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SUMMARY This paper describes a programmable differential bandgap
reference (PD-BGR) for ultra-low-power IoT (Internet-of-Things) edge node
devices. The PD-BGR consists of a current generator (CG) and differential
voltage generator (DVG). The CG is based on a bandgap reference (BGR)
and generates an operating current and a voltage, while the DVG generates
another voltage from the current. A differential voltage reference can be
obtained by taking the voltage difference from the voltages. The PD-BGR
can produce a programmable differential output voltage by changing the
multipliers of MOSFETs in a differential pair and resistance with digital
codes. Simulation results showed that the proposed PD-BGR can generate
25- to 200-mV reference voltages with a 25-mV step within a ±0.7% tem-
perature inaccuracy in a temperature range from -20 to 100◦C. A Monte
Carlo simulation showed that the coefficient of the variation in the reference
was within 1.1%. Measurement results demonstrated that our prototype
chips can generate stable programmable differential output voltages, almost
the same results as those of the simulation. The average power consumption
was only 88.4 nW, with a voltage error of −4/+3 mV with 5 samples.
key words: Internet-of-Things (IoT), bandgap voltage reference, pro-
grammable reference, differential voltage reference

1. Introduction

Ultra-low-power analog, digital, and mixed-signal CMOS
LSIs are strongly required to realize next-generation IoT
(Internet-of-Things) edge node devices [1]–[6]. They will
have the power to change the world we live in. Voltage
references (VRs) are one of basic and important circuit
building blocks for processing analog signal information
and converting physical information into digital form. They
are used in various circuits, such as analog-to-digital Con-
verters (ADCs), digital-to-analog Converters (DACs), power
management circuits (PMCs), low-dropout linear regulators
(LDOs), and versatile sensor interface circuits. Therefore,
we must develop ultra-low power and high precision VRs for
such IoT edge node devices.

Various VRs capable of operating with nano-watt (nW)
power, or less, have been investigated [7]–[13]. The ref-
erence voltages of these VRs are based on the bandgap
voltage of silicon (VBGR) [7], [8], threshold voltage (VTH)
of a MOSFET [9], [10], and threshold voltage difference
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(∆VTH) [11]–[14]. However, almost all of them are real-
ized in a single-ended configuration, so differential or pro-
grammable VRs have not been adequately considered. A
differential and programmable VR could be useful and ad-
vantageous, especially when it must directly interface itself
with other differential circuit blocks [15]–[22]. This would
lead to a superior noise-immunity and high process-stability
for the overall system. In addition, such VRs can be utilized
for generating functional and intelligent temperature sensor
current [23]–[25]. In the studies, two reference voltages that
have a constant voltage difference are required to generate a
sensor signal. However, these voltages are supplied from an
off-chip voltage source. Thus, an on-chip differential VR is
required. Some programmable differential VRs have been
reported [19], [20]. However, the generated output voltages
are higher than 1 V and power consumption is in the order
of several tens of microwatts. Thus, they have difficulties in
low-voltage and low-power operation.

In light of this background, we present a low-voltage
programmable differential bandgap reference (PD-BGR)
with nano-watt (nW) power consumption. The PD-BGR
consists of a current generator (CG) and differential volt-
age generator (DVG) [29]. The CG is based on the bandgap
reference (BGR) [7] and generates a reference current and a
voltage, and the DVG generates another voltage from the cur-
rent. A differential voltage reference VREFD can be obtained
by taking the voltage difference from these two voltages.
Our proposed circuit can also produce a programmable dif-
ferential voltage VREFD by changing the multipliers of MOS-
FETs in a differential pair and resistance with digital codes.
The proposed PD-BGR can generate 25- to 200-mV pro-
grammable differential output voltages with a 25-mV step.
In contrast to our previous work [29], here, we describe cir-
cuit operation in more detail and conduct chip measurements
fabricated with a 0.18-µm standard CMOS process technol-
ogy.

