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A 28 GHz Band Compact LTCC Filtering Antenna with
Extracted-Pole Unit for Dual Polarization
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SUMMARY  This paper proposes a dual-polarized filtering antenna
with extracted-pole unit (EPU) using LTCC substrate. The EPU realizes
the high skirt characteristic of the bandpass filter with transmission zeros
(TZs) located near the passband without cross coupling. The filtering an-
tenna with EPU is designed and fabricated in 28 GHz band for 5G Band-
n257 (26.5-29.5 GHz). The measured S 1; is less than —10.6 dB in Band-
n257, and the isolation between two ports for dual polarization is greater
than 20.0 dB. The measured peak antenna gain is 4.0 dBi at 28.8 GHz and
the gain is larger than 2.5dBi in Band-n257. The frequency characteris-
tics of the measured antenna gain shows the high skirt characteristic out of
band, which are in good agreement with electromagnetic (EM)-simulated
results.

key words: mobile communication, millimeter wave antennas, bandpass
filters (BPF's), transmission zeros (TZs)

1. Introduction

Millimeter waves communication is one of the key technolo-
gies for the 5th generation communications system (5G).
The specifications of 5G have been discussed in 3GPP
and the requirements on equivalent isotropic radiated power
(EIRP), sensitivities, and spurious emission have been de-
termined in both 28 GHz and 39 GHz bands for user equip-
ment (UE) and base station [1]. To address a rapid growing
data traffic, massive MIMO and beam forming are important
technologies. Antenna-Array-Integrated Modules (AiMs)
have been employed in the MIMO antenna units with a tiled
configuration for base station application.

The AiMs of millimeter wave bands are actively devel-
oped for 5G base station [2]-[6]. Figure 1 shows the struc-
ture of the AiM for 5G base station. The array antenna is
integrated in LTCC substrate, and RFIC and other compo-
nents are mounted on the opposite side of antennas. The
photographs of the AiM examples are shown in Fig. 2. The
dual-polarization antenna is used for the AiM of 5G mil-
limeter waves to realize the polarization MIMO communi-
cation [7]-[10].

The spurious emissions from the antenna units, such
as leaks from local oscillators and harmonics from power
amplifier (PA) outputs should be suppressed not to interfere
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Fig.1 Basic configuration of AiM: (a) structure, (b) cross section.
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Fig.3  Block diagram of AiM.

with signals at other bands [11]. The 28 GHz array antenna
with a bandpass filter (BPF) in front of the power divider has
been proposed [12]. To realize beam forming in the array
antenna, a BPF should be added to each antenna element.
Figure 3 shows the block diagram of the AiM. IF signals
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are input to the mixer in RFIC and the BPFs are integrated
in the LTCC substrate between the RFIC and antennas. A
compact BPF with the antenna is necessary for realizing this
structure.

It is a conventional design method that the filter and
the antenna are designed separately, and they are connected
by 50Q line [13], [14]. In a recent co-design approach of
the antenna and the BPF, the filtering antenna is constructed
by replacing the Nth resonator of an Nth-order BPF with a
radiation element [15]-[22].

In this paper, a new 28 GHz band dual-polarized LTCC
filtering antenna with extracted-pole unit (EPU) [23], which
realizes transmission zeros (TZs) without cross coupling, is
proposed. The EPU for the filtering antenna makes it possi-
ble to remove the intersection between two feeding lines and
two cross-coupling lines, which leads to a simple structure.
The effectiveness of the proposed filtering antenna with the
EPU is verified through design, fabrication, and measure-

ments.
Source .

= =
Antenna

EPU Antenna

Source
(b)

Fig.4  Schematic topology of filtering antenna: (a) with cross coupling,
(b) with EPU.
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Fig.5 Basic structure of filtering antenna: (a) with cross coupling, (b)
with EPU.
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2. Proposed Filtering Antenna

Figure 4 shows the schematic topology of two types of the
single-feed compact filtering antenna. One is the filtering
antenna with cross coupling, and another is the filtering an-
tenna with EPU. To provide the high skirt characteristic, a
filter with cross coupling between non-adjacent resonators
is used [24]-[26]. The cross coupling between the resonator
and the radiation element realizes TZs located near the pass-
band, providing the high skirt characteristic as the BPF. Fig-
ure 4 (a) shows the topology of the filtering antenna with
cross coupling. The 4th resonator is the radiation element,
and the radiation element and the 1st resonator are coupled
as cross coupling, so that there are the two-point feeds to
the radiation element. Figure 5 (a) shows the basic struc-
tures of the single polarization and the dual polarization fil-
tering antennas with cross coupling. The structure of the
dual-polarized filtering antenna with cross coupling is diffi-
cult to realize because of a complicated intersection of two
cross-coupling lines and two feeding lines coupled to a sin-
gle radiation element.

