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PAPER
Determination Method of Cascaded Number for Lumped
Parameter Models Oriented to Transmission Lines

Risheng QIN†a), Hua KUANG††, He JIANG†, Hui YU†, Hong LI†††, and Zhuan LI††††, Nonmembers

SUMMARY This paper proposes a determination method of the cas-
caded number for lumped parameter models (LPMs) of the transmission
lines. The LPM is used to simulate long-distance transmission lines, and
the cascaded number significantly impacts the simulation results. Currently,
there is a lack of a system-level determination method of the cascaded
number for LPMs. Based on the theoretical analysis and eigenvalue de-
composition of network matrix, this paper discusses the error in resonance
characteristics between distributed parameter model and LPMs. Moreover,
it is deduced that optimal cascaded numbers of the cascaded π-type and
T-type LPMs are the same, and the Γ-type LPM has a lowest analog ac-
curacy. The principle that the maximum simulation frequency is less than
the first resonance frequency of each segment is presented. According to
the principle, optimal cascaded numbers of cascaded π-type, T-type, and
Γ-type LPMs are obtained. The effectiveness of the proposed determination
method is verified by simulation.
key words: distributed parameter model, lumped parameter model, reso-
nance mode analysis, cascaded number, characteristic impedance

1. Introduction

Physical simulation technology is often used to investigate
steady-state characteristic and transient-state characteristics
of transmission lines [1]–[4]. Even though real-time digital
simulation technology is widely used [5], physical simula-
tion technology still holds an important position because it
can intuitively reflect changes in electricity, especially un-
der high voltage conditions. Generally, π-type and T-type
circuits, or occasionally Γ-type circuits are applied to phys-
ically simulate the transmission line [6]–[9]. These three
lumped parameter models (LPMs) have high analog accu-
racy in systems with low frequency and short lines. Due
to the low operating frequency and short transmission dis-
tance, the wavelength of the voltage is so small that it can
be ignored. For the network with high frequency and long
lines [10], [11], such as high voltage direct current and half-
wavelength AC transmission, the wavelength of the voltage
accounts for a large proportion of the length of the transmis-
sion line [12]–[14]. Equivalent LPMs of these systems have
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significant errors. In these systems, transmission lines have
been integrated with series impedance and parallel admit-
tance, which is known as distributed parameter effect [15]–
[19].

Line resonance is caused by the interaction of parasitic
impedance and capacitance to ground [20], [21]. Distributed
parameter effect leads to inconsistent resonance characteris-
tics between the line and the equivalent line. Therefore,
the resonance characteristics of the LPMs also characterize
the simulation accuracy. The distributed parameter model
(DPM) has been proven to have periodic parallel and series
resonance frequencies [22]. However, there is still a lack
of system-level research on the impedance of multi-cascade
transmission lines.

To accurately simulate the impedance and transmission
characteristics of long lines, multiple-cascade short lines are
often used to equivalent long lines [23]. The cascaded num-
ber not only affects the simulation accuracy but also affects
the experimental cost. Too large cascades have high accu-
racy but also high cost. Reference [24] provided a simple
method for determining the cascaded number. When the
line length is less than one-thirtieth of the wavelength of the
simulated highest frequency, the distributed parameter effect
of the line can be ignored. In this case, π-type and T-type
LPMs can be used to simulate frequencies below the high-
est frequency. However, this is still a considerable number.
For example, for the 750 kV/500 km lossless line in [16],
155 segment LPMs are required to simulate the transmis-
sion characteristics of 3000 Hz. Reference [25] proposed a
method for determining the cascaded numbers of cascaded
π-type and T-type LPMs of lossless lines based on math-
ematical analysis. References [26], [27] discussed the dif-
ference in transient-state characteristics between DPM and
LPM, and further determine the cascaded number through
simulation. But the implementation is complex.

This paper discusses the difference in the resonance
characteristics between DPM and LPMs of transmission
lines. A method for determining the cascaded number for
different cascaded LPMs is further presented. Based on
resonance mode analysis (RMA) and theoretical analysis,
the periodic resonance characteristics of DPM in open and
short circuits are studied. The resonance differences be-
tween DPM and LPMs are discussed. The characteristic
impedance of cascaded π-type and T-type LPM is derived
from the single-segment LPM. The consistency of first reso-
nance frequencies indicates that cascaded π-type and T-type
LPMs have the same accuracy. The method for determining
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cascaded number based on the first resonance frequency of
the single segment shows that the cascaded Γ-type LPM has
low accuracy. Finally, the proposed determination method
for LPMs is verified by simulation.