This paper is organized as follows, Sect. 2 presents the
proposed PD-BGR, Sect. 3 shows the results of simulations
and measurements, and Sect. 4 concludes the paper.

2. Programmable Differential Bandgap Reference

2.1 Characteristics of Subthreshold MOSFET and Bipolar
Transistor

Before explaining our proposed PD-BGR architecture and

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Block diagram of our proposed differential bandgap reference
(©2023 IEEE [29]).

its operation principle, we first briefly summarize the char-
acteristics of the subthreshold current ID of a MOSFET and
base-emitter voltage VBE of a bipolar transistor as follows.

The subthreshold current ID when the drain-source volt-
age VDS exceeds 0.1 V is expressed as

ID = KI0 exp
(
VGS − VTH

ηVT

)
, (1)

where K is the transistor aspect ratio, I0 = µCOXV2
T (η − 1)

is a process-dependent parameter, µ is the carrier mobility,
COX is the gate-oxide capacitance, VT is the thermal voltage
(VT = kBT/q), η is the subthreshold swing parameter, kB is
the Boltzmann constant, T is the absolute temperature, q is
the elementary charge, VGS is the gate-source voltage, and
VTH is the transistor threshold voltage [26].

Regarding the bipolar transistor, in standard CMOS
technology, the transistor generates a VBE when it accepts
a bias current IB. The VBE is expressed as

VBE = VT ln
(

IS + IB

IS

)
≈ VT ln

(
IB

IS

)
, (2)

where IS is the saturation current of a bipolar transistor [26].
For the first order approximation, VBE decreases linearly with
the temperature when we use a small temperature dependent
bias current IBIAS. Thus, Eq. (2) can be simplified as

VBE = VBGR − γT, (3)

where VBGR is the bandgap voltage of silicon (i.e., ∼1.2 V)
and γ is the temperature coefficient of VBE. In actual design,
there will be higher order nonlinearities in the VBE, but we
consider the nonlinearities to be small compared with the
first order temperature characteristics.

2.2 Architecture and Operation Principle

Figure 1 shows a block diagram of our proposed PD-BGR
consisting of a current generator (CG) and differential volt-
age generator (DVG). The CG generates a reference current
IREF and voltage VOUT1. The DVG accepts the IREF and
VOUT1, and generates VOUT2. A differential voltage refer-
ence VREFD can be obtained by taking the voltage difference

Fig. 2 Schematic of our proposed PD-BGR (©2023 IEEE [29]).

between VOUT1 and VOUT2, or

VREFD = VOUT2 − VOUT1. (4)

Figure 2 shows a schematic of our proposed PD-BGR.
To achieve low-power and robust operation, a bandgap refer-
ence circuit proposed by Banba et al. is used as the CG [7]
(start-up circuit is not shown). The area ratio of bipolar tran-
sistors Q1 and Q2 and resistors R1, R1A, and R1B are set to
1 : M and R1 = R1A + R1B, respectively, as shown in Fig. 2.
The current IREF flowing in the CG and the output voltage
VOUT1 are given by

IREF =
VBE1

R1
+

VBE1 − VBE2

R2
, (5)

VOUT1 =
R1B

R1A + R1B
VBE1. (6)

By substituting Eqs. (2) and (3) into Eq. (5), IREF is expressed
as

IREF =
VBGR

R1
− γT

R1
+

VT ln(M)
R2

. (7)

As shown in Eq. (7), the temperature dependence of IREF can
be made small because those of the second and third terms
are negative and positive, respectively [7].

The DVG accepts the IREF and VOUT1 as shown on the
right in Fig. 2. The DVG consists of a differential pair circuit
M1−M2, nMOS current mirror circuit, and resistor R3. The
multipliers of transistors M1 and M2 are set to K1 and K2,
respectively. The current gain of the nMOS current mirror is
set to 1 : 1, and thus, currents flowing in transistors M1 and
M2 become IREF/2. Under this condition, the differential
output voltage VREFD can be expressed as

VREFD = VOUT2 − VOUT1

= VGS1 − VGS2 + R3
IREF

2
, (8)

where VGS1 and VGS2 are the gate-source voltages of M1 and
M2, respectively. With Eqs. (1) and (7), the VREFD can be
rewritten as
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Fig. 3 Schematic of programmable DVG: (a) programmable DVG core, (b) M1 (l-bit), (c) M2 (m-bit),
and (d) R3 (n-bit) (©2023 IEEE [29]).