Figure 4 (b) shows the topology of the filtering antenna
with EPU. The EPU is composed of the 1st and the 2nd
resonators, while the 5th resonator is the radiation element.
The EPU can improve the skirt characteristic of the BPF
with TZs without cross coupling [27], [28]. Figure 5 (b)
shows the structures of the single polarization and the dual
polarization filtering antennas with EPU. No cross cou-
plings enable us to easily realize a dual-feeding structure.

3. Design of Filtering Antenna with EPU

The filtering antenna with EPU is designed in 28 GHz band

Calculation of Q, of radiation

element
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Filter synthesis

optimization
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| Finalize synthesis design |

v
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Comparison of the extracted circuit
parameters from EM results with the
synthesized ones

2nd step Dimensional
parameters

optimization

Fig.6  Design flowchart of the filtering antenna.
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Fig.7  Schematic topology of filtering antenna with EPU.

Table 1  Synthesized circuit parameters of single-feed filtering antenna
with EPU. (Diagonal elements are resonant frequencies in GHz. Couplings
with source are external Q factor, while coupling with load is radiation
Q factor of radiation element. Other non-diagonal elements are coupling
coefficients.).

Source| R1 R2 R3 R4 R5 |Load

S 0 0| 1.36] 8.66 0 0 0
R1 0]26.92] 0.41 0 0 0 0
R2 1.36] 0.41]26.76] 0.08] 0.06 0 0
R3 8.66 0| 0.08]27.57| 0.10 0 0
R4 0 0| 0.06] 0.10|27.91] 0.10 0
RS 0 0 0 0| 0.10]28.01|13.49
L 0 0 0 0 0] 13.49 0

S-parameter (dB)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Frequency (GHz)

Fig.8  Synthesized ideal S-parameter of filtering antenna with EPU.

for 5G Band-n257 (26.5-29.5 GHz). Figure 6 shows the de-
sign flowchart of the filtering antenna. As the 1st design
step, the single-feed filtering antenna with EPU is synthe-
sized by using the circuit topology shown in Fig.7. The
coupling coefficients k3 and k4 are added in this topology
due to unexpected small couplings. The radiation Q fac-
tor (Q,) of the radiation element is calculated from the § |,
characteristic of the patch antenna model by using an elec-
tromagnetic (EM) simulator ANSYS® HFSS™ [21]. The
value of the Q; calculated by the EM-simulator is 13.49.
Table 1 shows the synthesized circuit parameters as the
result of the synthesis parameter optimization. The synthe-
sized circuit parameters are optimized to be realized S ;; be-
low —10dB in the designed frequency band, except for QO
that is determined by the structure of the radiation element.
It is found from Table 1 that a strong coupling between
source and 2nd resonator (external Q factor Qs, = 1.36) as
well as a strong one between 1st resonator and 2nd resonator
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(coupling coefficient kj; = 0.41 for EPU) are necessary.

Figure 8 shows the synthesized ideal S-parameter of
filtering antenna with EPU by using the circuit parameters
of Table 1. Since the schematic topology is two port circuit,
the synthesized ideal S-parameter is two port result. The
port 1 is the source and the port 2 is the load. The S; of
the synthesized ideal S-parameter is below —15dB in the
designed frequency band.

4. Dimensional Design of Filtering Antenna with EPU

The dimensional parameters are designed by using an
ANSYS® HFSS™, as the 2nd design step shown in Fig. 6.
In the dimensional design, the single polarization filtering
antenna is one port structure instead of two port circuit, be-
cause of the radiation element of the filtering antenna. We
selected a LTCC material with relative permittivity & = 6.6
and dielectric loss of tandé = 0.005. The vector fitting
method [29], [30] is used to extract the circuit parameters
from the EM-simulated results. The dimensional parame-
ters are optimized with comparing the extracted circuit pa-
rameters with the synthesized ones as shown in the 2nd step
of Fig. 6 [9].

