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Why the Controversy over Displacement Currents never Ends?

Masao KITANO† ,†† ,†††a), Nonmember

SUMMARY Displacement current is the last piece of the puzzle of elec-
tromagnetic theory. Its existence implies that electromagnetic disturbance
can propagate at the speed of light and finally it led to the discovery of
Hertzian waves. On the other hand, since magnetic fields can be calculated
only with conduction currents using Biot-Savart’s law, a popular belief that
displacement current does not produce magnetic fields has started to cir-
culate. But some people think if this is correct, what is the displacement
current introduced for. The controversy over the meaning of displacement
currents has been going on for more than hundred years. Such confusion
is caused by forgetting the fact that in the case of non-stationary currents,
neither magnetic fields created by conduction currents nor those created
by displacement currents can be defined. It is also forgotten that the ef-
fect of displacement current is automatically incorporated in the magnetic
field calculated by Biot-Savart’s law. In this paper, mainly with the help
of Helmholtz decomposition, we would like to clarify the confusion sur-
rounding displacement currents and provide an opportunity to end the long
standing controversy.
key words: displacement current, Biot-Savart law, Ampere’s law, Maxwell-
Ampere’s law, Helmholtz’s decomposition, non-stationary current

1. Introduction

The time derivative of the electric flux density, ∂tD, is named
displacement current density, which is the final piece to com-
plete the hard puzzle of electromagnetic theory. This discov-
ery made by James Clerk Maxwell [1], [2] was possible only
through his keen eyes forseeing its existence from theoretical
inevitability (1864).

He found the fact that the propagation velocity of the
wave solution enabled by the displacement current, was con-
sistent with the speed of light, which was already measured
experimentally at that time. The value of constant (µ0ε0)−1

had been determined by Weber and Kohlrausch in other con-
text [3], where µ0 and ε0 are the permeability and permit-
tivity of vacuum, respectively. Maxwell was convinced that
light is an electric and magnetic disturbance propagating in a
vacuum. Later, H.R. Hertz discovered radio waves (1888) in
attempting to detect displacement currents using a capacitor.

Displacement currents occupy an important position in
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electromagnetics. However, owing to the fact that magnetic
fields can be correctly calculated by the Biot-Savart law,
which does not seem to include the displacement current, it
has widely been claimed that the displacement current does
not produce a magnetic field. As a matter of fact, however,
the Biot-Savart law implicitely includes the contribution of
displacement currents.

In this paper, we would like to clarify the confusion
surrounding displacement currents and its causes and help
to promote correct understanding.

2. Magnetic Action of Electric Currents and Displace-
ment Current

In 1820, Hans Christian Ørsted discovered that a compass
needle swings in response to an electric current flowing near
it. That same year, the relation between current and mag-
netic field was formulated in two ways; Biot-Savart’s law
and Ampère’s law, which correspond to Coulomb’s law and
Gauss’s law in electrostatics, respectively.

These magnetic field laws were based on the assumption
that the current is flowing through a closed circuit. Almost
half a century later, considering the case of unclosed current,
as in the case of charging capacitor, Maxwell theoretically
derived the necessity of displacement currents.

His argument goes as follows. By taking the divergence
of both sides of Ampère’s equation, curl H = J , we have,
0 = div J , with the identity div curl = 0. In other words,
Ampère’s equation implicitely assumes divergence-free cur-
rents. This is also called the “steady-state current condition,”
because the charge conservation law, ∂t ϱ = − div J , implies
steady charge distributions. (∂t = ∂/∂t is used for brevity.)
If this condition is not satisfied, i.e., div J , 0, Ampère’s
law must be modified as follows:

curl H = J + ∂tD. (1)

The displacement current density term, ∂tD is added. Now,
taking the divergence of both sides, we have

0 = div J + ∂t div D = div J + ∂t ϱ.

The time derivative of Gauss’s formula, div D = ϱ, is used.
This is consistent with the charge conservation law.

