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3D Parallel ReRAM Computation-in-Memory for
Hyperdimensional Computing
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SUMMARY In this work, we propose a 1T1R ReRAM CiM architecture
for Hyperdimensional Computing (HDC). The number of Source Lines
and Bit Lines is reduced by introducing memory cells that are connected in
series, which is especially advantageous when using a 3D implementation.
The results of CiM operations contain errors, but HDC is robust against
them, so that even if the XNOR operation has an error of 25%, the inference
accuracy remains above 90%.
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1. Introduction

Hyperdimensional Computing (HDC) is an emerging neu-
romorphic computing paradigm [1]–[5]. HDC has simi-
lar characteristics to neurons such as hyper-dimensionality,
lower bit width, randomness, and robustness. The most
important feature of HDC is that all data are represented
in Hypervector (HV). Typically, a HV consists of 1 bit ×
10,000 dimensions. Almost all operations are bitwise oper-
ations, therefore HDC is suitable for parallel processing and
Computation-in-Memory (CiM) [5]–[11]. CiM is one of the
many parallel processing methods. CiM performs simple
calculations (e.g., multiply-accumulate (MAC) operation)
simultaneously with the memory readout. For large-scale
algorithms such as Machine Learning, the cost of data trans-
fer is a major barrier, known as the von Neumann bottleneck,
and CiM is seen as a promising way to solve this problem. In
addition, using ReRAM, one of the emerging Non-Volatile
Memories (NVMs), grants some advantages such as energy
efficiency [9]–[13].

In this work, we propose a ReRAM CiM architecture
suitable for N-gram Encoder in HDC.

2. HDC and Language Classification

Language Classification task classifies texts consisting of
26 letters of the alphabet and space into 21 European lan-
guages [4]. As shown in Fig. 1 (a), in the training phase,
Prototype HVs (PHV) are made from texts written in the
respective language by the Encode module and stored in As-
sociative Memory (AM). In the inference phase, a Query
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HV (QHV) is made from the text written in a European lan-
guage by the Encode module and taken similarity with each
PHV. Figure 1 (b) shows the structure of an Encoding mod-

Fig. 1 Summary of Language Classification process. (a) Language Clas-
sification flow by Hyperdimensional Computing (HDC). (b) Structure of
Encode module in (a).
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ule. Item Memory (IM) stores Letter HVs (LHV) that are
independently assigned to each letter. All N-grams in the
input text are converted into respective N-gram HV. LHVs
of former letters are permutated by a permutation matrix
(ρ) to keep series information. N-gram HV is obtained by
taking the bitwise XNOR of all rows and permutated LHVs,
and the Text HV is obtained by taking the bitwise major rule
operation of all the N-gram HV.

3. Proposed ReRAM CiM

Figure 2 (a) shows the proposed ReRAM CiM array suitable
for HDC. It can take the sum and XNOR by accumulating
resistances of ReRAM cells when read out operation. The
SUM operation is the number of ReRAM devices in the
High Resistance State (HRS), and XNOR is calculated as
HRS = 1, Low Resistance State (LRS) = 0. As shown in
Fig. 2 (b), this block is arranged in a row and HVs are mapped
to implement an N-gram encoder. Since the results of the
SUM and XNOR operations have the relationship shown in
Fig. 2 (c), the XNOR result can be calculated with this CiM
array. Figure 3 (a) shows the ReRAM device and its HRS
and LRS characteristics. ReRAM has a current distribution
as shown in Fig. 3 (b).

Figure 4 shows the schematic and operations of pro-
posed ReRAM CiM. In this architecture, one memory cell
is composed of one FET and one ReRAM device connected
in parallel. Several numbers of memory cells and selecting
FETs are connected serially like NAND gate. An FET in
a memory cell operates as a transmission gate and selects
between an FET or a ReRAM device as the current path.
In operations that use only one cell (e.g., R2), the Word
Line (WL) connected to the selected cell is at VOFF and the
other WLs are at VON, then the current flows through the

Fig. 2 (a) Schematic of proposed ReRAM CiM array. (b) Mapping N -
gram encoder to HDC ReRAM CiM. (c) Relationship between bitwise
SUM and XNOR (4 bit).

ReRAM in the selected cell and the FETs in the unselected
cells. When set/reset/read pulse voltages are applied to the
Bit Line, almost the same voltages are applied to both ends of
the selected cell. The CiM operation is shown in Fig. 4 (d).
When the CiM operation, select multiple or all WLs instead
of one WL. In this case, the current flows some ReRAM
cells, then combined resistance can be measured.

