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SUMMARY In this work, fluctuation patterns of ReRAM current are 

classified automatically by proposed fluctuation pattern classifier (FPC). 

FPC is trained with artificially created dataset to overcome the difficulties 

of measured current signals, including the annotation cost and imbalanced 

data amount. Using FPC, fluctuation occurrence under different write 

conditions is analyzed for both HRS and LRS current. Based on the 

measurement and classification results, physical models of fluctuations are 

established.  

key words: ReRAM, Computation-in-Memory (CiM), Fluctuation, RTN, 

Oxygen Vacancy. 

1. Introduction 

In recent years, conventional Neumann-type computer 

architecture faces issues of energy consumption and large 

latency by transporting data from memory to the processor. 

To tackle this problem, Computation-in-Memory (CiM) has 

been proposed [1-16]. It computes multiply-accumulate 

(MAC) operations in memory array without data 

transportation.  

As a memory of CiM, several types of memories have been 

considered, i.e., static random access memory (SRAM) [1], 

resistive RAM (ReRAM) [2-12], phase change memory 

(PCM) [13], and ferroelectric field effect transistor (FeFET) 

[14-15]. Although volatile memory-based CiM has 

advantages in some points such as low error rate and process 

cost, non-volatile memory-based CiM (nvCiM) is a good 

option for edge application because of its analog 

characteristics and energy-efficiency. Especially, ReRAM 

CiM has been studied for its small cell area, CMOS 

compatibility and so on.  

Because the MAC operation is a main computational 

operation in neural network, CiM is also used as an 

accelerator for simulated annealing [9] and 

hyperdimensional computing [15], but its application with 

respect to neural networks is well studied especially. To 

implement neural network on ReRAM CiM, its weights are 

mapped as the conductance of ReRAM cells. Thus, memory 

non-idealities, including write variation and read-disturb 

[17] are the large issues in ReRAM CiM [16]. In addition, 

ReRAM has been suffered from its conductance fluctuation 

[2-7, 18-26]. The main fluctuation pattern has been 

considered the random telegraph noise (RTN) 

conventionally, but there are still other fluctuation patterns 

are reported [2, 18-22, 26]. G. González-Cordero et al. 

(2021) adopted self-organization map (SOM) to fluctuating 

signal analysis [26], but it does not work properly on our 

measured signals. In addition, such unsupervised method 

requires the interpretation of the obtained results.  

In this work, the fluctuation patterns of ReRAM are 

investigated in both high resistance state (HRS) and low 

resistance state (LRS). To analyze complicated fluctuation 

patterns automatically, fluctuation pattern classifier (FPC) is 

constructed. FPC is trained on artificial dataset [2]. 

The achievements of this work are as follows: 

• In section 2, characteristics of ReRAM readout current 

is presented and the impact of conductance fluctuation 

on CiM-based neural network accelerator is 

investigated. 

• In section 3, CNN-based Fluctuation Pattern Classifier 

(FPC) is trained with artificial dataset, created by 

Markov model-based Synthetic Data Generator (MM-

SDG). Moreover, FPC trained on artificial data is 

applied to measured signals, and Fluctuation Reduction 

Write (FRW) is proposed based on the results obtained 
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Fig. 1 Overview of this work. Proposed fluctuation pattern classifier 

(FPC) is trained on artificial training dataset, created by Markov 

model-based synthetic data generator (MM-SDG) under assumed 

parameters. Trained FPC is applied to measured fluctuating signals and 

it detects fluctuations and classify their patterns. 
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by FPC. 

• In section 4, physical models of ReRAM fluctuation for 

both HRS and LRS are established based on the 

observation. Differences between the characteristics of 

fluctuation occurrence under different 

endurance/verification conditions are explained by the 

physical models. 

 

2. Resistive Random Access Memory (ReRAM) 

2.1 Principle 

Resistive Random Access Memory (ReRAM) is one of the 

non-volatile memories. Structure of TaOX-based ReRAM 

and its switching model is shown in Fig. 2(a). Each ReRAM 

cell has a layered metal-insulator-metal structure, and stores 

information according to the resistance of the insulator part.  

