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PAPER
VLSI Design and Implementation of ARS for Periods Estimation

Takahiro SASAKI†, Member and Yukihiro KAMIYA†, Nonmember

SUMMARY This paper proposes two VLSI implementation approaches
for periods estimation hardware of periodic signals. Digital signal process-
ing is one of the important technologies, and to estimate periods of signals
are widely used in many areas such as IoT, predictive maintenance, anomaly
detection, health monitoring, and so on. This paper focuses on accumulation
for real-time serial-to-parallel converter (ARS) which is a simple parameter
estimation method for periodic signals. ARS is simple algorithm to estimate
periods of periodic signals without complex instructions such as multiplier
and division. However, this algorithm is implemented only on software,
suitable hardware implementation methods are not clear. Therefore, this
paper proposes two VLSI implementation methods called ARS-DFF and
ARS-MEM. ARS-DFF is simple and fast implementation method, but hard-
ware scale is large. ARS-MEM reduces hardware scale by introducing an
SRAM macro cell. This paper also designs both approaches using Sys-
temVerilog and evaluates VLSI implementation. According to our evalua-
tion results, both proposed methods can reduce the power consumption to
less than 1/1000 compared to the implementation on a microprocessor.
key words: VLSI, digital circuit, doppler sensor, parameter estimation,
vital sensing, IoT.

1. Introduction

Digital signal processing is one of the important tech-
nologies for many applications such as IoT[1]–[6], predic-
tive maintenance[7]–[9], anomaly detection[10]–[12], health
monitoring[13]–[16], and so on. In the medical field, non-
contact vital sensing which is the measurement of vital data
such as heartbeats and breathing without putting sensors on
the body is expected that the non-contact vital sensing en-
ables us to make our daily life more secure and efficient[17].

Figure 1 depicts an example of vital sensing. A Doppler
sensor detects the velocity of a moving objects, and it can
be used as a non-contact vital sensor. The sensor emits mi-
crowaves and receives waves bounced back and outputs the
phase difference between the transmitted wave and the re-
flected wave, called Doppler frequency. Since this frequency
deviation is caused by the movement of the body surface, we
can estimate the periods of heartbeats and breathing through
digital signal processing, using the samples of the receiver
output obtained by the analog-to-digital converter (ADC).

Figure2 shows one of the applications of the proposed
method. If we can measure two or more persons using one
Doppler sensor, it is possible to reduce the number of the sen-
sors to be installed in hospitals, which can reduce the cost of
implementation[18]. To analyze frequency of signals, fast
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Fourier transform (FFT)[19]–[21] is well used technique.
FFT can analyze the frequency of multiple composite wave-
forms. Therefore, we can estimate the periods of two or more
persons’ heartbeats and breathing separately. However, fre-
quency resolution of FFT is low in the low-frequency bands.
To increase resolution, we need to use many signal samples,
and to acquire them takes long time[19]. We assume to esti-
mate the periods of two persons’ heartbeats and breathing as
shown in fig. 2, and sampling frequency 𝑓𝑠 of Doppler sensor
is 100 Hz. In order to distinguish the periods of two persons’
breathing, 4.00 and 4.01, respectively, the frequency resolu-
tion 𝛿 𝑓 should be larger than 𝑓𝑠

𝑁 , where 𝑁 is the number of
sampling data. To meet the condition, 𝑁 must be equal or
larger than 262144. Therefore, the sampling time is calcu-
lated as 𝑓𝑠 × 𝑁 ≃ 43 minutes which is not suitable for vital
sensing.

As another period estimation methods, accumulation
for real-time serial-to-parallel converter (ARS)[22], [23] was
proposed. Similar approaches which estimate the period of
a signal are proposed[24]–[26]. However, unlike our pro-
posed method, those research never deals with multiple pe-
riodic signals. Although the methods presented in [27] and
[28] are capable to cope with the multiple signals, they can-
not estimate the fundamental waveform at the same time.
Similarly, the several methods compared in [29] also do not
estimate the fundamental waveform. A more advanced ver-
sion in [30] was proposed for the same situation that this
paper focuses on. It means that there are multiple bodies in
front of a Doppler sensor and trying to conduct the param-
eter estimation for the two bodies. This method also allows
us to estimate the fundamental waveforms. However, this
method requires multiple antennas at the receiver since it
separates the multiple signals by the difference of the angle
of arrival (AOA). Therefore, naturally, this method cannot
cope with multiple signals if they impinge on the antennas
from the identical AOA. Of course, it costs a lot of compu-
tational complexity and hardware resources due to the usage
of multiple antennas.