2. Resonance Characteristics of Transmission Lines

2.1 Resonance Mode Analysis Method

Harmonic resonance means a drastic energy exchange pro-
cess in the network. The RMA technique can find the
impedance elements with violent energy exchange in the
resonance network [28], [29]. It is based on the eigenvalue
decomposition of the admittance matrix and the implemen-
tation is expressed as follows:

Vf = Y−1
f If (1)

where Vf is the node voltage matrix. Yf is the node admit-
tance matrix. If is the nodal current injection matrix. The
eigenvalue decomposition of Yf is expressed as

Yf = LΛT (2)

where L and T are the left eigenvector matrix and right
eigenvector matrix, respectively. Λ is the diagonal eigen-
value matrix. Substituting (2) into (1) yields

Vf = LΛ−1Y−1
f L−1I (3)

Uf = L−1V and Jf = L−1I are defined as modal volt-
age vector and modal current vector, respectively. Equa-
tion (3) can be expressed as

Uf 1
Uf 2
...

Uf n


=


λ−1
f 1 0 0 0
0 λ−1

f 2 0 0

0 0
. . . 0

0 0 0 λ−1
f n



Jf 1
Jf 2
...

Jf n


(4)

The reciprocal of the λ f i is resistive. The modal eigen-
values of resonance can be determined according to the
eigenvalues. Therefore, RMA can quickly locate the res-
onance frequency and harmonic center.

2.2 Resonance Characteristics of DPM

When the signal transmitted on the line is at power frequency,
the length is much smaller than the signal wavelength, and the
line is considered a short line. When the transmitted signal
is in the high-frequency range, the length is in the same
order of magnitude as the signal wavelength. The analysis
cannot be based on the circuit theory at low frequencies.
The resonance characteristics should be analyzed using the
equivalent circuit with distributed resistance, capacitance,
and inductance. Figure 1 shows the distributed parameter
model of the line. In the figure, R0, L0, G0 (= 0), C0 are the
inductance, resistance, conductivity, and susceptance of unit
length. The parameters of the DPM are shown in Table 1.

Fig. 1 The DPM of the transmission line.

Table 1 Transmission line parameters.

Fig. 2 The impedance characteristics of the input impedance.

According to transmission line theory, the input impedance
Zin of the line is

Zin = Zc
Zl + Zctanh(γl)
Zltanh(γl) + Zc

(5)

where Zl is the load impedance at the end of the line. Zc ,
and γ are characteristic impedance, and line propagation
coefficient. They are expressed as{

Zc =
√
(R0 + jωL0)/ jωC0

γ =
√

jωC0(R0 + jωL)
(6)

When the transmission line is open, Zin is

Zin = − jZc cot(ωl
√

L0C0) (7)

The amplitude-frequency characteristics of Zin is
shown in Fig. 2. Figure 2 shows that the input impedance
alternately exhibits inductance and capacitance as the fre-
quency increases. The series resonance frequency and par-
allel resonance frequency are periodic, and the periods are
the same. According to (7), the first series and parallel res-
onance frequencies are
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ff s = 1
/
(4l

√
L0C0) = 395 Hz, ff p = 2 ff s (8)

When the line end is shorted, the input impedance Zin

of the transmission line is

Zin = Zc coth(γl) = jZc tan(ωl
√

L0C0) (9)

The amplitude-frequency characteristics of input
impedance is shown in Fig. 2. It can be seen that the in-
put impedance also alternately presents inductance and ca-
pacitance. Similarly, it can be obtained that the first series
and parallel resonance frequencies are 789 Hz and 395 Hz,
respectively.

When the transmission line is open circuit and shorted
circuit, the modal information is shown in Fig. 3. The res-
onance characteristics of the lines can be more directly un-
derstood through RMA. Figure 3 indicates that the parallel
resonance frequency of the open circuit is equal to the series
resonance frequency of the short circuit. Similarly, the se-
ries resonance frequency of the open circuit is equal to the
parallel resonance frequency of the short circuit. This can
also be verified by (8).