According to the hopping percolation model, which is 

usually used to explain ReRAM conduction [27-30], 

electrons conduct in the form of moving from one hopping 

site to another in an insulator layer. Hopping sites are due to 

Oxygen vacancies (VO). Hence, the resistance of ReRAM 

cell is controlled by applying voltage externally. As shown 

in Fig. 2(a), set voltage (VSET) ejects oxygen ions (O2-) from 

the Ta2O5 layer to the reservoir layer (TaOX) and then the 

cell becomes low resistance state (LRS). In the contrary, 

oxygen ions move from reservoir layer to Ta2O5 by reset 

voltage (VRESET) and the cell becomes high resistance state 

(HRS). Read voltage (VREAD) is applied as well as set and 

reset, but the voltage is low compared with set and reset 

voltage and thus the resistance does not change largely. 

Fig. 2(b) shows the measured current distribution of 1K cells 

at room temperature. The current distributions are divided 

between HRS and LRS, and the LRS current value increases 

with increasing number of endurance (set/reset) cycles. 

2.2 Fluctuation 

Despite the low voltage, the actual observed current value 

varies with the readout. For ReRAM, this is mainly 

considered to be caused by random telegraph noise (RTN). 

Conventionally, RTN is explained as the discrete current 

level change by the electron trapping/de-trapping to a trap 

site. However, a number of patterns are observed in the 

changes of measured current value that are different from 

the discrete changes between several levels, such as RTN, 

and these cannot be explained by the simple RTN model.  

2.3 Impact of fluctuation on ReRAM CiM 

Several research studies have reported that the RTN has 

significant impact on the inference accuracy of ReRAM 

CiM-based neural network accelerator [3-7]. In these works, 

RTN is simulated by physical parameters or sampled from 

measured distributions. 

In this work, a 3-layer multilayer perceptron (MLP) in Fig. 

4(a) is used to estimate the impact of fluctuations on 

ReRAM CiM-based neural network accelerator. The 

number of nodes in the hidden layer is 100. MNIST dataset 

is used to train/test the MLP. Weight and input/output 

quantization are 4-bit. Each weight of the MLP is 

Fig. 2 (a) Structure and switching model of TaOx-based ReRAM. Set 

and Reset voltage moves Oxygen ions and the resistance of conductive 

filament (CF) changes (© 2023 IEEE [2]). (b) Measured current 

distribution under 100, 1000, and 10000 endurance cycles.  
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Fig. 3 Measured ReRAM current series. 5 patterns (#1-#5) of 

fluctuation and #0 (‘no fluctuation’) are assumed in this work (© 2023 

IEEE [2]). 
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represented by a pair of ReRAM cells, as shown in Fig. 4(b).  

Because the fluctuation patterns considered in this study are 

not confined to the RTN, simplified fluctuation model with 

two-level is introduced in the simulation of the MLP. Instead, 

the probability and magnitude of these fluctuations are 

adjusted arbitrarily to represent general fluctuations. This 

simplified fluctuation model, depicted in Fig. 4(c), 

introduces two key parameters: fluctuation probability p and 

fluctuation amplitude . Moreover, the fluctuation direction 

is varied, including (i) increase, (ii) decrease, and (iii) both 

directions. The proportion of weight changes is defined as 

the fluctuation probability p, and the magnitude of weight 

change is determined by the fluctuation amplitude .  is 

normalized by the quantization step (q.s.). When the 

fluctuation direction is (i) increase or (ii) decrease, the 

conductances of ReRAM cells either increase or decrease by 

 with a probability of p. In case of (iii) both directions, the 

conductances of ReRAM cells both increase and decrease 

by  with a probability of p/2 in each direction.  

Figs. 2(d) and 2(e) show the degradation in inference 

accuracy resulting from the simplified fluctuation model. 

Both an increase in fluctuation probability p and an increase 

in amplitude  lead to reduced accuracy. When the 

fluctuation direction is (ii) decrease, with parameters set at 

p=0.7 and =1.0 q.s., the inference accuracy decreases by 

16.6% on average.  

Since the weights are represented by a pair of HRS and LRS 

cells (or 2 HRS cells if the weight value is 0) in the assumed 

two-cell differential pair weight mapping scheme, more than 

half of ReRAM cells are set to HRS. In addition, the weights 

of a neural network are basically sparse matrices, the 

number of HRS cells is overwhelmingly large. Therefore, it 

is important to control the conductance of the HRS as well 

as the LRS, which represents the absolute value of the 

weights.  