VREFD = VTH1+ηVT ln
(

IREF/2
K1I0

)
− VTH2 − ηVT ln

(
IREF/2
K2I0

)
+

R3

2

(
VBGR

R1
− γT

R1
+

VT ln(M)
R2

)
=

R3

2R1
VBGR + ∆VTH − γR3

2R1
T

+

{
η ln

(
K2

K1

)
+

R3

2R2
ln(M)

}
kB

q
T, (9)

where ∆VTH is the threshold voltage difference between M1
and M2 in the differential pair and can be ignored when
we use large-size MOSFETs and careful design techniques
such as a common centroid layout [27]. Thus, Eq. (9) can be
simplified to

VREFD =
R3

2R1
VBGR − γR3

2R1
T

+

{
η ln

(
K2

K1

)
+

R3

2R2
ln(M)

}
kB

q
T . (10)

From Eq. (10), a zero temperature coefficient of VREFD can
be obtained by designing the aspect ratios and resistors, or

dVREFD

dT
= −γR3

2R1
+

{
η ln

(
K2

K1

)
+

R3

2R2
ln(M)

}
kB

q
= 0. (11)

Therefore, with the condition where Eq. (11) is satisfied, we
obtain temperature compensated VREFD as

VREFD =
R3

2R1
VBGR. (12)

2.3 Programmable DVG

As shown in Eqs. (11) and (12), we can obtain programmable

VREFD by changing the ratio of R1 and R3 with a combination
of R2, R3, K1, K2, and M . In this work, we design the
reference current IREF to be constant (i.e., R1, R2, and M are
set constant) and then control VREFD by changing K1, K2, and
R3 in the DVG.

Figure 3 (a) shows a schematic of a programmable DVG
core circuit. The multipliers of M1 and M2 and the resistance
of R3 are controlled by digital control signals of s1[l −1 : 0],
s2[m − 1 : 0], and s3[n − 1 : 0]. Figures 3 (b), 3 (c), and
3 (d) are detailed schematics of M1, M2, and R3. For M1 and
M2, the same size transistors are connected or disconnected
in parallel using switches and l- and m-bit control signals.
With that, we can change the multipliers of M1 and M2.
For R3, R3 is divided into n-th segment resistors, and the
appropriate resistance is chosen using switches and n-bit
control signals.

3. Results

3.1 Simulation Results

The performance of the proposed PD-BGR was evaluated
by SPICE with a set of 0.18-µm standard CMOS process
parameters. In this work, the resistors R1, R2, R1A, R1B, and
M were set to 59.6, 7.05, 32.8, 26.8 MΩ, and 8, respectively.
The number of digital control bits was set to l = 2, m = 8,
and n = 8. Table 1 lists the design parameters K1, K2, and
R3 for the PD-BGR, where K1 and K2 are the multipliers of
M1 and M2.

Figure 4 shows the simulated VOUT1 and VOUT2 as a
function of temperature in the range of –20 to 100◦C, when
VREFD was set to 100 mV. The voltages decreased as the
temperature increased. However, the VREFD = VOUT2−VOUT1
was kept almost constant at 100 mV.

Figure 5 shows the simulated VREFDs in the same tem-
perature range. The VREFDs were set to from 25 to 200
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Table 1 Design parameters for PD-BGR.

Fig. 4 Simulated VOUT1 and VOUT2 when VREFD was set to 100 mV
(©2023 IEEE [29]).