Furthermore, ARS has the advantage of high resolution
in the low-frequency bands. The details of theoretical and
numerical analysis of performance between ARS and FFT
are shown in the [31], but the number of sampling data of
ARS is smaller than that of FFT in low-frequency bands
such as breathing. We assume that the sampling frequency
of Doppler sensor is 100 Hz. If we want to distinguish the pe-
riods of two persons’ breathing, 4.00 and 4.01, respectively,
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Fig. 1: Vital sensing using a Doppler sensor.

the number of minimum sampling data is 802 samples under
ideal conditions†. According to the results of our prelim-
inary experiments, we can distinguish the periods of two
persons’ breathing if the sampling time is 3 minutes, which
is smaller than that of FFT (43 minutes). Therefore, this
paper focuses on the ARS and does not further discuss FFT.
Naturally, it is emphasized that ARS is not always superior
to FFT.

However, ARS is implemented only on software, and
hardware implementation to achieve better performance with
lower power consumption is not proposed. Therefore, this
paper proposes two VLSI implementation methods called
ARS-DFF and ARS-MEM. ARS-DFF is simple and fast im-
plementation method using D-flip flops, but hardware scale is
large because ARS requires many accumulators. ARS-MEM
reduces hardware scale by introducing an SRAM macro cell,
but slower than ARS-DFF. This paper also designs both ap-
proaches using SystemVerilog and evaluates VLSI imple-
mentation. According to our design results, the maximum
sampling frequency of input signal of ARS-DFF and ARS-
MEM is 57.5MHz and 890KHz, respectively. However,
hardware scale of ARS-MEM is less than 5% of ARS-DFF.
Furthermore, both proposed methods can reduce the power
consumption to less than 1/1000 compared to the implemen-
tation on a microprocessor.

The contributions of this paper are following:

• The first VLSI implementations of ARS are proposed.
• A formula to estimate memory capacity of working set

of ARS is clarified.
• Hardware scale and performance of the two methods

were evaluated in comparison.

The following sections are organized as follows: Al-
gorithm of ARS is introduced in Section 2. Section 3 pro-
poses our hardware implementation methods, and Section 5
evaluates VLSI design. Finally, we conclude this paper in
Section 6.

2. Accumulation for real-time serial-to-parallel con-
verter

Basic idea of ARS[22], [23] is simple. We assume that the
input signal is a periodic signal which repeats [1, 3, 2, 4, 3],
and the period is 5 samples. To explain simply, this paper
assumes a simple waveform, but ARS can apply to com-
posite waveform[22]. 𝑥 [𝑘] denotes k-th input data from

†Each fundamental waveform is a sharp or abrupt waveform
without noise.
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Fig. 2: Vital sensing for 2 persons using one Doppler sensor.

ADC. ARS fetches 𝑁 samples from ADC as one block
and accumulates each element of all blocks. Figure 3(a)
depicts the case if the block size is equal to 5 which is
the same as the period of the input signal. The elements
of block[0], [𝑥 [0], 𝑥 [1], 𝑥 [2], 𝑥 [3], 𝑥 [4]], are [1, 3, 2, 4, 3],
the elements of block[1], [𝑥 [5], 𝑥 [6], 𝑥 [7], 𝑥 [8], 𝑥 [9]],
are [1, 3, 2, 4, 3], and the elements of block[2],
[𝑥 [10], 𝑥 [11], 𝑥 [12], 𝑥 [13], 𝑥 [14]], are [1, 3, 2, 4, 3]. All
blocks have same element [1, 3, 2, 4, 3], and accumulated
values of each element (accumulators in fig. 3(a)) becomes
[3, 9, 6, 12, 9]. Here, the maximum element of accumulators
is 12.