In addition, modern transmission harmonics have the
characteristics of high frequency and wide frequency do-
main, so the high-frequency skin effect (HFSE) of lines must
be considered [30], [31]. With the HFSE, parasitic resistance
increases with the harmonic frequency. The unit equivalent
resistance r is

r =
R0

1 − (1 −
√

j2π f0/s)2
(10)

The resonance frequency and modal impedance of the
transmission line are shown in Table 2. As can be seen,
HFSE only plays a role in suppressing resonance peak. When
the cascaded number is determined only by the resonance
frequency, the HFSE will not affect the results.

Fig. 3 The modal impedance of the input impedance.

Fig. 4 The topology of cascaded LPM.

2.3 Resonance Characteristics of Cascaded π-Type LPM

When the end of the cascaded π-type LPM is shorted, the
terminal capacitor will be shorted. Therefore, this paper dis-
cusses the resonance characteristic of the π-type LPM when
the end is open. The π-type LPM with cascaded number m
is shown in Fig. 4 (a). The corresponding admittance matrix
Yπ_m is

Yπ_m =


Y11 Y12 · · · 0
Y21 Y22 · · · 0
...

...
. . .

...
0 0 · · · Ymm


(11)

The non-zero elements in the matrix are

Yi j =


−m/(R0l + jωL0l) i = j ± 1
(G0 + jωC0)l/m + 2m/(R0l + jωL0l)

i = j = (2, . . . ,n − 1)
(G0 + jωC0)l/2m + m/(R0l + jωL0l)

i = j = 1,n
(12)

The modal information of the π-type LPM with differ-
ent cascaded numbers is shown in Fig. 5. Figure 5 shows
that the number of the parallel resonance frequency is the
same as the cascaded number. The first resonance frequency
increases with the cascaded number and gradually closes to
ff p . In other words, the accuracy of the cascaded π-type
LPM increases with the cascaded number. This is consistent
with empirical facts.

The input impedance Zin_π of a single segment is:

Table 2 Modal information of the transmission line.
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Fig. 5 Modal information of the cascaded LPM.

Zin_π =

1 − ω2
(

l
m

L0

) (
l

2m
C0

)
jω

l
2m

C0

(
2 − ω2

(
l
m

L0

) (
l

2m
C0

)) (13)

When the denominator in (13) is zero, the input
impedance of each segment is the largest. The frequency
at this point is one of the parallel resonance frequencies, and
this frequency is

fπ_p =
m

πl
√

L0C0
(14)

When m is 1, 3, and 5, the fπ_p are 502 Hz, 1506 Hz, and
2510 Hz, respectively. This can be clearly seen from the
modal information diagram. Notably, the modal information
diagram indicates that these frequencies are also the last
resonance frequencies of the cascaded π-type LPM.

2.4 Resonance Characteristics of Cascaded T-Type LPM

When the end of the cascaded T-type LPM is open, the
terminal impedance will be open-circuited. Therefore, this
paper discusses the resonance characteristics of the T-type
equivalent circuit when the end is shorted. The cascaded
T-type LPM of the line with cascaded number m is shown
in Fig. 4. The modal information of the cascaded T-type
LPM with different cascaded numbers is shown in Fig. 5.
Figure 5 (b) shows that the number of parallel resonance
frequencies is the same as the cascaded number. As the
cascaded number increases, the first resonance frequency of
cascaded T-type LPM gradually approaches that of DPM.
Therefore, the optimal cascaded number can be determined
based on the first resonance frequency. This is consistent
with the cascaded π-type LPM.

The input impedance Zin_t of a single segment is:

Zin_t =

jω
l

2m
L0

(
2 − ω2

(
l

2m
L0

) (
l
m

C0

))
(
1 − ω2

(
l

2m
L0

) (
l
m

C0

)) (15)

The parallel resonance frequency is

Fig. 6 The topology of cascaded Γ-type LPM.

Fig. 7 Modal information of the Γ-type LPMs.

fT_p =

√
2m

2πl
√

L0C0
(16)

When m is 1, 3, and 5, the fT_p calculated by (16) are
355 Hz, 1065 Hz, and 1775 Hz, respectively. Compared with
Fig. 5, these resonance frequencies are not the final resonance
frequencies but appear in the middle. This is different from
the cascaded π-type LPM.