This architecture reduces the number of Source Lines
(SL) and Bit Lines (BL) [14], [15]. Then, each of these Lines
can be manufactured thicker to suppress the resistance. SL
and BL parasitic resistances cause IR drop and make device
characteristics worse. In addition, cell size is expected to be
smaller. According to [14], the chain cell structure reduces
the area per cell from 8F2 to 4F2. We assume that a sim-
ilar effect might be expected with ReRAM. Furthermore,
in 3D integration, the construction of SL and BL on BEOL
metallic layers as shown in Fig. 5 provides significant bene-
fit [9], [15]. Implementation of the N-gram encoder by the
ReRAM CiM is shown in Fig. 6. ReRAM CiM stores all raw
and permutated LHVs as IM and outputs N-gram HV at the
same time as read out. N WLs corresponding to each letter
of an N-gram are activated, and bitwise XNOR of the LHVs
is calculated, then N-gram HVs are obtained [4].

Fig. 3 (a) Switching mechanism of ReRAM [13]. (b) Conductance and
Resistance distribution of ReRAM device (without FET).

Fig. 4 Operations of ReRAM CiM array. (a) Reset. (b) Set. (c) Read
(One cell). (d) Read (CiM).



438
IEICE TRANS. ELECTRON., VOL.E107–C, NO.10 OCTOBER 2024

Fig. 5 Equivalent circuit of 3D integration.

Fig. 6 Proposed N -gram encoder. 4-gram encoder mapped to ReRAM
CiM array with 108 WLs. Operation example when Input text is “I am”.

Fig. 7 Inference accuracy of error injection into N -gram encoder.

4. Evaluation

(i) Language Classification with Error
Figure 7 shows the evaluation result of Language Classifi-

Fig. 8 Simplified circuit for simulation.

Fig. 9 Simulated combined resistance of CiM operation of 8-bit ReRAM
array (for general purpose). ROFF = (a) 0.1 (b) 1 (c) 10 (d) 100 × RLRS.

cation described in Sect. 2 with bit inversion error in XNOR
operation of N-gram encoder in inference phase. For each
language, there is one training text of about 100k characters
and 1000 testing texts. 4-gram encoder with bit inversion er-
ror is used to generate PHV from the training text and QHV
from the testing text. The inference accuracy remains higher
than 0.9 for up to a bit error rate as high as 0.25.
(ii) Proposed ReRAM CiM
Figure 8 shows the simplified circuit that consists of fixed
ohmic resisters used by the simulations. Resisters of resis-
tance RON or ROFF are replacement for the ON and OFF
states of the FETs. Resistance of ReRAM devices, RLRS
and RHRS, are chosen randomly from measured resistance of
ReRAM (Fig. 3 (b)).

Figure 9 shows simulated resistances of 8-bit ReRAM
CiM. Overlaps are minimized when ROFF equals 10× RLRS.
The results of a 108-bit ReRAM CiM are shown in Fig. 10.
To evaluate the behavior as an N-gram encoder (N = 4), in
this simulation, the number of selected WLs is restricted to
4. A one shift in the result of the SUM operation means that
the result of the XNOR operation is inverted. In this case,
overlaps are minimized when ROFF equals 1 × RLRS. As
shown in Fig. 10 (b), (c), by setting the thresholds of ADC
(red line) appropriately, the read error and the error rate of the
XNOR operation can be kept below 25% when ROFF equals
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Fig. 10 Simulated combined resistance of CiM operation of 108-bit
(27 letters × 4-gram) ReRAM array (for N -gram encoder). 4 WLs are
selected. ROFF = (a) 0.1 (b) 1 (c) 10 (d) 100 × RLRS. In (b) and (c),
examples of thresholds (red line) where the read error is below 25% are
included.

1 × RLRS or 10 × RLRS. These overlaps get worse because
of change in the distribution of RHRS, with increase in ROFF.
When ROFF is not quite larger than RHRS, the distribution
of ROFF//RHRS is suppressed. The change in ROFF//RHRS
when RHRS changes by ∆RHRS can be calculated as follows:

ROFF//(RHRS + ∆RHRS) − ROFF//RHRS

=
ROFF

2∆RHRS

(ROFF + RHRS + ∆RHRS)(ROFF + RHRS)

By adjusting ROFF, the error rate can be reduced.

5. Conclusion

This work proposes the ReRAM CiM architecture suitable
for HDC. The size of memory cell block and IR drop in
BL and SL can be reduced by introducing cell with FET and
ReRAM connected in parallel. This CiM method includes
errors in the calculation results, but Language Classification
using HDC can maintain 90% inference accuracy even when
the XNOR operation contains 25% errors. This result is
not greater than the loss of inference accuracy due to other
errors [4], [5]. Therefore, the reduction in inference accuracy
due to the implementation of the proposed CiM into HDC
can be tolerated. Reducing the ROFF variation is important to
reduce errors in the computation and a future challenge [16].
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