Figure 3(b) depicts the case if the block size
is equal to 4 which is not the same as the pe-
riod of the input signal. The elements of block[0],
[𝑥 [0], 𝑥 [1], 𝑥 [2], 𝑥 [3]], are [1, 3, 2, 4], the elements of
block[1], [𝑥 [4], 𝑥 [5], 𝑥 [6], 𝑥 [7]], are [3, 1, 3, 2], and
the elements of block[2], [𝑥 [8], 𝑥 [9], 𝑥 [10], 𝑥 [11]], are
[4, 3, 1, 3]. Therefore, accumulated values of each element
(accumulators in fig. 3(b)) becomes [8, 7, 6, 9]. Here, the
maximum element of accumulators is 9. The maximum
value of accumulators of which block size is equals to the
period of input signal has the maximum value in all accu-
mulators.

If the minimum and the maximum period to estimate
are 4, 7, respectively, ARS divides input data into four blocks
of which block size are 4, 5, 6, and 7. The maximum value of
each accumulator for block size 4, 5, 6, and 7 are 9, 12, 9, 10,
respectively. The maximum value is 12 which is maximum
value of block size 5, and we can find the period of this
waveform is 5.

Before searching the maximum value from each accu-
mulator, all values in accumulators should be normalized
to improve estimation accuracy because the number of accu-
mulated signals of each accumulator are not same. However,
divider is required for normalization, and it increases circuit
scale of VLSI. Therefore, we adopt a method to equalize
the number of data to be accumulated. This method can be
implemented using simple counters and comparators.
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Fig. 3: Examples of signal processing.

3. Proposed Hardware implementation methods

In this section, we propose hardware implementation meth-
ods. Unlike software implementation, suitable hardware
implementation method depends on application and condi-
tion such as maximum and minimum waveform periods to
estimate, sampling frequency. ARS is simple algorithm and
do not require complex logical unit such as multiplier, di-
vider, and floating-point arithmetic unit. The dominant fac-
tor which affects hardware scale of ARS is memory capacity
which constructs accumulator.

In addition, the analysis process can be performed on-
line or offline. In this paper, assuming vital sensing to be
performed in hospitals, etc., we try to implement the VLSI
in an online type where analysis results can be obtained at
short interval of time.

If we assume to implement accumulators as 2-
dimensional array, total memory capacity for accumulators
Memacc is in proportion to:

(𝑃max − 𝑃min) × 𝑃max,

where 𝑃max and 𝑃min denote maximum period of waveform
(samples) and minimum period of waveform (samples), re-
spectively. The Memacc is the number of words of memory
unit, so if it is enough small, we can implement accumu-
lators by D-Flip Flops (DFF). If not, accumulators should
be implemented by memory unit such as an SRAM macro
cell or an external DRAM module. The memory capacity
is in proportion to both the square of the range of period to
estimate and the square of sampling frequency. Therefore,
these parameters strongly affect hardware cost and suitable
implementation method.

We discuss exact memory capacity for accumulators.
The accumulators for period 𝑃 contain 𝑃 accumulators, and
the maximum value of each accumulator is:

Sigmax × Time × freq
𝑃

,

where Sigmax, Time and freq are the maximum signal value

of ADC, measuring time (sampling time) and sampling fre-
quency, respectively. Therefore, the number of bits (or the
number of DFFs) of each accumulator is:⌊

log2 (
Sigmax × Time × freq

𝑃
+ 1)

⌋
.

Memory capacity of accumulators for period 𝑃 is:

𝑃 × freq ×
⌊
log2 (

Sigmax × Time × freq
𝑃

+ 1)
⌋
.

Therefore, total memory capacity of accumulators is:

𝑃max∑
𝑖=𝑃min

{
𝑖 × log2 (

Sigmax × Time × freq
𝑖

+ 1)
}
.

If we assume sampling frequency is 10Hz and try to esti-
mate period between 2sec and 6sec, 𝑃min and 𝑃max equals 20
and 60, respectively. If measuring time is 180sec (3minutes),
and Sigmax is 4095 (12bit ADC), total memory capacity is
29502 bits. If we implement accumulators by DFFs, the total
number of DFFs is 29502. If sampling frequency is increased
to 100Hz, 𝑃min and 𝑃max equals 200 and 600, respectively,
and total memory capacity becomes 2884824 bits. If we im-
plement accumulators by DFFs, the total number of DFFs is
2884824, and it is not feasible for VLSI implementation. In
this case, accumulators should be implemented by a memory
unit.