Based on this reasoning, in his treatise [4], Maxwell
states

One of the chief pecurialities of this treatise is the
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doctrine which it asserts, that the true electric cur-
rent C(C), that on which the electromagnetic phe-
nomena depend, is not the same thing as K(J), the
current of conduction, but that the time variation
of D(D), the electric displacement, must be taken
into account in estimating the total movement of
electricity, so that we must write,

C = K + ÛD, (Equation of True Currents).

Hereafter we write the true (total) current as

J tot = J + ∂tD.

Equation (1) is now called Maxwell-Ampère’s equation.
Maxwell’s electromagnetic theory thus created is being or-
ganized by the followers and spread to the academic world

Oddly, however, the doctrine that displacement currents
do not create magnetic fields began to circulate. The main
reasons are

• Even in the presence of displacement currents, magnetic
field is calculated correctly by the Biot-Savart equation.

• A typical displacement current is one that occurs where
the linear current is interrupted. Then charges are ac-
cumulated at the endpoint and yield a spherically sym-
metric electric field. The corresponding displacement
current is also spherically symmetric and the resultant
magnetic field vanishes.

Various arguments against, for, or from a neutral stand-
point about this theory, some of which seem to deepen the
confusion, are continuing in papers and textbooks [5]–[18].

In this paper, we will show the claim that displacement
current does not create a magnetic field is due to a lack of
understanding of the mathematical structure of electromag-
netic fields. We mainly discuss from the following points of
view:

• It is impossible in principle to separate magnetic fields
into those caused by “conduction currents” and those
caused by “displacement currents”.

• The posed question “does a displacement current create
a magnetic field or not?” is logically meaningless.

• Contrary to popular perception, the Biot-Savart law per-
fectly includes the effect of displacement currents im-
plicitely [19].

3. Need for Displacement Current

In this section, we will reconfirm how the Ampère’s law is
modified to account for displacement currents.

The integral form of Ampère’s law, curl H = J , is∫
C

H · dl =
∫
S

J · dS, (2)

where the closed path C = ∂S is the edge of the surface S.
In this equality the surface S can be arbitrary as long as the
closed path C is its edge. In order for the integral to be the

Fig. 1 Displacement currents in charging capacitor

same regardless of the surface, div J = 0 must be satisfied
everywhere (steady-state current condition). Otherwise, for
surfaces S1 , S2 with ∂S1 = ∂S2 = C, the divergence
theorem gives

0 ,
∫
V

div J dv =
(∫

S1

−
∫
S2

)
J · dS,

where V is the volume enclosed by S1 and S2.
Consider a capacitor being charged with a constant cur-

rent I, as shown in Fig. 1. We have two surfaces S1 and S2
that share the same circle C encircling the capacitor as their
respective circumferences. While the hemisphere S1 crosses
the current I, the disk S2 passes between the electrodes of
the capacitor and crosses no currents. The integrals of the
current density for these surfaces

I =
∫
S1

J · dS ,
∫
S2

J · dS = 0,

are clearly not equal. But if we add the displacement current
density ∂D/∂t, then the surface integral for S2 becomes∫

S2

(
J +
∂D

∂t

)
· dS =

∫
S2

∂D

∂t
· dS =

d
dt

Q(t) = I,

and now the equality holds. The charge on the capacitor
plate Q =

∫
S2
D · dS can be derived from D between the

plates. With this model we can confirm that Eq. (2) must be
modified as∫

C

H · dl =
∫
S

(
J +
∂D

∂t

)
· dS. (3)

This is the integral form of Maxwell-Ampère’s equation.

4. Inappropriate Problem Setting

In this section, we show that the question whether the dis-
placement current creates a magnetic field or not is totally
meaningless.

The question can be broken down in the following way.
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When the total current density J tot is divided into the conduc-
tion current density J and the displacement current density
∂tD, the magnetic field can be divided into two components
as H = Hc + Hd, correspondingly. And if we can prove
Hd = 0 (, 0), then the answer is no (yes). But, in the
first place, what are the (local) equations that these magnetic
fields obey? The only possible choice seems to be

curl Hc
?
= J, curl Hd

?
= ∂tD, (4)

but it leads us to the contradiction when we take the diver-
gence;

0 ?
= div J , 0, 0 ?

= div ∂tD , 0.