3. Fluctuation Pattern Classifier 

3.1 Fluctuation Pattern Classifier (FPC) 

As depicted in Fig. 3, the measured signals exhibit various 

fluctuation patterns, even when originating from the same 

ReRAM cell. Additionally, to use these signals as training 

dataset for supervised learning, they pose challenges for 

annotation. Even in cases where annotation is feasible, it 

may involve an unequal distribution of data, such as an 

overabundance of pattern #0 compared to others, making 

accurate learning difficult. Consequently, supervised 

learning with the measured signals is not a suitable approach 

for this application. Alternatively, unsupervised learning is a 

viable method, but it necessitates the interpretation of results. 

In this study, a solution is presented to classify ReRAM 

fluctuation patterns without the need for interpretation. This 

solution converts time-series current data into 2D images 

and classify them with a Convolutional Neural Network 

(CNN)-based Fluctuation Pattern Classifier (FPC). FPC is 

trained with a synthetic dataset through supervised learning.  
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Fig. 5 (a) Proposed Markov model-based Synthetic Data Generator 

(MM-SDG). Synthesized signal ISDG is obtained by updating IINTERNAL 

and observing the state of Markov model for 100 cycles. State 

transition between 2 state (L0, L1) random walk happens with 

probabilities in Table I. (b) A sample of measured current signals with 

2 levels (L0, L1). (c) Converted WL3TLP with MM (M=100) pixels 

[24]. Clusters on diagonal represent no transition and others represent 

level transitions. (© 2023 IEEE [2]) 
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Fig. 4 (a) 3-layer multilayer perceptron (MLP) model used to 

investigate the impact of fluctuation. (b) ReRAM CiM architecture. (c) 

Simplified fluctuation model with fluctuation probability p and 

amplitude Δ. Impact of fluctuation with (d) probability p under Δ=1.0 

q.s. and (e) amplitude Δ under p=0.7. (© 2023 IEEE [2]) 
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3.2 MM-SGD configuration for LRS and HRS 

The datasets used for training and testing the FPC are 

generated artificially using the proposed Markov model-

based Synthetic Data Generator (MM-SDG, Fig. 5(a)). MM-

SDG has an internal Markov model, where state transits 

following probabilities (p00, p01, p10, p11). The Markov model 

is assumed to consist of two states, denoted as L0 and L1, 

which correspond to the observed current ICELL and 

transitions between these two levels, as shown in Fig. 5(b). 

Each dataset consists of a sequence of synthesized current 

values (ISDG) derived from 100 updates of the Markov model 

within MM-SDG. During the dataset creation process, 

parameters such as transition probabilities, amplitude (IAMP), 

and properties of random walks (mean and distribution, 

denoted as  and  respectively) are defined, and initial 

setting for IINTERNAL in MM-SDG is set to 0. IAMP is selected 

randomly from a uniform distribution in the range [1.0, 5.0). 

Additionally, the Markov model's state is initially set to L0. 

Under these conditions, if the state of the Markov model 

transitions from LSi to LSi+1 (where Si and Si+1 are either 0 

or 1) during simulation cycle i to i+1, the value of 

IINTERNAL(i+1) is determined using the following Equation 

(1): 

 

(1) 

where X is a randomly sampled value from a Gaussian 

distribution N(, 2), if  is not 0. 

Artificial current signal ISDG is obtained by the following 

equation (2) based on IINTERNAL:  

(2) 

where X’ is a randomly chosen value from a Gaussian 

distribution to account for fluctuations of sufficiently small 

amplitude. 