In this way, suitable implementation method depends
on design parameters. In this paper, we propose two meth-
ods; one is D-flip flop approach called ARS-DFF which
implements accumulators by adders and DFFs, and the other
is memory approach called ARS-MEM which implements
accumulators by an adder and a memory unit.

3.1 D-flip flop approach

This approach implements accumulator by adders and DFFs.
We call this approach as ARS-DFF. Basic idea of ARS-DFF
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Fig. 4: Implementation with DFFs.

is almost same to [22] but optimized for hardware imple-
mentation. Figure 4 depicts block diagram of ARS-DFF. To
explain the architecture simply, we assume that minimum pe-
riods, maximum periods, and sampling frequency are 4sec,
7sec, and 1Hz, respectively. The AccArray is an array of ac-
cumulators and accumulates stride input data. The AccArray
also outputs the maximum value of accumulators.

In fig. 4, 𝑥 [𝑘] is 𝑘-th input data from an ADC. AccAr-
ray#0 in fig. 4 divides input data into 4 samples, calculates
the sum of each element, finds the maximum value from
each accumulated value, and output that value as 𝑦[0]. Ac-
cArray#1 takes charge of 5 samples/block, and AccArray#2
takes charge of 6 samples/block.

Figure 5 depicts block diagram of AccArray unit shown
in the fig. 4. 𝑃 in Fig. 5 for AccArray#n is equals to 𝑃𝑚𝑖𝑛+𝑛.
AccArray#0 takes charge of 4 samples/block, so 𝑃 is equals
to 4. Acc in Fig. 5 is an accumulator, and DFFs labeled
Dx, where 𝑥 is 0 to 𝑃 − 1, composes a shift register to
activate only one accumulator. On reset, the DFF labeled
D0 is set to 1, and other DFFs including accumulators are
cleared as 0. Enable signal of only Acc0 is asserted, so Acc0
accumulates 𝑥 [0]. On the next cycle, D1 becomes 1 and D0
becomes 0, therefore, Acc1 accumulates 𝑥 [1]. In this way,
Acc(𝑘 mod 𝑃) accumulates 𝑥 [𝑘], where mod denote modulo
operation. The 𝑦 is maximum value of all accumulators.

Max. detector unit in fig. 4 finds maximum value from
𝑦[0] to 𝑦[𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛], and outputs the index with the
maximum value as IDX. Therefore, the estimated period is
calculated as IDX + 𝑃min. ARS can estimate the number
of fundamental waveforms of combined signals and funda-
mental period of each waveform. However, the maximum
number of the fundamental waveforms of the combined sig-
nals to estimate and the threshold to detect it depend on ap-
plications. Because this paper focuses on hardware design
methods and its circuit scales, our designed VLSI outputs
only one period, but to estimate plural periods is not difficult
and circuit scale is not large.

Counter in fig. 5 is a saturating counter which counts
the number of samples, in order to equalize the number of
data to be accumulated described in Section 2. If the counter
value is lower than or equal to MV(𝑃), the counter outputs 1
to accumulate the input data, otherwise the counter outputs
0 to stop accumulation. MV(𝑃) is fixed value calculated as
follows:

#samples
𝑃𝑚𝑎𝑥

× 𝑃,

where #samples is the number of total samples to process.
ARS estimates the number of signals and each period

using pre-defined threshold[22]. To handle plural periods,
Max. detection unit checks if the maximum value of each
AccArray is larger than the threshold. If the conditions
are met, Max. detection unit outputs it’s index, and the
number of AccArrays which meet the condition is equals to
the number of signals. The number of signals is the number
of indices to output. Only a comparator and a counter are
required to implement this method, however, to determine the
threshold is difficult and depends on application. Therefore,
our designed VLSI outputs only one period.

3.2 Memory approach

This approach implements accumulators by an adder and
memory unit. We call this approach as ARS-MEM. As
shown in fig. 6, ARS-MEM is constructed by an Address
Generators, a Memory Controller, an adder, and a Memory
unit.