Fig. 5 Simulated programmable VREFD. VREFD was set to 25 – 200 mV
with 25-mV step (©2023 IEEE [29]).

mV with a 25-mV step. Almost constant VREFDs were ob-
tained. Figure 6 shows the temperature inaccuracy, derived
from Fig. 5. Our PD-BGR achieved high accuracy, within a
±0.7% inaccuracy.

We also performed a Monte Carlo simulation assuming
die-to-die (D2D) global variations and within-die (WID) ran-
dom mismatch variations in all MOSFETs and resistors [27],
[28]. The results for 1,000 runs, when the VREFD was set to
100 mV, are depicted in Fig. 7. The average value µ and
standard deviation σ of VREFD, in the temperature range
from –20 to 100◦C were 100 and 0.87 mV, respectively. The
coefficient of variation (CV= σ/µ) was 0.87%. Table 2
summarizes the characteristics of the simulated temperature
coefficient (TC) and Monte Carlo simulation results of our
proposed PD-BGR. In the simulation, we confirmed a highly

Fig. 6 Temperature inaccuracy of VREFD (©2023 IEEE [29]).

Fig. 7 Distribution ofVREFD whenVREFD was set to 100 mV, as obtained
from Monte Carlo simulation of 1,000 runs (©2023 IEEE [29]).

Table 2 Simulated TC and Monte Carlo simulation results.

stable PD-BGR, thanks to the reference circuit based on the
bandgap voltage reference.

We consider the stability of the PD-BGR. As shown in
Eq. (11), the variation of the TC will mainly come from the
second term, or the characteristics of the DVG, because the
first and third terms are basically stable and determined by
the BGR-based CG. To investigate the effect of the process
variation on the TC, we performed the Monte Carlo simula-
tion again. Figure 8 shows the simulated average TC with
different sizes of unit transistor in the DVG. We set the chan-
nel width (W) (µm) and length (L) (µm) of the unit transistor
of M1 and M2 as W/L = 1/1, 3/3, and 5/5, respectively.
The simulated average TC decreased as the unit transistor
size increased. The TC can be made small, 15.8 ppm/◦C,
when we used the unit transistor size of W/L = 5/5.
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Fig. 8 Simulated average TC with different sizes of unit transistor.

Fig. 9 Chip micrograph.

Fig. 10 Measured VOUT1 and VOUT2 when VREFD was set to 100 mV.

3.2 Measurement Results

The proposed PD-BGR was fabricated with a set of 0.18-µm
CMOS process technology. Figure 9 shows the chip micro-
graph. The total area of our proposed PD-BGR including
the digital backend is 0.438 mm2.

Figure 10 shows the measured VOUT1 and VOUT2 in the
temperature range of –20 to 100◦C, when the VREFD was set
to 100 mV. We also plotted the simulation results with gray
color. The measured output voltages were almost the same
as the simulation results, even though the errors from the
simulation results increased as the temperature increased.
However, the VREFD = VOUT2 − VOUT1 was kept almost con-

Fig. 11 Measured programmable VREFD as a function of temperature.
VREFD was set to 25 – 200 mV with 25-mV step.

Fig. 12 Measured VREFD inaccuracy as a function of temperature when
VREFD was set to 100 mV.

stant at 100 mV. The temperature errors in VOUT1 and VOUT2
were canceled by the voltage subtraction.

Figure 11 shows the measured VREFD for 5 samples in
the same temperature range. As in the simulation, the VREFDs
were set to from 25 to 200 mV with a 25-mV step. We ob-
tained almost the same voltages as the simulation results.
Figure 12 shows the temperature inaccuracy, when VREFD
was set to 100 mV. The inaccuracy was larger than expected
(see Fig. 6). This was because of the process variations.
However, the absolute value of VREFD and its temperature
dependence could be trimmed by the digital control tech-
niques. As discussed in Sect. 2, the output reference voltage
VREFD is given by Eq. (12) when Eq. (11) is satisfied. There-
fore, the absolute value of VREFD can be trimmed by R1 and
R3, and its temperature characteristics can be compensated
by R2, K1, K2, and M . If we develop binary-weighted control
techniques for these parameters, it will be possible to trim
the VREFD more accuracy. In this design, we designed the
PD-BGR by changing three parameters, K1, K2, and R3, as
shown in Table 1. In this case, one possible trimming method
is the use of parameters not in use for the VREFD program.
That is, trimming of the absolute value and temperature char-
acteristics can be performed by R1 and R2, respectively.

