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REM-CiM: Attentional RGB-Event Fusion Multi-modal Analog 

CiM for Area/Energy-efficient Edge Object Detection during both 

Day and Night 
Yuya Ichikawa†a), Ayumu Yamada†, Naoko Misawa†, Chihiro Matsui†, Nonmembers and Ken Takeuchi†, Member 

SUMMARY Integrating RGB and event sensors improves object detection 

accuracy, especially during the night, due to the high-dynamic range of 

event camera. However, introducing an event sensor leads to an increase in 

computational resources, which makes the implementation of RGB-event 

fusion multi-modal AI to CiM difficult. To tackle this issue, this paper 

proposes RGB-Event fusion Multi-modal analog Computation-in-Memory 

(CiM), called REM-CiM, for multi-modal edge object detection AI. In 

REM-CiM, two proposals about multi-modal AI algorithms and circuit 

implementation are co-designed. First, Memory capacity-Efficient 

Attentional Feature Pyramid Network (MEA-FPN), the model architecture 

for RGB-event fusion analog CiM, is proposed for parameter-efficient 

RGB-event fusion. Convolution-less bi-directional calibration (C-BDC) in 

MEA-FPN. extract important features of each modality with attention 

modules, while reducing the number of weight parameters by removing 

large convolutional operations from conventional BDC. Proposed MEA-

FPN w/ C-BDC achieves a 76% reduction of parameters while maintaining 

mean Average Precision (mAP) degradation to <2.3% during both day and 

night, compared with Attentional FPN fusion (A-FPN), a conventional 

BDC-adopted FPN fusion. Second, the low-bit quantization with clipping 

(LQC) is proposed to reduce area/energy. Proposed REM-CiM with MEA-

FPN and LQC achieves almost the same memory cells, 21% less ADC area, 

24% less ADC energy and 0.7% higher mAP than conventional FPN fusion 

CiM without LQC. 

key words: Computation-in-Memory, RGB-event fusion, edge object 

detection, multimodal AI, event-based vision sensor 

1. Introduction 

In many kinds of edge applications such as autonomous 

driving and robot vision, object detection is an important 

task. Although object detection has evolved dramatically in 

recent years with the advancement of deep learning [1], 

there are still several challenges in edge object detection [2]. 

Area/energy limitation is one of the challenges [3]. To tackle 

this issue, Computation-in-Memory (CiM) [4, 5] is a 

promising Neural Network (NN) accelerator due to high-

speed and low-power multiply-accumulate (MAC) 

calculation with analog approximate computation in the 

memory array. 

 Another challenge in edge object detection is the 

adaptability to various environments such as day and night. 

For example, when only RGB cameras are used in night 

conditions, the accuracy degrades severely [6, 7]. Event 

cameras [8-10] can cope with the night conditions by fusing 

with RGB cameras owing to their high dynamic range (e.g., 

140dB compared to 60dB of RGB camera) [11-15]. 

 Both model architecture and fusion methods that exploit the 

complementary characteristics of RGB and event data affect 

mean Average Precision (mAP), a metric of object detection 

accuracy. As for the model architecture, feature-pyramid 

network fusion (FPN fusion) [11] shows the mAP 

improvement by fusing RGB and event data at each layer of 

the feature extraction module. As for the fusion method, bi-

directional calibration (BDC) [14] shows the mAP 

improvement by extracting important information with an 

attention mechanism and convolutional calculations. 

However, BDC-adopted FPN fusion, called Attentional FPN 

fusion (A-FPN) in this paper, results in a significant increase 

in parameters of the NN model. 

 Recently, 256Gb chalcogenide-based cross-point memory 

using Phase-Change Memory (PCM) has been proposed 

[16]. The capacity of standalone emerging non-volatile 

memory (eNVM) is increasing rapidly. On the other hand, 

the capacity of embedded eNVM is smaller (1-100 MB) than 

that of standalone eNVM (1-100GB) because of the large 
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Fig. 1  Overview of proposed REM-CiM. To fuse RGB and event data 

at edge with area/energy limitation, model architecture (MEA-FPN) and 

RGB-event fusion module (C-BDC) are proposed. Moreover, 

appropriate clipping range of weights and activations are investigated for 

low-bit quantization. 