This approach is similar to the implementation by soft-
ware. Figure 7 depicts pseudo-code of ARS-MEM algo-
rithm. The acc[][] and ptr[n] in fig. 7 correspond to Memory
and Address Generator#n in fig. 6, respectively. The ctr[]
counts the number of data to accumulate, in order to equalize
the number of data to be accumulated described in Section
2. Although a divider is used in the calculation of sat in
fig. 7, no division unit is actually needed because the value
is calculated statically at logical synthesis. In addition, the
acc[n][] in fig. 7 corresponds to AccArray#n in fig. 4.

An Address Generator#𝑛 in the fig. 6 counts up to 𝑛 +
𝑃min − 1. If the counter reaches to the maximum value, the
counter value is cleared as 0. If 𝑃min𝑎𝑛𝑑𝑃max are 4 and 7,
respectively, the counter of the Address Generator#0 counts
up to 3, the counter of the Address Generator#1 row counts
up to 4, and the counter of the Address Generator#3 counts
up to 6.

Figure 8 depicts 2-dimensional memory mapping. One
row corresponds to one AccArray of ARS-DFF. We assume
𝑥 [𝑘] is k-th signal data from the ADC. As initial condition,
all 𝑐𝑖, 𝑗 is cleared. From now, we describe behavior of this
approach.

To explain memory mapping, we assume simple param-
eters; 𝑃min𝑎𝑛𝑑𝑃max are 4 and 7, respectively. We assume
that all accumulators are cleared as 0 initially. As first, k is 0
and the first signal 𝑥 [0] is accumulated in 𝑐0,0, 𝑐1,0, 𝑐2,0, 𝑐3,0.
The next signal 𝑥 [1] is accumulated in 𝑐0,1, 𝑐1,1, 𝑐2,1, 𝑐3,1. In
the same manner, 𝑥 [4] is accumulated in 𝑐0,0, 𝑐1,4, 𝑐2,4, 𝑐3,4.
The counter in Address Generator#0 reached to the max-
imum value and reset to 0. So, 𝑥 [5] is accumulated in
𝑐0,0, 𝑐1,5, 𝑐2,5, 𝑐3,5. Unlike ARS-DFF, ARS-MEM takes
multi-cycles to process one data because the number of mem-
ory units is one. In the above case, to process 𝑥 [0] takes 8
cycles;
Cycle 0: read from 𝑐0,0 and add 𝑥 [0],
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Cycle 1: write the sum to 𝑐0,0,
Cycle 2: read from 𝑐1,0 and add 𝑥 [0],
Cycle 3: write the sum to 𝑐1,0,
Cycle 4: read from 𝑐2,0 and add 𝑥 [0],
Cycle 5: write the sum to 𝑐2,0,
Cycle 6: read from 𝑐3,0 and add 𝑥 [0],
Cycle 7: write the sum to 𝑐3,0.

In general, it takes (𝑃max − 𝑃min + 1) × 2 cycles to
process one data from an ADC. Therefore, the frequency of
the sampling clock (SigClock shown in fig. 4) is lower than
that of the clock frequency of ARS-MEM main unit (Clock
shown in fig. 6).

The function of Max. detector unit in fig. 6 is similar to
the unit used in ARS-DFF. However, it finds the maximum
value sequentially. To accumulate 𝑥 [𝑘], the Memory outputs
𝑥𝑖, 𝑗 . Max. detector unit fetches the value at that timing and
find the maximum value.

4. Design verification

We implement both ARS-DFF and ARS-MEM as synthe-
sizable SystemVerilog codes. To verify our design works

var acc[Pmax - Pmin][Pmax]
var ptr[Pmax - Pmin]
var ctr[Pmax - Pmin]
var sat
var i, j

i = 0
sat = #samples / Pmax
while(true) {
for(j = 0; j < Pmax - Pmin; j = j + 1) {
var k = ptr[j]

if(ctr[j] < sat) {
acc[j][k] = acc[j][k] + x[i]
k = k + 1
if(k >= j + Pmin) {
ctr[j] = ctr[j] + 1
k = 0 # Reset address

}
ptr[j] = k

}
}
i = i + 1

}

Fig. 7: Pseudo-code of ARS-MEM algorithm.