This work categorizes fluctuations into five distinct patterns, 

denoted as #1-#5, along with a “no fluctuation” category 

represented as #0, as depicted in Fig. 2. To achieve accurate 

classification, the Fluctuation Pattern Classifier (FPC) is 

individually trained for both the HRS (HRS model) and LRS 

(LRS model). Parameters for the MM-SDG for both the 

HRS and LRS models are listed in Table 1. While 

parameters #0-#3 are shared between these models, 

parameters for #4 and #5 differ. A sample of each pattern for 

the artificial current signal ISDG for the HRS model is shown 

in Fig. 6. Fluctuations #1 and #2 exhibit spikes within their 

respective current sequences, with #2 having a greater 

number of spikes due to higher transition probabilities (p01 

and p10). Fluctuation #3 emulates electron Random 

Telegraph Noise (e-RTN) with p01=p10=0.1. Discrete and 

continuous shifts in ISDG are assumed for fluctuation 

patterns #4 and #5, respectively. Note that, if no state 

transition occurs in 100 simulation cycles, ISDG data is not 

included in the generated dataset for patterns #1-#4. 

To train (test) FPC, MM-SDG creates the training (test) 

dataset with 24,000 (2,400) fluctuation data in total, 2,000 

(200) fluctuation data and their sign-reversed data for each 

pattern.  

3.3 Preprocessing 

Because measured ICELL and generated ISGD signals are time-

series data, they are required to be transformed into 2D 

images to input to the CNN-based FPC. There exist some 

techniques for converting signals into 2D images, with one 

example being the Time-lag plot (TLP). 

TLP essentially forms a scatter plot based on pairs of data 

points, (I(i), I(i+1)). To address noisy signals, an extended 

variant called Weighted TLP (WTLP) has been introduced 

[23]. However, it's worth noting that WTLP demands 

substantial computational resources. To achieving both 

noise robustness and reduced computational complexity 

compared to WTLP, a method known as Locally Weighted 

TLP (LWTLP) was proposed. Especially, WL3TLP 

Table 1 Parameters of MM-SDG used in Fig. 5(a) 

Tran.#

--1.00.00.01.00H/L

--0.500.500.010.991H/L

--0.050.950.250.752H/L

--0.900.100.100.903H/L

--0.990.010.010.994H

--1.00.00.010.994L

0.00.05-0.101.00.00.01.05H

=00.020.15-0.201.00.00.01.05L

#0 #1 #2No fluctuation Spike Recurring spikes

#3 #4 #5e-RTN Discrete shift Continuous shift

Artificial Artificial Artificial

Artificial Artificial Artificial

© 2023 IEEE. Reprinted, with permission, from IEEE Proceedings.

Fig. 6 Samples of each pattern of artificial current signals ISDG and 

corresponding WL3TLP obtained from MM-SDG with HRS 

parameters (© 2023 IEEE [2]).  

𝐼INTERNALሺi + 1ሻ 
= 𝐼INTERNALሺiሻ + ሺ𝑆i+1 − 𝑆iሻ𝐼AMP + 𝑋 

𝐼SDGሺiሻ = 𝐼INTERNALሺiሻ + 𝑋′ 
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represents a special case of LWTLP [24]. In this work, a 

WL3TLP with a grid of M×M pixels (M=100), is adopted 

for converting sequences of ICELL or ISGD into images. As 

seen in Figs. 5(b) and 5(c), a WL3TLP applied to a series of 

current signals featuring two distinct levels exhibits two 

clusters along the diagonal of the WL3TLP plot. These 

clusters correspond to the current levels, as the diagonal 

segments indicate the absence of transitions between current 

levels (I(i)=I(i+1)), while other clusters signify level 

transitions. 

To prevent the CNN-based FPC from making 

determinations based on the position of the current levels in 

the WL3TLP, namely the absolute current values, the mean 

of the current series (denoted as 〈I〉) is subtracted when 

converting to WL3TLP. The range of the WL3TLP is set 

within -5 uA (a.u.) to +5 uA (a.u.) for ICELL (ISGD). A sample 

of each assumed fluctuation pattern generated through MM-

SDG and its corresponding WL3TLP representation is 

illustrated in Fig. 6.  

FPCs (named as HRS and LRS models) achieved prediction 

accuracies of 93.0% and 97.0% on the HRS and LRS test 

datasets, respectively. The confusion matrices detailing the 

FPC's performance on the test dataset can be found in Figs. 

7(a) and 7(b). 

3.4 Application to measured data 

Fig. 8(a) (8(b)) shows the prediction outcomes of the CNN-

based FPC for measured HRS (LRS) current signals 

featuring various fluctuation patterns. These predictions 

were made using the FPC trained on artificially created 

datasets. Fluctuation predictions are performed on segments 

consisting of 100 read cycles, and the FPCs offer reasonable 

predictions even for the measured current data.  