 
 
 
  
 
 

 
  
 
 

        

     
           

      

           

      

           

      

     

     

 
 
 
 
  
 
 
 
  
  

  
  
 
  
 

      

     

      

          

                        

                

 
 
 

       

          
            

        
           

  

  
   

   

 
  
 
 
 
 
 
 

     

       

  

 
  
 
 
 
 
 
 

     

  

             

              

 
 
 
  
  
  
 
 
 
  
 
 
  
 
 
 

 
  
 
  
  
 
 
  
 
  
 
 
 
 

         
      

 
 
 
  
 
 

                   



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

2 

overhead of peripheral circuits such as DAC/ADC [17]. The 

capacities of recently reported CiMs are around 1-10 Mb [4, 

18-20]. Although embedded NVM CiM capacity will 

increase as the technology of NVM integration becomes 

more mature, the implementation of the RGB-event fusion 

multi-modal AI on NVM CiM, which requires large memory 

capacity, is a big challenge. 

 In this paper, REM-CiM, RGB-Event fusion Multi-modal 

analog CiM, is proposed to overcome the trade-off between 

mAP and the number of parameters and to realize multi-

modal edge AI (Fig. 1). In REM-CiM, the proposed multi-

modal AI algorithms and circuit implementation are co-

designed for area/energy-efficient object detection during 

day and night. The key contributions are: 

• An RGB-event fusion model architecture, Memory 

capacity-efficient Attentional Feature Pyramid Network 

fusion (MEA-FPN), is proposed to realize the multi-

modal AI on edge CiM. Convolution-less bi-directional 

calibration (C-BDC) in MEA-FPN achieves a 97% 

reduction in the number of weight parameters compared 

with BDC by removing large convolution operations, 

which leads to memory capacity reduction. 

• The optimal point of the trade-off between mAP and the 

number of parameters when considering edge analog 

CiM implementation is explored by comparing mAPs 

during day/night and the number of weight parameters 

among models. The proposed MEA-FPN achieves a 

76% reduction of parameters compared with A-FPN 

while keeping mAP degradation to <2.3%.  

• To pursue area/energy/memory-capacity efficiency of 

analog CiM and realize muti-modal AI on CiM, low-bit 

quantization with clipping (LQC) is proposed. REM-

CiM with MEA-FPN and LQC achieves <150M 

memory capacity, which indicates the possibility of 

multi-modal edge CiM. 

 

2. Background and Motivation 

2.1 RGB-event fusion method 

To effectively utilize the complementary characteristics of 
RGB and events, it is very important how to fuse them. In 
[15], late fusion has been proposed. [11] has proposed fusing 
modalities at multiple stages by utilizing feature pyramid 
network (FPN) architecture. In these methods, fusion is 
performed with simple concatenation.  
In [12] and [14], the attention module is utilized at the fusion 
stage to focus on important features and suppress 
unnecessary ones. In [14], bi-directional calibration (BDC) 
has been proposed. In BDC, features from one modality are 
applied to the other. Moreover, important information is 
extracted in both spatial and channel dimensions with 
Channel Attention and Spatial Attention [21]. Although 
BDC achieves mAP improvement, parameter overheads of 
BDC are so large that it is difficult to implement a BDC-
adopted NN model to CiM with energy, area, and memory 
capacity limitations. In this paper, Convolution-less BDC 

(C-BDC) is proposed to tackle this challenge. 
 

2.2 Limitation and non-ideality of NVM CiM 

Computation-in-Memory (CiM) [4, 5] is a promising NN 
accelerator. By utilizing Ohm’s and Kirchhof’s law in 
weight-embedded memory array, CiM can perform high-
speed and low-power analog MAC calculations. By using 
analog CiM with non-volatile memory (NVM) such as 
ReRAM, MRAM, PRAM, and Flash, footprint and power 
consumption are reduced [22, 23]. However, NVM analog 
CiM has two major issues. 
The first issue is a trade-off between accuracy and 
area/energy due to the bit-resolution of weight memory cells 
and ADC/DAC. It is reported that ADC/DAC takes a 
significant portion of the total area/energy consumption [24, 
25] and area/energy increases proportionally to ADC/DAC, 
i.e., activation, bit-resolution [26]. As for weights, the 
increase in weight bit-resolution leads to the increase in 
memory area and power consumption of writing operation. 
To tackle these issues, low-bit quantization is desired.  
As for weights, minimizing loss during quantization from 
floating point to int8 and dequantization from int8 to 
floating point has been proposed [27]. However, this method 
does not assume the characteristics of CiM weights (e.g. 
symmetrical weight distribution with differential pair). As 
for activations, automatic optimization of the clipping range 
by considering the clipping range as a parameter has been 
proposed [28]. However, this quantization method does not 
consider the quantization of output, which is inevitable 
when considering ADC in CiM. As shown in these examples, 
GPU and CiM have fundamentally different weights and 
quantization methods, so it is necessary to consider clipping 
and quantization methods suitable for CiM. In this paper, 
appropriate clipping ranges for weights and activations (i.e. 
the value of inputs and outputs) of the proposed MEA-FPN 
are investigated and low-bit quantization with clipping 
(LQC) is conducted for realizing multi-modal edge CiM. 