Samples
Period 0 1 2 3 4 5 6

4 𝑐0,0 𝑐0,1 𝑐0,2 𝑐0,3
5 𝑐1,0 𝑐1,1 𝑐1,2 𝑐1,3 𝑐1,4
6 𝑐2,0 𝑐2,1 𝑐2,2 𝑐2,3 𝑐2,4 𝑐2,5
7 𝑐3,0 𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4 𝑐3,5 𝑐3,6

Fig. 8: Memory mapping.

correctly, we estimate period of various signal waves. We
use Cadence Incisive 15.2 for RTL simulation. ARS can
estimate various parameter[22], i.e., the estimation of the
fundamental waveforms, the number of signals and its peri-
ods for the multiple signals contained in the observed noisy
signal from accumulators. However, this paper focuses on
a hardware implementation method, we evaluate estimation
of periods. We use MATLAB to generate input waveforms,
and table 1 shows default parameters. Although circuit scales
and clock frequencies of ARS-DFF and ARS-MEM are dif-
ferent because they adopt different hardware implementation
methods, they implement the same software algorithm and
output the same results, so only the simulation results for
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Table 1: Default parameters of simulations.
Parameter Value
Period of input signal 451
Total number of samples 18000
Input SNR 0dB
Fundamental waveform sinc
Number of signals 1 (single wavelength)
Maximum period 6sec
Minimum period 2sec
Sampling Clock 100Hz
ADC resolution 12bit
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Fig. 9: Fundamental waveform of sinc.
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ARS-DFF are shown in this section.
The original ARS is designed by MATLAB, so it can

handle floating point numbers. However, to calculate float-
ing point values, hardware becomes complex. We assume
to use our proposed design after analog-digital-converter
(ADC). Therefore, we normalize the real number generated
by MATLAB to integers.

4.1 Period estimation of a sinc function

Figure 9 is a fundamental sinc waveform, where the period is
set at 451 samples. We generate the periodic sinc waveforms
for input by concatenating the fundamental waveforms. To
show robustness against noise, we add noise to the generated
waveform. Figure 10 shows the first 451 samples with noise,
where signal-to-noise power ratio (SNR) is 0dB.

Figure 11 shows the simulation results. Figure 11 de-
picts the maximum number of each accumulator. According
to fig. 11, our designed hardware estimates the period as
approximately 450. Figure 12 shows an enlarged view of
the area in fig. 11, where the X-axis is 447 to 455 and the
Y-axis is 8000 to 11000. According to fig. 12, our designed
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Fig. 13: Success ratio of the estimation vs. SNR.

hardware can estimate period as 451 correctly.
To show the robustness against noise, we evaluate the

success rate of period estimation by varying SNR of the
input signals. We use 100 series of input signals where
SNR is varied from -20dB to 20dB by 5dB. Figure 13 shows
the success ratio of the estimation for varying input signal
noise from −20 ∼ 20dB. If the SNR of input signal is −5dB,
success ratio of period estimation is 87%, and if the SNR
of input signal is larger than 0dB, the success ratio becomes
100%.

4.2 Periods estimation of combined sinc functions

ARS can estimate periods of the combined signals. Fig-
ure 14 is the outline of two fundamental sinc waveforms. To
estimates two or three combined signals, we use combined
sinc waveforms generated by 𝑠𝑖𝑛𝑐451 (𝑥) + 𝑠𝑖𝑛𝑐452 (𝑥) and
𝑠𝑖𝑛𝑐451 (𝑥) + 𝑠𝑖𝑛𝑐452 (𝑥) + 𝑠𝑖𝑛𝑐453 (𝑥), respectively, where 𝑥 is
time and 𝑠𝑖𝑛𝑐𝑦 (𝑥) is sinc function of period 𝑦. To generate
𝑠𝑖𝑛𝑐452 (𝑥) and 𝑠𝑖𝑛𝑐453 (𝑥), we add one or two extra zero into
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Fig. 14: Two sinc waveforms.
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Fig. 15: Two combined sinc waveforms (enlarged).
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Fig. 16: Three combined sinc waveforms (enlarged).

the fundamental sinc waveform, which is the same manner
as shown in [22].

