
GaN MMIC PA. The two fabricated Ka-band GaN MMIC
PAs achieved high output power density with high effi-
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Table 3  State-of-the-art of a Ka-band GaN power amplifiers.
Ref Freq FBW  Num. Pout PAE Pd
(GHz) (%) stage (dBm) (%) (W/mm?)
[19] 27-31 13.8 3 39.0 34.7 2.02
[20] 27.5-31 12.0 3 421 42.5 2.32
[21] 26-30 13.8 2 46 36 294
[22] 26.5- 31 15.7 3 46.2 25.9 2.37
this work [23] 26-31 17.5 3 41.8 32 3.85
this work [24] 26 - 31 175 3 46.2 30.2 2.56

ciency. The prototype of GaN MMIC PAs demonstrated
output power of over 10 W with high efficiency at both K
and Ka-bands required in the SATCOM system.

4. GaN MMIC PA Technology Trend in 5G Mm-Wave
System

As mentioned in the Sect. 1, the Ka-band is also used in
mm-wave 5G mobile systems. The base transceiver stations
(BTSs) are classified into three categories depending on the
equivalent isotropic radiation power (EIRP): (a) short range
BTSs, which is used for in-room or hot spot high speed
wireless connections, whose EIRP is less than 50 dBm; (b)
middle range BTSs for high density urban areas and urban
macro, whose EIRP is 50 to 60dBm; and (c) long range
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BTSs, which is used for wireless back-haul connections in
rural areas, whose EIRP is 60 to 70 dBm. For short range
BTSs, an integrated silicon RF-IC solution is advantageous
because it is generally inexpensive [25]. For the middle
range BTSs, the GaAs MMIC solution can be used because
the output power of the GaAs MMIC is 10 to 15 dB higher
than that of silicon RF-ICs. For long range BTSs, a GaN so-
lution is more likely to be adopted because its output power
is far above that of the silicon RF-IC or GaAs MMIC [26].

Two types of beamforming antenna systems exist, as
shown in Fig. 17 and Fig. 18. BTSs vendors have been con-
sidering expanding their sub-6 all-digital beamforming an-
tenna system to be applied to mm-wave 5G mobile sys-
tems. An all-digital beamforming antenna system can re-
alize many functions and high-accuracy control of massive
multiple-input multiple-output beamforming. However, ow-
ing to the drastic increase in the channel bandwidth in mm-
waves and the need for many active channel elements, there
is a problem of power dissipation and cost. Therefore, BTSs
vendors have proposed a sub-array hybrid-beamforming an-
tenna system that combines analog and digital beamforming
techniques [27]. It combines digital precoding and analog
beamforming to simultaneously generate multiple beams in
a single space, which allows flexibility between the number
of baseband channels and the number of active RF chan-
nels. However, a sub-array hybrid-beamforming antenna
system requires higher output power in Tx transmitter than
all-digital beamforming Tx transmitter due to divide a Tx
channel into multiple Tx channels. Therefore, high output
power and high integrated transmitter is required to realize
hybrid-beamforming antenna system.

Doherty power amplifier (DPA) technology has been
used since 3G, 4G, and sub-6 5G BTSs, and new types of
DPAs have been proposed [28]-[30]. However, it is dif-
ficult to achieve high efficiency and wideband characteris-
tics owing to the large influence of parasitic elements in the
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Fig.19  Chip photograph of the GaN doherty MMIC PA [31].
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mm-wave band. The frequency response of Doherty circuit
configuration is limited by loaded Q factor which is derived
from output impedance and output parasitic capacitance of
transistors. In order to achieve high efficiency and wideband
characteristics in mm-waves, Doherty circuit configuration
that compensates output parasitic capacitance is required.

Figure 19 shows the chip photograph of the GaN Do-
herty MMIC PA, which was fabricated by the 0.15 um gate
length GaN process on the 50 um thickness SiC substrate
with the ISV structure [31]. Figure 20 shows the schematic
of the impedance inverter formed by the Tee-network for the
output combiner of the fabricated DPA. The Tee-network is
formed by the L;, L,, L3 and Cys of each transistor output
parasitic capacitance. It operates as Doherty load modu-
lation circuit by forming a impedance inverter. Figure 21
shows the measured (a) PAE and (b) Gain of fabricated
DPA. As shown in Fig.21, it was confirmed that the am-
plifier maintains the operation as a DPA in the wideband
of 26 to 30 GHz. The DPA obtained output power of 36.1
to 36.5dBm, a 6 dB and 8 dB output power back-off (OBO)
PAE of 25 to 27%, 20.4 to 24.5%, and a peak PAE of 26.7 to
31.8%. To evaluate the linearity of the DPA, the ACPR and
EVM were measured using the 64-QAM 45 MHz modulated
signal with PAPR of 9.2 dB. Figure 22 shows the measured
ACPR, EVM, and PAE over the frequency at average out-
put power of 28 dBm. In the frequency of 26 to 30 GHz, the
DPA achieved an ACPR lower than —27 dBc, EVM of 3.2 to
5.0%, and PAE of 20.1 to 23.8% at Pave = 28 dBm. Table 4
shows comparison with the state-of-the-art of Ka-band GaN
DPAs. To the best of authors’ knowledge, the performance
of the fabricated DPA in this work is the widest bandwidth
with the high efficiency in Ka-band.
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Table 4  State-of-the-art of a Ka-band Doherty GaN power amplifiers.

Number Frequency FBW PAE Peak PAE  Pout Chipsize | °"¢T
Reference of stages  (GHz) (%) at 6dB B.O. (%) @Bm)  (mmd) density
‘ (%) (W/mm®)
[32] 2 27.5-29.5 7 17-22.7 22.5-25.5 35.6 4.3 0.84
[33] 2 27-29.5 8.8 23-34 16-30 29-32 6.0 0.26
[34] 3 27-29.5 8.8 20-24 22-30 39 9.7 0.82
This work 2 26-30 14.6 25-27 26.7-31.8  36.1-36.5 3.5 1.14

5. Conclusion

This paper provides an overview of advances in a high accu-
racy large-signal GaN-HEMT modeling technique and GaN
MMIC PAs for mm-wave applications on the basis of sev-
eral published papers. The prototyped GaN PAs designed
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with the novel modeling technique has achieved good per-
formances which are suitable to high power and high inte-
gration requirements of SATCOM and 5G mobile systems
in mm-waves.
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