 The second issue is the non-idealities of NVM, such as write 

variation [18], conductance shift by data-retention [29, 30], 

and endurance [31]. Due to approximate analog computation, 

these errors inevitably affect the accuracy. In this paper, the 

tolerance against these errors is verified. 

3. Proposed MEA-FPN Architecture w/ C-BDC 

 To reduce the number of weight parameters and realize 

multi-modal AI on edge CiM, an RGB-event fusion model 

architecture, Memory capacity-efficient Attentional FPN 

fusion (MEA-FPN), is proposed (Fig. 1). Fig. 2 shows the 

diagrams of simple concatenation in FPN fusion [11], 

conventional BDC [14] and the proposed Convolution-less 

bi-directional calibration (C-BDC). In the proposed MEA-

FPN, C-BDC is adopted as an RGB-event fusion module. 

 Channel Attention (CA) [21] in cross CA [14] makes a 

channel attention map with average/max-pooling in spatial 

dimension and Multi-layer Perceptron. Spatial Attention 

(SA) in cross SA makes a spatial attention map with 

average/max-pooling in channel dimension and wide (e.g., 
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7×7) convolution. By utilizing CA and SA, BDC extracts 

important features from each modality. Moreover, with the 

cross-calibration mechanism, BDC transports features from 

one modality to another (Figs. 2(a) and 2(c)). However, the 

number of weight parameters in BDC is too large to adopt 

in CiM (Table I). 

 To reduce the memory capacity for realizing CiM 

implementation, C-BDC, a weight parameter-reduced RGB-

event fusion module, is proposed (Fig. 2(d)). In C-BDC, the 

large convolution calculations in BDC are removed except 

for the first convolution layer. Note that the first convolution 

is remained just for adjusting the number of channels of C-

BDC output to C as shown in Fig. 2(d). On the other hand, 

cross attention mechanisms are fully utilized for extracting 

important information and applying features of one modality 

to the other. By removing large convolutions, the proposed 

C-BDC achieves a 97% reduction in the number of weight 

parameters compared with conventional BDC (Table I). This 

result shows the memory-capacity efficiency of C-BDC in 

edge multi-modal CiM. 

 Figs. 3(a)-3(c) show the simple model diagram of FPN 

fusion, A-FPN, and the proposed MEA-FPN respectively. In 

A-FPN, the conventional BDC replaces the single RGB-

event concatenation in FPN fusion. On the other hand, in the 

proposed MEA-FPN, C-BDC replaces the concatenation. 

With middle-fusion architecture, RGB and event features 

are fused at each stage of the ResNet [32] backbone. 

 Fused features are fed into the FPN module (Fig. 1). The 

output of each stage of the FPN module is then fed into the 

regression and classification subnetwork, and finally the 

regression boxes and classification results are output. 

 There is a trade-off between the number of parameters and 

mAP (Fig. 3(d)). FPN fusion requires fewer parameters, 

while resulting in relatively low mAP. In contrast, A-FPN 

achieves higher mAP, while requiring more parameters due 

to large convolution layers in BDC. A-FPN is suitable when 

inference is conducted at cloud, with sufficient 

computational resources. On the other hand, the memory 

capacity of A-FPN is too large to implement on edge CiM. 

The proposed MEA-FPN achieves parameter reduction 

while minimizing the mAP degradation compared with A-

FPN, and shows the possibility of implementing multi-

modal RGB-fusion AI on edge analog CiM. 

4. Evaluation of Proposed MEA-FPN 

4.1 Datasets 

 

DSEC dataset is a dataset in driving scenarios including 

event camera data [33] and contains a lot of night data. 

However, the object detection label is not publicly released. 

Therefore, in this work, the dataset provided in [11] is 

utilized, where over 100,000 objects are labeled using 

YOLO v5 [34]. In this paper, labels of Car and Pedestrian, 

which are considered to occur frequently in driving 

scenarios, are used. 