Figure 15 and fig. 16 show the maximum numbers of
each accumulator, where input signals are two and three
combined sinc waveforms. To show the results clear, we
show only the areas where the X-axis is 447 to 455 and the
Y-axis is 7000 to 10000.

According to fig. 15, two values from the largest num-
bers are 451 and 452, which means our designed hardware
can estimate the period of combined signals correctly. In
the same way, fig. 16 shows that our designed hardware can
estimate the period 451, 452 and 453 correctly.

5. VLSI implementation and performance evaluation

To evaluate both approaches, we design VLSI chip using
Synopsys Design Compiler for logical synthesis and Syn-
opsys IC Compiler II for layout on ROHM 0.18𝜇𝑚 5-metal
layer CMOS process with standard cell library[32]. Default
design parameters are shown in table 2, and table 3 shows
design tools. In Section 4, the sampling frequency was set
to 100 Hz and range of period to estimate was set from 2 to 6
seconds for the RTL simulation, which can estimate a period
between 200 and 600 samples. However, the sampling fre-

Table 2: Default design parameters.
Parameter Value
Maximum period 6sec
Minimum period 2sec
Sampling frequency 10Hz
ADC resolution 12bit

Table 3: Design tools.
Process Tool
Design Verification Cadence Incisive 15.2
Logical Synthesis Synopsys Design Compiler 2021.06
Place & Route Synopsys IC Compiler II 2021.06
Physical Verification Mentor Graphics Calibre 2018.1
Power estimation Synopsys PrimeSim XA 2022.06-SP1
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Fig. 17: The num. of gates vs. max. period to estimate.

quency was set to 10Hz for VLSI implementation because
the circuit scale of ARS-DFF is too large to implement as
VLSI. So the designed VLSI can estimate a period between
20 and 60 samples.

5.1 Circuit scale

Figure 17 shows the number of gates reported by logical
synthesis. X-axis is maximum period to estimate, and Y-
axis is the number of gates in terms of equivalent NAND
gates. Solid line shows ARS-MEM, and dashed line shows
ARS-DFF. ARS-MEM approach requires SRAM hardware
macro cells, and we estimate the circuit scale of the memory
unit from datasheet of ROHM 0.18𝜇𝑚 library. According
to fig. 17, ARS-MEM can implement ARS algorithm with
fewer gates than that of ARS-DFF. The numbers of gates of
both approaches are proportional to the square of the max-
imum period to estimate, because the memory capacity is
proportional to the square of the maximum period to esti-
mate discussed in Section 3, and the memory capacity is
dominant factor affects circuit scale.

5.2 Circuit speed

Table 4 shows maximum clock frequency reported by logical
synthesis. The maximum clock frequency of ARS-MEM is
faster than that of ARS-DFF in all conditions. ARS-DFF
can process one input data by one clock cycle. Therefore,
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Table 4: Max clock frequency (MHz).
Max. period (sec) ARS-DFF ARS-MEM ARS-MEM

(sampling)
4 58.2 127.7 3.04
5 56.4 118.6 1.91
6 57.5 106.4 1.30
7 56.4 98.7 0.97
8 56.2 92.3 0.76

maximum sampling frequency is same to chip clock fre-
quency. However, ARS-MEM need multi-cycles to process
one data as shown in Section 3.2. The fourth column of
table 4 shows maximum sampling frequency of ARS-MEM.
For example, the ARS-MEM chip which can estimate period
between 2 seconds and 4 second, 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are 20 and
40, respectively. Therefore, the maximum clock frequency
of ARS-MEM chip is 127.7MHz, however, the maximum
sampling clock frequency is 3.04MHz because to process
one signal from ADC requires (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛 + 1) × 2 mem-
ory accesses. Compared to the second column and fourth
column, ARS-DFF can process faster input signal. Gen-
erally, non-contact vital sensing such as health monitoring
does not treat high frequency signal.

We assume that the target application is a non-contact
vital sensing which measures vital data of breathing, sam-
pling frequency is 10Hz, and range of period to estimate is
2 to 6 seconds. The clock frequency of ARS-DFF is same
to the sampling frequency, however, the clock frequency of
ARS-MEM is about 80 times higher than the sampling fre-
quency. Therefore, the clock frequencies to drive the circuits
of ARS-DFF and ARS-MEM are 10Hz and 80KHz, respec-
tively. For such applications, ARS-MEM is better approach
compared to ARS-DFF because of circuit scale shown in
Section 5.1 and power consumption shown in Section 5.4.