2.5 Resonance Characteristics of Cascaded Γ-type LPM

When the line is open circuit and short circuit, the cascaded
Γ-type models of the line with cascaded number m are shown
in Fig. 6. The modal information of the Γ-type LPMs with
different cascaded numbers is shown in Fig. 7. As can be
seen, although both Γ-type models have 2m energy stor-
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age elements, they have different resonance characteristics.
Firstly, they have opposite phase frequency characteristics.
In the low-frequency band, open circuit and shorted circuit
are capacitive and inductive, respectively. Secondly, they
have different resonance frequency quantities. The num-
ber of resonance frequencies in the open circuit is equal to
the cascaded number minus 1. The number of resonance
frequencies in the shorted circuit is equal to the cascaded
number. Compared with Fig. 5 (b), it can be seen that when
the line is shorted, the resonance frequency of each cas-
caded number is smaller than the resonance frequency of the
cascaded T-type LPM. This indicates that the analog accu-
racy of cascaded Γ-type LPM is lower than that of cascaded
T-type LPM with the same cascaded number. Therefore,
cascaded Γ-type LPM requires more cascaded numbers to
satisfy accuracy demand. The input impedance Zin_o of the
single segment is

Zin_o =

(
1 − ω2 l

m
L0

l
m

C0

) / (
jω

l
m

C0

)
= 1/Zin_s

(17)

The corresponding series resonance frequency fs and
parallel resonance frequency fp are both

fs = fp =
m

2πl
√

L0C0
(18)

Equations (16) and (18) show that the parallel resonance
frequency of a single-segment T-type LPM is greater than
that of a Γ-type LPM. The ratio is

√
2. This is consistent

with the difference in analog accuracy.

3. Determination of Cascaded Number

3.1 Characteristic Impedance of LPM

Characteristic impedance is an inherent characteristic in
a transmission line that affects the amplitude and phase
changes of voltage and current, equal to the ratio of voltage
to current at various locations. The characteristic impedance
of the LPM also characterizes the analog accuracy. Accord-
ing to the transmission line theory, the parameters of the
accurate equivalent line are expressed as

ZS = Zc sinh(γl)

YP =
1
Zc

tanh(γl)
(19)

The distributed parameter model in Fig. 1 can be equiv-
alent through the π-type LPM with the same topology. The
equivalent series impedance Zpi and parallel capacitance Ypi
of the LPM are expressed as

Zpi =
jωL0l

m

Ypi =
jωC0l
2m

(20)

Compared with (19) and (20), it can be concluded that
Zcπ =

jωL0l
m

/
sinh

(
jω

√
L0C0

l
m

)
Zcπ = tanh

(
jω

√
L0C0

l
m

) /
jωC0l
2m

(21)

where Zcπ is the characteristic impedance of the π-type
LPM. Solving (21) yields

sin(ωl
√

L0C0/(2m)) = ωl
√

L0C0/(2m) (22)

Therefore, Zcπ is

Zcπ =

√
L0

C0

1√
1 − π

2 f 2l2L0C0

m2

= Zckpi (23)

The kpi is the characteristic impedance coefficient,
which is the ratio of the characteristic impedance of the
cascaded π-type LPM to that of DPM. The closer kpi is to
1, the better the equivalence effect of the cascaded π-type
LPM is. For the circuit with a fixed cascaded number, the
low frequency has higher equivalent accuracy. The accuracy
decreases as frequency increases. If high equivalent accu-
racy is required at the high-frequency band, it is necessary
to increase the cascaded number. At 50 Hz, the kpi of the
single-cascade circuit is 1.005. This is very high accuracy.
Therefore, to investigate the transmission characteristics of
the line at the operating frequency, a single-cascade π-type
LPM can be selected. It is simple and low-cost. For the fre-
quency of 1000 Hz, the characteristic impedance coefficient
is less than 1.01 when the cascaded number is larger than 18.
Figure 8 (a) shows kpi with different cascaded numbers and
frequencies.

Similarly, the characteristic impedance of cascaded T-
type LPM can be also obtained, and is expressed as

ZcT =

√
L0

C0

√
1 − π

2 f 2l2L0C0

m2 = ZckT (24)

The kT is the characteristic impedance coefficient of
the cascaded T-type LPM. According to (23) and (24), the
characteristic impedance of DPM can be expressed as

Zc =
Zcπ

kpi
= ZcT kpi (25)

Equations (23) and (24) indicate that the characteristic
impedance coefficient of cascaded T-type LPM is the recip-
rocal of that of cascaded π-type LPM. With the increase
of cascaded number, their characteristic impedance coeffi-
cients are gradually close to 1. Equation (25) shows that
although the characteristic impedances of LPMs are differ-
ent, the ratios to characteristic impedance of DPM are the
same. Therefore, the cascaded π-type LPM has the same
accuracy with the cascaded T-type LPM.