 The dataset is split into day and night to measure mAPs 

during day and night respectively. The number of night data 

included in the original test dataset is too small (<1500 

labels) to measure mAP during the night accurately (Table 

II). Therefore, a part of the night data in the original training 

dataset (about 10000 labels) is moved to the test dataset. 

With this dataset, the impact of the high dynamic range of 

the event camera on mAP improvement in night conditions 

Table I  Comparison of parameters among each module 

 

                

R                  

                          

                          

    

 
Fig. 3  Diagram of (a) FPN fusion, (b) A-FPN and (c) MEA-FPN. (d) 

Trade-off between mAP and the number of parameters. MEA-FPN 

overcomes this trade-off for multi-modal AI on edge CiM. 
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Fig. 2  Diagram of (a) cross Spatial Attention (SA) and cross Channel 

Attention (CA), (b) simple concatenation in FPN fusion, (c) conventional 

Bi-directional calibration (BDC) and (d) proposed Convolution-less BDC 

(C-BDC). In the proposed C-BDC, heavy convolution calc in (c) is removed. 
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Table II  The number of labels in original dataset [11] and this work 
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is evaluated. 

  

4.2 Appropriate input preprocessing 

 

Event data are considered as 4D inputs (x,y,p,t), where (x,y) 

stands for the spatial resolution, p stands for the polarity and 

t stands for the temporal axis. To fuse with the RGB frame, 

event representation, where sparse and asynchronous events 

are converted to dense frames, is necessary. In this work, 

voxel-grid method [35] is adopted. Voxel-grid retains both 

temporal and spatial information by dividing each temporal 

cue into several bins. 

 In addition, appropriate preprocessing for RGB and event 

frames is investigated by comparing the 4 points below: 

 

1. Mean & standard deviation (std) of RGB: Whether the 

mean and std of ImageNet or DSEC is used for the 

standardization of the RGB frames. 

2. RGB normalization: Whether to divide RGB frames by 

three times the std calculated by all frames (3 sigma) or 

by the maximum absolute value of each frame (Max). 

3. Event standardization: Whether to use the mean and std 

of all event frames (Global) or those of each event frame 

(Local) for standardization of event frames. 

4. Event clipping: Whether to clip the event frames or not. 

 

 Table III shows the comparison results of input 

preprocessing. The top 2 scores are colored red. With 

original input processing in [11], loss becomes too large due 

to the instability of the output of C-BDC, and the model 

cannot be trained. For RGB standardization (Type 1 vs. Type 

2), using the mean and std of DSEC is better than those of 

ImageNet. Using the mean and std of specific domains (i.e., 

driving scenario in this work) leads to mAP improvement. 

The better method of RGB normalization (Type 2 vs Type 3) 

and event standardization (Type 2 vs Type 4) are 3 sigma 

and Global respectively. In both methods, all images are 

divided by the same value, which means that the intensity 

ratio among images should be preserved. Event clipping 

leads to score improvement (Type 2 vs Type 5). Clipping 

reduces the instability of calculation by suppressing outliers. 

From these results, Type. 2 is utilized for the following 

experiments as input preprocessing. 

  

4.3  Evaluation setups & metrics 

 

Models are trained to minimize the sum of focal loss, 

regression loss, and classification loss. ResNet-50 [32] is 

selected as the backbone. The initial learning rate is set to 

0.0001. Adam is selected as an optimizer. In training, the 

batch number is set to 16 and the epoch number is set to 65. 

 The accuracy of object detection is evaluated by using 

Average Precision (AP), with setting the threshold of 

Intersection of Union (IoU) to 50%. In this paper, mAP 

means the average of the AP of cars and pedestrians. mAPs 

during day and night are calculated respectively in section 

4.4 to investigate the effectiveness of the event camera on 

mAP in each light condition. 

 

4.4  Comparison with conventional models 

 

To investigate the effectiveness of the proposed C-BDC on 

object detection accuracy under each light condition (day or 

night) and each label, AP is compared among models (Fig. 

5). Moreover, to verify the computational resource and 

memory-capacity-area efficiency of the proposed MEA-

FPN, MACs and the number of weight parameters are also 

compared among models (Table IV). 

 To better understand the effectiveness of FPN fusion 

architecture and multi-modality with RGB-event fusion on 

mAP improvement, early fusion (Fig. 4(a)) and RGB-only 

model (Fig. 4(b)) are compared with MEA-FPN. To 

compare the effectiveness of feature-extraction 

improvement and fusion-method improvement on the 

increase in mAP and weight parameters, FPN fusion with 

ResNet-101, which is deeper than ResNet-50, is also 

compared with MEA-FPN. 