Two types of the filtering antenna are designed. The
feeding structure of the radiation element is different be-
tween design A and B.

4.1 Design A

Figures 9 and 10 show the structure (design A) of filtering
antenna with EPU. This filtering antenna is constructed in
a LTCC substrate. The four resonators are A,/4 resonators
with a shorted end to GND, where A, is the guided wave-
length. The Ist, the 2nd, the 3rd and the 4th resonator are
placed under the GND plane and the 5th resonator is over
the GND plane. The 4th resonator and the 5th resonator are
connected through the feeding via. The position of the feed-
ing via is shifted in layer 7 because of the LTCC process.
The total size of the four resonators (resonator unit) is 1.05
x 1.05 mm?2, which is smaller than the size of the radiation
element of 1.81 x 1.81 mm?.

Table 2 shows the dimensional parameters of the de-
signed filtering antenna with EPU. To realize the abovemen-
tioned strong couplings, the 2nd resonator and the input line
are overlapped. A coupling pad between the 1st resonator
and the 2nd resonator is inserted to adjust the coupling co-
efficient k.

Figure 11 shows the EM-simulated S-parameter and
antenna gain of filtering antenna with EPU. The antenna
gain in boresight is simulated in the dimensional design, in-
stead of S;; in the synthesized ideal S-parameter of filtering
antenna. The EM-simulated S; is less than —10.8 dB in
Band-n257. The EM-simulated peak antenna gain is 4.1 dBi
at 27.5 GHz and the gain is larger than 3.4 dBi in Band-n257.
The EM-simulated antenna gain of the filtering antenna with
EPU achieves the high skirt characteristics out of band with
two TZs.
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Fig.9  Structure of single-feed filtering antenna with EPU (design A): (a)
three-dimensional view, (b) top view, and (c) cross section.
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Fig.10  Layout of single-feed filtering antenna with EPU (design A): (a)
Layer 3, (b) Layer 4, (c) Layer 5, (d) Layer 6, (e) Layer 7, and (f) Layer 8.

Table 2 Dimensional parameters of filtering antenna with EPU (de-
sign A).

1] 095 | Ly - s, | 031

L1074 | I | 181 | v, -

] 099 | w, | 0.12 . | 0.57

Ly | 096 | wy | 012 | Ay | 0.38 | Unit: mm
4.2 Design B

Figures 12 and 13 show the structure (design B) of the fil-
tering antenna with EPU. The feeding structure to the ra-
diation element of the design B is different from that of the
design A. The Ist, the 2nd and the 3rd resonator are placed
under the GND plane and same structure with these of the
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Fig.11  EM-simulated S-parameter and antenna gain of filtering antenna
with EPU (design A).

Table 3
sign B).

Dimensional parameters of filtering antenna with EPU (de-

L | 097 | 1y ] 025 | s, | 031

L] 079 | I | 168 | v, | 0.36

L | 096 | w, | 012 | h | 057

a

I | 041 | wg | 0.12 | Ay | 0.38 | Unit: mm

design A. The structure of the 4th resonator is different from
that of the design A. The 4th resonator consists of the ver-
tical via hole and the planar patterns in layer 5 and layer 7,
and it is folded from layer 5 to 7 across the GND plane for
coupling to the radiation element, instead of feeding via of
the design A. The reason of changing the feeding structure
is the unexpected radiation from the feeding via of the de-
sign A in out of frequency band. Table 3 shows the dimen-
sional parameters of the design B. These parameters of the
design B are slightly different from the design A due to the
difference of the 4th resonator.

Figure 14 shows the EM-simulated S-parameter and
antenna gain of the design B. The EM-simulated S |; is less
than —13.4dB in Band-n257. The EM-simulated peak an-
tenna gain is 4.1 dBi at 28.0 GHz and the gain is larger than
3.5dBi in Band-n257. Figure 15 shows the EM-simulated
antenna gains of the design A and B including out of fre-
quency band. The unexpected radiation of design B in lower
and higher frequency bands is suppressed as compared with
that of the design A. Because the suppression of unexpected
radiation in out of band of the design B is better than that
of the design A, we use the structure of the design B as the
dual polarization filtering antenna.