Figure 13 shows the measured temperature inaccuracy
for all VREFDs. The measured temperature inaccuracy was
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kept within±1% except forVREFD = 25 mV in the temperature
range from −20 to 80◦C, but became worse at high temper-
ature above 80◦C. The reason for the degradation could be
leakage current of MOSFETs. The temperature inaccuracy
for VREFD = 25 mV was quite large even though the volt-
age spread of VREFD = 25 mV was comparable to others as
shown in Table 3 (see MAX and MIN values in Table 3).
One possible reason for this could be that the denominator
of the temperature inaccuracy itself was low of VREFD = 25
mV.

Table 3 summarizes the measured VREFDs and TCs for
5 samples. The measured TCs had larger errors than the
simulation results. The errors became large when the tem-
perature was over 80◦C, or when VREFD was set to 25 mV.
When the temperature became over 80◦C, leakage current

Fig. 13 Measured temperature inaccuracy of VREFDs as a function of
temperature

Table 3 Measured VREFDs and TCs among 5 samples.

Table 4 Performance summary and comparison.

from the body to the source of the MOSFET increased sig-
nificantly and this caused the voltage errors. The effect of
the leakage current could be large for the small VREFD of 25
mV.

Figure 14 shows the measured VREFD as a function of
power supply voltage VDD in the range from 1.0 to 1.8 V
when VREFD was set to 100 mV. Simulated VREFD was also
plotted for comparison. Our proposed circuit can operate
at higher than 1.2 V. The line regulation (LR) is given by
LR = ∆VREFD(mV)/∆VDD(V), where ∆VREFD is the refer-
ence voltage change in the supply voltage change ∆VDD. The
measured LR was 2.64 mV/V. We obtained the stable VREFD
in the supply voltage range from 1.2 to 1.8 V.

Table 4 summarizes the characteristics of our PD-BGR
in comparison with other CMOS differential BGRs in [14]–
[20]. Our proposed PD-BGR can generate 25- to 200-mV
reference voltages with a 25-mV step. The measured inaccu-
racy was −4/+3 mV for 5 samples. The power consumption
is the lowest, 88.4 nW. These significant achievements come
from our proposed voltage reference architecture. As shown
in Eq. (10), the reference voltage VREFD can be obtained by
not only the conventional bandgap voltage reference circuit
architecture, but also the proposed differential pair circuit
consisting of MOSFETs operating in the subthreshold re-
gion. By using these, we can obtain compact and low-
voltage programmable output reference voltages with nano-
watt power consumption.

Fig. 14 MeasuredVREFD as a function of power supply voltageVDD when
VREFD was set to 100 mV.
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4. Conclusion

We presented a PD-BGR consisting of a CG and DVG. The
CG generates a current and a voltage, while the DVG gen-
erates another voltage from the current. A differential ref-
erence voltage can be obtained by taking the voltage dif-
ference from the voltages. The PD-BGR can produce a
programmable differential output voltage by changing the
multipliers of MOSFETs in a differential pair and resistance
with digital codes. Simulation results showed that our pro-
posed PD-BGR can generate 25- to 200-mV reference volt-
ages with a 25-mV step within a ±0.7% inaccuracy in a
temperature range from -20 to 100◦C. A Monte Carlo sim-
ulation showed that our circuit was robust against process
variation and that the CV of the VREFD was less than 1.1%.
Measurement results demonstrated that our prototype chips
can generate stable programmable differential output volt-
ages. The average power consumption was only 88.4 nW,
with a voltage error of −4/+3 mV with 5 samples.
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