 The proposed MEA-FPN achieves 76% parameter reduction 

compared with A-FPN, while keeping mAP reduction to 

<2.3% (Table IV). Owing to the much smaller weight 

parameters of C-BDC compared with BDC, MEA-FPN 

shows suitability for edge multi-modal CiM. MEA-FPN also 

achieves more than 3% mAP improvement during both day 

and night with only 0.3% parameter overhead compared 

with FPN fusion (Table IV). MEA-FPN also achieves 76% 

parameter reduction compared with A-FPN, while keeping 

mAP reduction to <2.3%. The function of C-BDC, i.e. the 

ability to extract important features and transport one 

modality feature to the other, plays an important role in mAP 

improvement during both day and night. Moreover, the 

proposed C-BDC is suitable for area-limited edge CiM due 

to the much smaller weight parameters compared with 

conventional BDC. 

 The proposed MEA-FPN achieves both better mAP and 

fewer parameters than FPN fusion with the ResNet-101 
Table III  AP comparison between input preprocessing 

 

   

     

     

   

   

        

      

        

         

      

       

      

         

      

                                

           

             

                                      

                                 

             

       

      

                                   

                                      

                                     

 
Fig. 4  The model architecture of (a) early fusion and (b) RGB only 

model. 
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backbone. Extracting important information from RGB and 

event features by the proposed C-BDC can achieve better 

mAP with fewer weight parameters and calculations 

compared with simply making the feature extraction module 

deeper. Therefore, C-BDC is necessary for accurate object 

detection at edge multi-modal CiM, where circuit area and 

memory capacity are limited. 

 Early fusion shows better mAP improvement during the 

night (+3.6%) than daytime (+0.5%) (Table IV). The high 

dynamic range of the event camera leads to mAP 

improvement especially during the night. On the other hand, 

RGB only model achieves higher AP than early fusion in 

detecting cars during the day (Fig. 5(a)). Even when event 

data is not effective for detection (e.g., when objects to be 

detected are hidden by other objects), event features are not 

suppressed in early fusion, which leads to mAP degradation. 

Therefore, it is important not only to add the sensors together, 

but also to extract important features and suppress 

unimportant ones with the middle-fusion architecture and C-

BDC in MEA-FPN for better multi-modal RGB-event 

fusion during both day and night. 

   

4.5  Effectiveness of cross SA and cross CA 

 

To better understand the impact of the cross-attention 

modules (Fig. 3 (a)) on multi-modal object detection 

accuracy, Aps are compared among MEA-FPN, MEA-FPN 

without cross CA, MEA-FPN without cross SA and FPN 

fusion (Fig. 6). Both MEA-FPN without cross SA and 

without cross CA achieve higher AP than FPN fusion, but 

lower AP than MEA-FPN during both day and night. It is 

necessary to extract important features in both spatial and 

channel dimensions with attentional fusion to achieve high 

AP during both day and night. 

5. Methodology and Evaluation of Proposed LQC 

To implement multi-modal AI on edge analog CiM, area, 

energy and memory capacity are required to be small. 

However, there is a trade-off between accuracy and 

area/energy/memory capacity due to the bit-resolution of 

weights and activations is a major limitation in analog CiM.  

To achieve the area/energy reduction while maintaining 

mAP, low-bit quantization with clipping (LQC) is proposed. 

The novelty of proposed LQC is below: First, the 

appropriate weight clipping is investigated with 

consideration of the zero-centered symmetrical 

characteristics of differential pairs in CiM. Second, to 

pursue low-bit quantization while maintaining mAP, weight 

bit-precision sensitivity of each module in MEA-FPN (Fig. 

1) is investigated. Third, in contrast to [28], the quantization 

for both inputs and outputs is conducted to take DAC/ADC 

into account. 

 To determine the clipping range in LQC, the appropriate 

clipping range for weights and activations is investigated 

respectively (Fig. 1). Note that quantization and clipping of 

“activation” in this paper means those of both inputs and 

outputs, as described above. Then, bit-precision sensitivity 

against weights and activation quantization under the 

appropriate clipping are compared among models. In 

addition, to pursue low-bit quantization while maintaining 

mAP, the weight bit-precision sensitivity of each module in 

MEA-FPN (Fig. 1) is investigated. From these experiments, 

the appropriate LQC configuration for the proposed REM-

CiM is determined. Moreover, the error-tolerance of 

proposed and conventional models is investigated by 

injecting write variation and data retention errors of analog 

CiM for weights (Fig. 8). Finally, the performance of REM-

CiM, with MEA-FPN and LQC, is compared with other 

CiMs without LQC method. 