As shown in Fig. 8, when the cascaded number is 1 and
f > 500, both kpi and kT are imaginary numbers. The
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Fig. 8 Characteristic impedance coefficient of LPMs.

LPMs cannot be used for simulation because the character-
istic impedance of lossless lines is a positive real number.
Therefore, the characteristic impedance of the cascaded LPM
should also be a positive real number. For this reason, the
cascaded number should satisfy

m > π f l
√

L0C0 (26)

3.2 Cascaded Number

The modal information shows that the same first resonance
frequency determines the same cascaded numbers of LPMs.
Take the cascaded π-type circuit as an example. According
to (23), when kpi is larger than 1, a specific frequency f can
be expressed as

f =
m
√

k2
pi − 1

πlkpi
√

L0C0
(27)

The ratio k0 of frequency f to the last resonance fre-
quency is expressed as

k0 =
m
√

k2
pi − 1

πlkpi
√

L0C0

/
m

πl
√

L0C0
=

√
k2
pi − 1

kpi
(28)

To improve analog accuracy, the maximum simulation
frequency of the cascaded π-type LPM should be less than
the first resonance frequency of a single segment. As can

be seen from (14), the ratio of the first resonance frequency
to the final resonance frequency is

√
2/2. Therefore, the k0

of cascaded π-type LPM is less than
√

2/2. So do cascaded
T-type LPM. The first resonance frequency of Γ-type LPM
is
√

2/2 of the T-type equivalent circuit. The corresponding
maximum k0 is 1/2. Therefore, the kpi of the cascaded Γ-
type LPM should be less than 2

√
3/3. The optimal cascaded

numbers of cascaded π-type, T-type and Γ-type LPMs are
shown in (29).

Where fmax is the maximum simulation frequency. The
⌈x⌉ is the upward rounding function of x. When the simula-
tion effect demand is not high, kpi can be set to the

mop =



⌈
kpiπ fmaxl

√
L0C0

k2
pi − 1

⌉
π (T)-type⌈√

3
2

kpiπ fmaxl

√
3L0C0

2(k2
pi − 1)

=
3
2

kpiπ fmaxl

√
L0C0

k2
pi − 1

⌉
Γ-type

(29)

upper limit. When there is a high demand for simulation
accuracy, the kpi of the π-type LPM should be reduced. The
accuracy of Γ-type LPM decreases in the same proportion.

For the transmission line in Table 1, the wavelength of
3000 Hz is 15.775 km. If the cascaded number is determined
based on “1/30 of the wavelength”, a 57-segment LPMs is
required. This is a fairly large number. Substituting m = 57
to (23) gives

kpi =
1√

1 − π
2

302

= 1.0055 (30)

Equation (30) indicates that the conventional model has a
high simulation accuracy. However, for physical simulation
systems of general distribution networks, such high simu-
lation accuracy is not necessary. According to (23), when
kpi =

√
2, the cascaded number of m = 9. Set the kpi

between the conventional cascaded number and
√

2, such
as kpi = 1.05, and the corresponding cascaded number is
m = 20. The variation curve of m with frequency for differ-
ent stages is shown in Fig. 9.

It can be seen that when m = 9, the change of kpi
is significant within 3000 Hz. When m = 20 or m = 57,
kpi remains relatively close to 1. The cascaded number
determined by the conventional method is excessive. For
distribution network simulation systems with general accu-
racy requirements, the cascaded number can be determined
based on the upper limit of kpi =

√
2.

4. Simulation Verification

According to (29), when kpi =
√

2, the cascaded number of
π-type, T-type, and Γ-type LPMs are 8.4, 8.4, and 12.7, re-
spectively. The rounded values are 9, 9 and 13, respectively.
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Fig. 9 Characteristic impedance coefficients with different cascaded
numbers.

Fig. 10 The results of impedance-frequency scanning.

The line voltage is set to 5.77 kV. The topology of selected
cascaded Γ-type LPM is shown in Fig. 6 (a). A 200 V step
voltage disturbance is added at the head of the line at 1 s. A
resistor of 10Ω of is connected at the end.