Furthermore, the FPCs are applied to classify measured 

signals under various Verify/Endurance conditions before 

read cycles. For each condition, measurements and analyses 

were conducted on 1K cells. Fig. 9 illustrates the number of 

cells predicted for each fluctuation pattern under the 

following conditions: VSET=2.7V, VRESET=2.0V, 

Endurance=100, w/o Verify. VREAD during read cycles is set 

to 0.4V. 

In this case, fluctuation patterns #4 and #5 are the primary 

factors causing fluctuation. The fluctuation rate (FR), which 

represents the proportion of cells predicted to exhibit 

fluctuations at least once within 500 read cycles 

immediately after the conventional write, stands at 41.8% 

(Fig. 9, left) but decreases to 10.7% (Fig. 9, right) after 500 

pre-read cycles. Here, because fluctuation pattern #1 has 

limited impact on the ReRAM CiM-based neural network 

accelerator due to the rapid return of the current to the 

dominant value after a fluctuation, patterns #4 and #5 

assume greater significance. Note that, the cells shown in 

Figs. 3 and 8 represent samples with different fluctuation 

patterns within the same cell readout and do not indicate an 

overall trend of fluctuation occurrence. 

Fig. 10 shows the number of cells predicted to be fluctuated 

as each pattern under varying Verify/Endurance conditions 

before read cycles for HRS current. The number of 

maximum Verify cycles ranges from 0 (no Verify) to 10 and 

100, with Endurance cycles fixed at 100 (upper part of Fig. 

10). Additionally, the number of Endurance cycles varies 

from 100, 1000, to 10000, without Verify (lower part of Fig. 

10). Voltage conditions remain consistent with those in Fig. 

9. 

The occurrence of fluctuation patterns #4 and #5 diminishes 

as the number of Endurance cycles before read cycles 

increases. Note that, the number of Verify cycles does not 

appear to significantly impact the occurrence of fluctuations. 

Fig. 11 shows the number of cells predicted to be fluctuating 

under different conditions for LRS current. The dominant 

fluctuation pattern is #5 (continuous shift). Fluctuation 

Fig. 7 Confusion matrix for the FPC on synthetic test dataset. (a) HRS 

model achieves 93.0% (© 2023 IEEE [2]) and (b) LRS model achieves 

97.0% accuracy in total. 

(a) HRS model (b) LRS model

Fig. 8 Results of CNN-based FPC trained on synthetic data applied to the measured current signals ICELL of 3 cells for (a) HRS and (b) LRS. Each color 

corresponds to samples in Fig. 2. Prediction is successfully achieved for each section of 100 read cycles. In all graphs in Figure 8, the range of the current 

on the vertical axis is aligned at 0.5 a.u.. Note that these cells are the samples of those containing different fluctuation patterns in the same cell readout 

and do not represent an overall trend of declining the fluctuation occurrence shown in Fig. 9. 
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occurrence decreases as the cycles increases as well as HRS 

current. In addition, Verify and higher endurance also 

improves fluctuation occurrence. Unlike HRS current, LRS 

fluctuation improves by Verify, but high-Endurance is more 

remarkable compared with Verify.  

Hence, Fluctuation Reduction Write (FRW) to reduce 

fluctuation occurrence is introduced based on the 

observation, involving a combination of high-Endurance 

and extended pre-read cycles. The protocol for FRW can be 

found in Fig. 12.  

Fluctuations degrades inference accuracy when they occur 

during the inference phase of the ReRAM CiM-based neural 

network accelerator. By implementing a higher number of 

endurance cycles and incorporating the early phase of 

readout (pre-read), which is susceptible to fluctuations, into 

the write operation, the impact of fluctuations on the neural 

network, along with the fluctuation rate, can be significantly 

reduced. If necessary, Verify operations can also be 

performed.  

Table 2 provides insights into the fluctuation rate (FR) under 

various combinations of Endurance and pre-read cycle 

conditions. For HRS current, adopting high-Endurance 

(10000) or extending pre-read cycles (500) alone reduces the 

fluctuation rate by 11.5 points and 31.1 points, respectively. 