 

5.1  Configuration of proposed REM-CiM 

 

Fig. 7 shows the typical weight bit-representation with 

memory cells, the mapping method of convolution weights, 

and the representation of weight values in our proposed 

REM-CiM.  

Fig. 7(a) and Fig. 7(b) show bit-parallel weight 

representation and bit-serial weight representation 

respectively [36, 37]. In these weight representation 

 
Fig. 6  AP comparison to verify the effectiveness of cross CA and cross 

SA. (a) AP of car. (b) AP of pedestrian. 
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Table IV  Comparison of the number of weight parameters, MACs, and 

mAP during day and night 
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Fig. 5  Comparison about AP of (a) car and (b) pedestrian during day 

and night among models. 
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methods, weight values are represented by multiple 1-bit 

memory cells to avoid errors due to the limited signal 

margins and the device variations of MLC. On the other 

hand, it is assumed that each memory cell in the proposed 

CiM can represent the weight values with analog 

conductance and only one memory cell is used for 

representing weight value, with reference to [18, 38]. 

Therefore, the proposed CiM stores weights in its analog 

conductance without bit-serial or bit-parallel method, shown 

in Fig. 7(a) or (b). 

𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡 , 𝐾 represents the size of input channels, the size of 

output channels, and kernel size respectively. As shown in 

Fig. 7(c), each 𝐶𝑖𝑛 weights in one kernel are mapped in one 

column, and the convolution weights at the same place of 

each kernel are mapped in one array, referring to [39]. 

 Fig. 7(d) shows each weight cell in the CiM array. Each 

weight of neural network is represented by a differential pair 

and the value of weight is represented as the difference of 

analog conductance: 𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

− . Therefore, two memory 

cells are required to represent one weight value. Note that 

each memory cell retains analog conductance and 

positive/negative weight value is represented with a single 

cell respectively. Fig. 7 (c) shows the cumulative probability 

of ReRAM cell current [31]. 

 The weight and activation quantization step is determined 

by peak-to-peak method after clipping (Fig. 8(a)) [38]. As 

weight is represented by differential pair, the weights are 

quantized symmetrically around zero. 

 Write variation is reproduced by adding Gaussian errors 

with standard deviation σ to weights (Fig. 8(b)). 

Conductance shift is reproduced by adding a constant value 

to weights (Fig. 8(c)). Write-verify operation [18] is 

assumed to performed when writing weights. The baseline 

of mAP is set to 0.460 in each experiment, which is 1.5% 

lower than mAP achieved by MEA-FPN with 32-bit 

precision. The experiment of write variation is conducted 

with the assumption that the write variation errors injected 

into weights include the impact of non-linearity. Regarding 

the tolerance against ADC errors, the report about ADC 

noise in [38] is referenced. In [38], 𝜎𝐴𝐷𝐶  is introduced as 

the parameter representing ADC noise, and the differential 

non-linearity (DNL) of each output code follows normal 

distribution N(1.0 [LSB], 𝜎ADC [LSB]). Considering 4-bit 

activation in CiM, 0.4 𝜎ADC  of ADC non-linearity is 

tolerated. This indicates that DNL with an average of 0.5 

[LSB] and integrated non-linearity (INL) with an average of 

1.0 [LSB] are tolerated respectively. With this consideration, 

it is assumed that the influence of ADC non-linearity is less 

than that of weight variation errors. 

 

5.2  Appropriate clipping range of weight & activation 

 

To achieve weight & activation low-bit quantization while 

maintaining mAP, the appropriate clipping range for the 

proposed MEA-FPN is investigated (Fig. 9). By setting the 

clipping range to 3σ, weight bit-precision sensitivity 

improves from 5-bit to 4-bit (Fig. 9 (a)). On the other hand, 

the activation clipping range needs to be relatively wide (Fig. 

9(b)). With 12σ clipping, activation bit-precision sensitivity 

improves from 8-bit to 6-bit.In MEA-FPN, the outputs of C-

BDC become large (Fig. 10(a)) due to the instability of 

cross-calibration mechanisms in cross SA and cross CA. In 

particular, the outliers become much larger than other values, 

which leads to serious degradation of bit-precision 

sensitivity. These observations indicate the importance of 

appropriate activation clipping in MEA-FPN. From these 

results, 3σ and 12σ are determined as the appropriate 

clipping range for weights and activation respectively. 