4.3 Dual-Polarized Filtering Antenna

As the final design step, the two resonator units are orthog-
onally located with each other so that they are coupled to a
single radiation element for dual polarization, as shown in
Fig. 16. The port 1 is connected to vertical polarization (V-
pol.) antenna and the port 2 is connected to the horizontal
polarization (H-pol.) antenna.

Figure 17 shows the EM-simulated S-parameter and
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Fig.13  Layout of single-feed filtering antenna with EPU (design B): (a)
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Fig.14 EM-simulated S-parameter and antenna gain of filtering antenna
with EPU (design B).

Structure of single-feed filtering antenna with EPU (design B):
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Fig.15 EM-simulated antenna gain of filtering antenna with EPU (de-
sign A and B).
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Fig.17 EM-simulated S-parameter and antenna gain of filtering antenna

with EPU (dual polarization).

antenna gain of the dual-polarized filtering antenna. The
EM-simulated S 1 is less than —10.6 dB in Band-n257. The
EM-simulated maximum S,; is —22.7dB at 29.5 GHz and
the S, is less than —20.0 dB in the designed bandwidth. The
EM-simulated peak antenna gain is 4.1 dBi at 28.1 GHz and
the gain is larger than 3.4 dBi in Band-n257.

5. Measurement Results

The designed dual-polarized filtering antenna is fabricated
to verify experimentally the characteristics of the antenna.
The fabricated antenna has two ports for dual polarization.
Figure 18 shows the photograph of the fabricated dual-
polarized filtering antenna with EPU. We fabricated two
types of antennas; one has the probe pads to measure the
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Fig.18 Photograph of fabricated dual-polarized filtering antenna with
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Fig.19 EM-simulated and measured frequency responses of fabricated
dual-polarized filtering antenna.

S-parameters, and another has a coaxial connector to mea-
sure the antenna gain in over the air. One port of the fab-
ricated antenna for the measurement of the antenna gain is
connected to the coaxial connector and another port is open,
as shown in Fig. 18.

Figure 19 shows the comparison of frequency re-
sponses between the measured results and the EM-simulated
results. The EM-simulated results are in good agreement
with the measured results. The measured S; is less than
—10.6dB in Band-n257. §,; is measured for verifying the
isolation characteristic between two ports for dual polariza-
tions. The measured maximum S,; is —21.6 dB at 29.7 GHz
and the S is less than —20.0 dB in the designed bandwidth.

The frequency characteristic of antenna gain was evalu-
ated with an over-the-air measurement in an anechoic cham-
ber. Figure 20 shows the simulated and the measured an-
tenna gain characteristics of the fabricated filtering antenna
in boresight. The measured peak antenna gain is 4.0 dBi
at 28.8 GHz and the gain is larger than 2.5dBi in Band-
n257. The measured antenna gain achieves the high skirt
characteristics out of band, thanks to two TZs of the EPU.
Figure 21 shows the EM-simulated and measured radiation
patterns of the fabricated dual-polarized filtering antenna at
28.0 GHz. These results are normalized by the peak antenna
gains, individually. The measured pattern of the E-plane is
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Fig.20  Frequency characteristics of EM-simulated and measured an-
tenna gain (horizontal polarization) of fabricated dual-polarized filtering
antenna.
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Fig.21 EM-simulated and measured radiation patterns (horizontal po-
larization, at 28.0 GHz) of fabricated dual-polarized filtering antenna.

different from the EM-simulated one, because of the effect
of the fixture in radiation pattern measurement system.

6. Conclusion

In this paper, a 28 GHz band dual-polarized LTCC filtering
antenna with EPU has been proposed. The EPU has real-
ized the high skirt characteristic with TZs generated near
the passband without cross coupling. We designed two
types (design A and design B) of the filtering antenna with
EPU in 28 GHz band. Because the suppression of unex-
pected radiation in out of band of design B is better than
that of design A, we designed and fabricated the struc-
ture of design B as the dual polarization filtering antenna.
As the results of S-parameter measurement, the S; has
been less than —10.6 dB in Band-n257, and the isolation be-
tween two ports for dual polarization has been greater than
20.0dB. The measured peak antenna gain in boresight has
been larger than 2.5dBi in Band-n257, and the peak gain
has been 4.0dBi at 28.8 GHz. The measured antenna gain
has achieved the skirt characteristics out of band. The new
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filtering antenna is expected to be used for the AiM of 5G
base station.
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