The lowest fluctuation rate is achieved when both high-

Endurance and long pre-read cycles (FRW) are employed, 

resulting in a 35.2 points reduction in ReRAM fluctuation 

rate.  

For LRS current, 67.4 points and 37.9 points improvement 

in fluctuation rate is achieved by high-endurance and long 

pre-read. FRW improves fluctuation rate by 74.7 points.  

Fig. 10 Number of cells predicted as fluctuating with different Verify (upper) and Endurance (lower) before read cycles for HRS current. Dominant 

fluctuation patterns are #1, #4 and #5. By increasing read cycles, occurrence of fluctuation patterns #4 and #5 decrease (© 2023 IEEE [2]). 
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© 2023 IEEE. Reprinted, with permission, from IEEE Proceedings.

Fig. 9 Number of cells predicted to be fluctuating. Fluctuation rate 

reduces to 10.7% with 500 pre-read cycles. 1K cells are measured with 

VSET=2.7V, VRESET =2.0V, VREAD =0.4V (© 2023 IEEE [2]). 
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Fig. 11 Number of cells predicted as fluctuating with different Verify (upper) and Endurance (lower) before read cycles for LRS current. Dominant 

fluctuation pattern is #5. By increasing read cycles, occurrence of fluctuation patterns #5 decrease. 
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If Endurance cycles increased more, the fluctuation rate 

could be reduced further. However, because ultra-high 

Endurance cycles (e.g. 105 or 106) will increase bit-error rate 

[9], 104 is selected as Endurance of FRW in this work. 

4. Physical model 

Figs. 13(a) and (b) show the physical models for HRS and 

LRS, respectively. In fluctuation patterns #1, #2, and #3, 

electron trapping (de-trapping) at hopping sites (Oxygen 

vacancy, VO) leads to the disconnection (connection) of 

percolation paths with varying capture/emission time 

constants for the trap sites (Figs. 13(a1) and 13(b1)). This 

model aligns with the conventional Random Telegraph 

Noise (RTN) model. 

Fluctuation #4 is a result of O2- ion trapping/de-trapping at 

the VO, although the number of remaining O2- ions decreases 

with an increase in read cycles due to the bonding between 

O2- ions and VO. In these fluctuation patterns, percolation 

paths are either connected or disconnected, leading to 

discrete current levels determined by the state of the 

percolation paths.  

Continuous current shifts (fluctuation #5) are brought about 

by the deformation of the lattice structure of β-Ta2O5 (see 

Fig. 13(c)) [31, 32]. Set/Reset voltages strain the lattice 

structure by extracting lattice oxygen (OL) atoms during Set 

(Fig. 13(c2)) or injecting O2- ions during Reset (Fig. 13(c4)) 

into/from the lattice. The quasi-thermal equilibrium of the 

lattice with OL differs from that without OL. Consequently, 

lattice relaxation and geometry optimization occur due to the 

electric field or Joule heating from VREAD during the pre-read 

process of FRW [31]. Through relaxation and geometry 

optimization, the lattice transitions to a quasi-thermal 

equilibrium state, resulting in changes in the potential 

energy of VO, corresponding to VO movement (as depicted 

in Figs. 13(a2) and 13(b2). Since the transition of the lattice 

to the stable state is continuous, the current value also 

undergoes a continuous shift, ultimately reaching stability 

when the lattice reaches quasi-thermal equilibrium. 

As the number of Endurance cycles increases, the size of the 

conductive filament (CF) expands [8, 27]. In the case of 

HRS, the fluctuation rate decreases because the expansion 

of CF results in an increased number of hopping sites not 

involved in conduction (Fig. 13(a3)). 

Meanwhile, for LRS, the electron conduction become ohmic 

as the number of VO is large, and the trap sites causing 

electron trapping/de-trapping are isolated (red circle in Fig. 

13(b)) from CF [18, 25]. Thus electron trapping/de-trapping 

to partial isolated sites have a few impacts on the cell current. 

In addition, Verify also shows a decreasing trend in 

fluctuation rate for LRS. This corresponds to increasing the 

number of Set/Reset cycles, especially for ReRAM cells that 

do not meet the Verify reference current in LRS (i.e., when 

the number of VO is small and conductive filament is not 

sufficiently expanded). Thus, the fluctuation rate decreases 

due to Verify is explained in the same way as Endurance. 