 
Fig. 8  (a) Histogram of weight values with clipping and quantization. 

(b) Gaussian error and (c) shift error applied to clipped and quantized 

weight. 

 
  
 
 
 
 
 
 

     

  

 
  
 
 
 
 
 
 

     

 
  
 
 
 
 
 
 

     
   

               

         

 
Fig. 7 (a) Bit-parallel weight cell and (b) bit-serial weight cell intypical 

CiM array. (c) Mapping of convolution layer to CiM. (d) Memory cell 

assumed in this paper. (e) Cumulative probability of ReRAM cell current 

[31]. 
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5.3  Appropriate bit-precision of weight & activation for 

low-bit quantization 

 

To compare the impact of RGB-event fusion and the 

proposed C-BDC on AP degradation in low-bit quantization, 

bit-precision sensitivity of weights (Fig. 11(a)) and 

activation (Fig. 11(b)) is compared among 3 models: MEA-

FPN, FPN fusion and RGB only model. Based on the results 

in section 5.1, 3σ clipping is adopted to weights, and 12σ 

clipping is adopted to activations. With the appropriate 

weight & activation clipping, the proposed MEA-FPN can 

maintain higher mAP with 4-bit and 6-bit quantization for 

weights and activations respectively. 

To reduce CiM memory cells while maintaining mAP, the 

weight bit-precision sensitivity of each module is also 

investigated (Fig. 12). The RGB module is a little less 

tolerant to low-bit quantization compared with others. To 

avoid wasting the rich RGB information, high bit-resolution 

is required for RGB-feature extraction. For maintaining 

mAP when weights of all modules are low-bit quantized, the 

bit-precision of WRGB is determined as 5-bit in the proposed 

LQC. 

 

5.4  Comparison of error-tolerance among models 

 

To compare the impact of RGB-event fusion and the 

proposed C-BDC on the tolerance against write variation 

and data retention error of analog CiM, the error-tolerance 

of weights are compared among 3 models (Fig. 13). In this 

experiment, weights are quantized to 8-bit with 3σ clipping, 

to ensure that quantization do not affect the mAP 

degradation and to investigate the mAP degradation driven 

by NVM errors precisely. The unit of error size “n.s.” stands 

for normalized step, meaning the relative size to weights 

normalized between -1 and 1. In Fig. 8(a), only the error of 

write variation is injected to models. In Fig. 8(b), only the 

error of conductance shift is injected to models. The results 

show that MEA-FPN tolerates up to 0.03 [n.s.] gaussian 

error and 0.002 [n.s.] shift error respectively. In other words, 

to maintain high mAP, gaussian errors should be less than 

0.03 [n.s.] and shift error should be less than 0.002 [n.s.]. 

As reported in [18], the write variation of ReRAM is 0.59 

µA and the range of conductance is 30µA when the write-

verify operation is performed. From this result, the 

normalized write variation of each ReRAM cell is supposed 

to be about 0.02 [n.s.]. [38] shows that the variation of the 

differential pair when the write-verify operation is 

performed is supposed to be around 0.03 [n.s.]. With this 

consideration, it can be said that the proposed MEA-FPN 

tolerates write variation if the write-verify operation is 

performed. 

Under these errors, MEA-FPN maintains higher mAP than 

the other models. 

 

5.5  LQC impact on mAP and CiM performance 

 

From the results in this chapter, the appropriate 

configuration of LQC for MEA-FPN is determined. 3σ and 

12σ clipping is adopted for weights and activations 

respectively. As for weights, WRGB is quantized to 5-bit and 

others are quantized to 4-bit. As for activations, 6-bit 

quantization is adopted uniformly. 

 Table V shows the comparison of each model CiM without 

LQC and the proposed REM-CiM with MEA-FPN and LQC. 

The mAPs with write variation are compared considering 

mapping to analog CiM. The mAPs with write variation & 

data retention error are also compared considering the case 

where time has passed since the mapping. Let 

𝑜𝑐𝑠, ℎ𝑤𝑖𝑓, 𝑖𝑜𝑏  and 𝑘𝑠  represent the output channel size, 

the product of height and width of input feature, activation 

bit, and kernel size, respectively, in each matrix operation. It 

is assumed that every 8 columns are shared in one ADC and 

weights at different spatial locations of each kernel are 

mapped to different sub-matrices, referring to [39]. ADC 

 
Fig. 12  Weight bit-precision sensitivity of each module in proposed 

MEA-FPN. 