Perform impedance-frequency scanning at the end of
the line, as shown in Fig. 10. Figure 10 shows that the reso-
nance period of DPM is fixed, while the resonance periods
of LPMs gradually decrease. This is consistent with the
analysis results based on RMA. From (a) and (b), it can
be seen that within 3000 Hz, the impedance characteristics
of cascaded π-type, T-type, and Γ-type LPMs are close to
that DPM. When the resonance frequency is greater than
3000 Hz, the difference in resonance characteristics grad-
ually becomes apparent. For example, the f = 3551 Hz
is the parallel resonance frequency of the DPM. How-
ever, it is close to the series resonance frequencies of π
(T)-type LPM with 9 cascades and Γ-type LPMs with 13
cascades. Figure 10 (c) shows that the π-type and T-type

Fig. 11 Frequency characteristics of transmission lines.

LPMs have the same impedance characteristics. They have
same parallel and series resonance frequencies. Even when
f > 3000 Hz, the phases of impedance of them are same.
When f > 3000 Hz, the impedances of π-type and T-type
LPMs are remain inductive and capacitive, respectively. As
shown in Fig. 10 (d), the Γ-type LPM with 9 cascades have
lower accuracy. The f = 2761 Hz is the parallel resonance
frequency of DPM. But it is close to the series resonance
frequencies of Γ-type LPM with 9 cascades. This opposite
phenomenon also occurs at f = 3000 Hz.

For the cascaded π-type model, Fig. 11 shows the sim-
ulation results with different m. Figure 11 shows that as m
increases, the cascaded model gradually becomes similar to
the transmission line. Within 3000 Hz, the result calculated
based on kpi =

√
2, i.e. m = 9, also has a good simulation

effect. There is no significant difference between the driving
point impedances of m = 20 and m = 57 and the driving
point impedance of the transmission line. These four mod-
els exhibit four parallel resonances within 3 kHz. When the
frequency exceeds 3000 Hz, the model with m = 9 deviates
significantly from the transmission line. The model with
m = 20 shows significant differences from the transmission
line, and the model with m = 57 is still consistent with the
transmission line. Therefore, the proposed method meets the
simulation requirements of impedance characteristics while
reducing costs.

To understand the current response more clearly, the
end of the line is connected with a resistance of 1000Ω.
The current wave at the headline is shown in Fig. 12. It can
be seen that three lumped models have accurate simulation
effects. Perform fast Fourier transform (FFT) for one cycle
after 1 s. As can be seen from Fig. 13, within a range of
less than 3000 Hz, the harmonic content of the distributed
parameter model and LPMs are close. DPM and LPMs
have significant voltage distortion at 8, 23, 37 and 49 pu. For
49 pu, the harmonic voltage of π-, T-, Γ-type LPMs and DPM
are 12.7, 11.5, 11.2 and 11 V, respectively. In frequency band
above 3000 Hz, the difference gradually becomes obvious,
as shown in Fig. 13. DPM has obvious voltage distortion at
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Fig. 12 The head current of distributed parameter model and LPMs.

Fig. 13 FFT results of the voltage at the end of line.

65, 76, 86, and 95 pu. However, π-, and T-type LPMs have
obvious voltage distortion at 67 and 73 pu. For Γ-type LPM,
the resonance frequencies are 61 and 70 pu.

5. Conclusions

This paper proposes a determination method of the cascaded
number of the transmission line. The conclusions obtained
through theoretical and simulation analysis are as follows.

1) The resonance characteristics of DPM and LPMs are
discussed based on RMA and numerical analysis. The reso-
nance frequency and input impedance of transmission lines
are periodic. The resonance frequencies of the cascaded π-
type and T-type LPMs are equal to the cascaded number, and
each resonance frequency is smaller than that of DPM. The
number of the resonance frequency of open-circuit Γ-type
LPM is equal to the cascaded number minus 1. The num-
ber of resonance frequencies of short-circuit Γ-type LPM is
equal to the cascaded number. The first resonance frequency
characterizes the accuracy of the cascaded LPM.

2) The characteristic impedance coefficients of cas-
caded π-type LPM and T-type LPM are reciprocal to each
other. The LPMs with the same cascaded number of T-type
and π-type LPMs have the same accuracy. The accuracy of
Γ-type LPM is smaller than that of π-type LPM and T-type
LPM with the same cascaded number. The cascaded number
for LPMs based on the first resonance frequency of single
segment is obtained.
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