Another characteristic point about the number of 

fluctuations in the LRS is the sharp decrease in fluctuation 

pattern #5 (continuous shift) with increasing endurance. 

VSET

VREAD

Conventional Write NN inference by CiM (Read)

Proposed FRW NN inference

VRESET

Verify (if necessary)

Fluctuation 
occurrence 

High Low

Long pre-readHigh-Endurance +

© 2023 IEEE. Reprinted, with permission, from IEEE Proceedings.

Fig. 12 Protocol of proposed FRW. Because the fluctuation rate just 

after conventional write is higher than that of after pre-read cycles, 

FRW with both high-Endurance and long pre-read cycles is proposed 

(© 2023 IEEE [2]). 

Endurance
CF expand, VO increase

(b1)

(b2)

(b3)

Relaxation

Ohmic

VO

Isolated vacancy

CF (hopping)

CF (ohmic)

Endurance
CF expand

(a1)

(a2)

(a3)

Relaxation

Oxygen Vacancy (VO)

Oxygen ion (O2-)

Electron (e-)

Percolation path
Disconnected
percolation path

Conductive filament (CF)

β-Ta2O5 

After relaxation and 

geometry optimization

β-Ta2O5 +Vo

Just after Lattice 

Oxygen (OL) extraction

β-Ta2O5 +Vo

After relaxation and 

geometry optimization

(c1)

(c3) (c4)

(c2)

Ta

Vo
Relaxation

OL

Set Reset

Read

Read

Potential fields 
gradually change

β-Ta2O5

Just after O2- injection

Relaxation

Fig. 13 Physical models of ReRAM for (a) HRS fluctuation, (b) LRS fluctuation and (c) lattice relaxation of -Ta2O5 ((a), (c) © 2023 IEEE [2]).  

Table 2 Fluctuation rate (FR) under different conditions and FRW 
 

FR of LRS [%]FR of HRS [%]

VerifyEndurance Pre-read

500

Pre-read

0

Pre-read

500

Pre-read

0

38.976.810.741.80100

12.043.812.745.510100

12.844.67.948.7100100

2.912.18.639.301000

2.19.46.630.3010000
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Although a decrease in pattern #5 with increasing endurance 

is also observed in the HRS, the decrease is less severe than 

in the LRS. When CF is sufficiently developed and the 

conduction characteristics in CF is ohmic, the effects of 

lattice relaxation are averaged out and it is unlikely to cause 

significant changes to the measured current values. As a 

result, the number of continuous shift detected in LRS 

current is reduced. 

5. Conclusion 

Fluctuation on ReRAM CiM-based neural network 

accelerator causes large inference accuracy loss. To estimate 

the impact of fluctuation on ReRAM CiM and design high-

performance ReRAM CiM-based NN accelerator, analytical 

methods of ReRAM fluctuating signals are required. 

Measured ReRAM fluctuating signals such as RTN and VO 

movement are classified by the proposed CNN-based FPC 

for both HRS and LRS. Artificially created labeled dataset 

created by the proposed MM-SDG enables supervised 

learning of FPC. Effectiveness of proposed FRW with high 

Endurance and long pre-read cycles to decline the 

occurrence of ReRAM fluctuation is demonstrated by 

analysis of the measured ICELL signals of ReRAM under 

different conditions by applying FPC. Higher-Endurance of 

FRW expands CF of ReRAM, and longer pre-read cycles 

cause relaxation and geometry optimization of Ta2O5 lattice 

structure due to the electric field and Joule-heating by VREAD. 

Proposed FRW improves fluctuation rate of ReRAM by 35.2 

points for HRS and 74.7 points for LRS current. However, 

proposed FRW develops CF and the conductance increases 

for LRS. If, to represent mid-range weight values, CFs are 

not fully developed and the cells in intermediate resistance 

states, fluctuations are more likely to occur, and the 

inference accuracy will degrade. 

Proposed analysis method using neural networks trained on 

artificial data is effective not only for ReRAM fluctuations, 

but also for applications where it is difficult to annotate 

training data or where the amount of training data is 

imbalanced for each label. 
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