 
 
 

   

    

   

      

      

     

      

   

          

                          

        

 
Fig. 11  Comparison of bit-precision sensitivity against (a) weight 

quantization and (b) activation quantization. 

 

   

   

   

      

                                    

 

   

   

   

      

 
 
 

 
 
 

                 

      

              

          
                

       

                

 
Fig.9  Bit-precision sensitivity of MEA-FPN with various clipping range 

of (a) weight and (b) activation. 

 

   

   

   

       
 

   

   

   

      

                      

                       

          

 
 
 

       

 
 
 

            

      

   
      

                

 
Fig. 10  Input histogram of FPN module in (a) proposed MEA-FPN 

fusion and (b) conventional FPN fusion. 
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area/energy are assumed to be proportional to the activation 

bit-precision, referring to [26]. From these assumptions, the 

relative ADC area/energy is calculated with the following 

equations: 

𝐴𝑟𝑒𝑎 ∝ ∑𝑜𝑐𝑠 ⋅ 𝑖𝑜𝑏 ⋅ 𝑘𝑠2 (1) 

𝐸𝑛𝑒𝑟𝑔𝑦 ∝ ∑𝑜𝑐𝑠 ⋅ ℎ𝑤𝑖𝑓 ⋅ 𝑖𝑜𝑏 ⋅ 𝑘𝑠2 (2) 

The proposed REM-CiM achieves a 25% reduction of ADC 

area/energy compared with MEA-FPN CiM without LQC. 

When write variation error is added considering mapping on 

analog CiM, REM-CiM keeps the mAP reduction to <2.8% 

compared with MEA-FPN CiM without LQC. A-FPN CiM 

achieves the best mAP for all error patterns, however, 

requires the most memory cells (>500Mb) and ADC 

area/energy. Therefore, it is difficult to implement A-FPN on 

edge CiM and A-FPN CiM is not suitable for edge usage. 

On the other hand, REM-CiM achieves the memory capacity 

around 130Mb, which is compatible with current memory 

capacity limitation at edge (<100Mb). Considering the rapid 

evolution of the technology of NVM integration [16], the 

capacity of embedded eNVM will become larger in the same 

way as the capacity of standalone NVM. Therefore, it can be 

said that the implementation of the proposed REM-CiM is 

feasible even though the capacity of REM-CiM is a little 

bigger than the current target of 100Mb.  

REM-CiM also achieves almost the same memory cells, 

19% less ADC area, 24% less ADC energy and 0.7% higher 

mAP than FPN fusion CiM without LQC, as the arrows in 

Table V indicate. By co-designing area/energy- efficient 

algorithm and implementation method of analog CiM, both 

higher mAP and less area/energy computational resource 

than conventional method are achieved and implementation 

of accurate multi-modal AI on edge CiM is realized. The 

higher mAP of REM-CiM is also maintained when data 

retention error is also added. This result shows that REM-

CiM maintain higher mAP even after time has elapsed. 

6. Conclusion 

In this paper, REM-CiM: RGB-Event fusion Multi-modal 

CiM is proposed for multi-modal edge object detection 

during both day and night. In REM-CiM, multi-modal 

algorithms and circuit implementation are co-designed to 

realize multi-modal AI on edge analog CiM under the 

memory capacity limitation. First, memory capacity-

reduced RGB-event fusion model architecture, MEA-FPN, 

is proposed with C-BDC. C-BDC reduces the number of 

weight parameters by removing large convolution 

operations, which leads to memory capacity reduction. 

MEA-FPN achieves a 76% reduction of parameters 

compared with A-FPN while keeping mAP degradation to 

<2.3% during both day and night. Second, low-bit 

quantization with clipping (LQC) is proposed. In LQC, the 

appropriate clipping range of weight and activation for low-

bit quantization is explored. By co-designing algorithms and 

analog CiM implementation with MEA-FPN and LQC, 

multi-modal AI on edge CiM is realized. REM-CiM 

achieves almost the same memory cells, 21% less ADC area, 

24% less ADC energy, and 0.7% higher mAP compared with 

 
Fig. 13  Comparison of error-tolerance when (a) gaussian or (b) shift 

errors are injected to each model. 

 

   

   

   

               

 
 
 

                                              

                                   

      

 

   

   

   

                   

 
 
 

              

                      

          

                

              

                      

          

Table V  Comparison between CiMs of each model 
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FPN fusion CiM without LQC. 
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