Furthermore, if there is a margin in clock frequency, it
has a possibility for further reduction of power consumption
by adopting dynamic voltage and frequency scaling (DVFS)
technique. However, since DVFS strongly depends on semi-
conductor device technology, this paper does not discuss
further reduction by DVFS, so that we avoid too much de-
pendence on a particular semiconductor technology.

5.3 Layout

We design VLSI chip of both ARS-DFF and ARS-MEM
using Synopsys IC Compiler II. Design parameters for both
methods are shown in table 2. Figure 18 shows ARS-DFF,
and fig. 19 shows ARS-MEM. Chip size of ARS-DFF is
10.6𝑚𝑚2. Chip size of ARS-MEM without SRAM macro
cell is 0.1𝑚𝑚2. We estimate the SRAM macro cell area from
datasheet, and total chip size of ARS-MEM with SRAM
macro cell is 0.436𝑚𝑚2.

ARS-MEM can be implemented in only 5% of the chip
area of ARS-DFF. According to table 4, maximum sampling
frequency of ARS-MEM is 1.30MHz, and it is lower than that
of ARS-DFF (57.5MHz). However, it is not fatal problem
because the required sampling frequency for applications

Fig. 18: Primary layout of ARS-DFF.

Fig. 19: Primary layout of ARS-MEM without SRAM macro
cell.

such as vital sensing or health care are not very high.

5.4 Power consumption

We also estimate power consumption of the designs. To es-
timate power consumption, we use Synopsys PrimeSim XA.
ARS-DFF is fully synthesizable and power consumption can
be estimated by PrimeSim XA. ARS-MEM is also synthe-
sizable, but it requires SRAM macro cell. However, we can-
not estimate power consumption of SRAM macro cell using
PrimeSim XA. Therefore, we estimate it from datasheet of
SRAM macro cell.

To compare the power consumption if we implement the
ARS algorithm on a microprocessor, this paper also shows
the power consumption when implemented on Renesas Elec-
tronics RE01[33] which is 32bit microprocessor based on
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Table 5: Power consumption.
Approach Power consumption(𝜇W)
ARS-DFF 3.60
ARS-MEM 1.50
RE01 4050

ARM Cortex-M0+ core. We estimate the power consump-
tion using Renesas Electronics Evaluation Kit RE01 1500KB
and IWATSU VOAC7520H.

Table 5 shows power consumption of both approaches.
According to our evaluation, the power consumption of ARS-
MEM is the lowest among the three implementation meth-
ods. However, both ARS-DFF and ARS-MEM achieve a
significant reduction in power consumption compared to im-
plementation on a microprocessor.

6. Conclusions

This paper proposes two hardware implementation methods
of ARS which can estimate periods of waveforms. ARS-
DFF is simple and fast approach, and maximum sampling
frequency is 57.5MHz. On the other hand, ARS-MEM is
smaller circuit scale and lower power consumption approach.
The sampling frequency of ARS-MEM is 1.3MHz, but hard-
ware scale is only 5% compared to ARS-DFF. The power
consumptions of ARS-DFF and ARS-MEM are 3.60𝜇W and
1.50𝜇W, respectively, and these power consumptions are
dramatically small compared to 4050𝜇W which is the power
consumption implemented on a microprocessor. Most of
vital sensing applications do not require high sampling fre-
quency. For example, let us think about the non-contact vital
sensing for measuring breathing of a human. In this case,
a sampling frequency setting of 10Hz is sufficient since the
period of the breathing is typically assumed to be 2 to 6 sec-
onds. Then, in this example, we can reduce the circuit scale
and the power consumption of ARS-MEM till 5% and 42%,
respectively, compared with ARS-DFF. Thus, it is obvious
that ARS-MEM is a better approach rather than ARS-DFF.

As our future works, we will implement the hardware to
handle threshold, fabricate VLSI chips, and evaluate perfor-
mance. We will also evaluate the circuit scale and operating
frequency based on layout results.
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