What did we introduce the displacement current for?
We have found that the magnetic field created the dis-

placement current cannot be defined and therefore, it makes
no sense to ask whether such an undefinable quantity is zero
or not.

In general, if we want to solve the Maxwell-Ampère
equation, curl H = J+∂tD, by superposition, then we should
set

curl H1 = J1 + ∂tD1, curl H2 = J2 + ∂tD2, (5)

and divide not only the current density but also the displace-
ment current density term, so that each of them satisfies

div(J1 + ∂tD1) = 0, div(J2 + ∂tD2) = 0. (6)

This is the proper division of total current. On the other
hand the division of Eq. (4) makes no sense.

Let us consider a mathematical case to see why a simple-
minded superposition does not hold. For a general linear map
A : X → Y , from a space X to another Y , let Im A = {Ax |
x ∈ X} ⊂ Y, which is called the range or image of A. In
order that the linear equation

Ax = b,

has a solution x ∈ X , the condition b ∈ Im A must be met.
Even when b = b1 + b2 ∈ Im A, if b1, b2 < ImA then the
superposition cannot be used. Because

Ax1 = b1, Ax2 = b2,

have no solutions. An example is

A =
[
1 1
0 0

]
, b =

[
2
0

]
, b1 =

[
1
1

]
, b2 =

[
1
−1

]
.

To make a situation where the solution is unique, we should
set up another linear equation, Bx = 0, which corresponds
to div(µ0H) = 0 in our case.

5. Biot-Savart’s Law and Displacement Current

Here we will show that contrary to common belief Biot-
Savart’s law includes the effect of displacement currents [10],

[21].
For the sake of brevity, the Coulomb field is written as

G(r) :=
r

4π |r |3
.

With this, we have ∇ · G(r) = δ3(r), ∇ × G(r) = 0,
∇(1/r) = −4πG(r), where δ3(r) is the delta function. (For
calculation, we use ∇·, ∇×, and ∇, instead of div, curl, and
grad.)

The electric flux density for a charge q placed at the
origin is Dq(r) = qG(r) and that for an electric dipole
p = ql at the origin is

Dp(r) = −(p · ∇)G(r). (7)

For the current element I∆l placed at the origin, the magnetic
field created at the point r is given by Biot-Savart law in the
difference form

∆H(r) = I∆l × G(r). (8)

The magnetic field due to the current I flowing through the
closed circuit L is given as a superposition (integral)

H(r) =
∮
L

dH(r − r ′) =
∮
L

Idl ′×G(r − r ′), (9)

where dl ′ is a line element at position r ′ on path L. Origi-
nally, the condition that “L is closed” was required by Biot-
Savart’s integrated formula.

Let us find the vortex of the magnetic field element (8).
With the help of a vector analysis formula, we have

∇ × ∆H(r) = ∇ × [(I∆l) × G(r)]
= I∆l [∇ · G(r)] − (I∆l · ∇)G(r)

= I∆l δ3(r) + ∂
∂t

DIt∆l (r) =: ∆J tot(r). (10)

We note that in addition to the original current element I∆l
the additional term appears. This term is the time derivative
of the electric flux density (7) for the electric dipole p(t) =
It∆l at the origin. It means that if a constant current I
flows on the line element ∆l, then there accumulates charge
±Q(t) = ±It at each end ±∆l/2 to form an electric dipole.

The total current∆J tot in Eq. (10) satisfies the stationary
condition and the magnetic field∆H is generated by this total
current ∆J tot.

The condition that L is closed, which was originally
assumed in the Biot-Savart equation, is actually unnecessary.
When a current is formally integrated for an open path L with
start (end) point r1 (r2), we obtain

J tot(r) =
∫
L

dJ tot(r−r ′)

= I
∫
L

dl ′δ3(r−r ′) + IG(r−r ′)
���r2

r′=r1
. (11)

As shown in Fig. 2, when the current elements are connected
(integrated), the displacement currents from opposing end-
points cancel each other and only those at the two extreme
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Fig. 2 Counteracting displacement currents in current element connections

ends of the path remain. This is similar to the case where
small bar magnets are connected to form a long chain. The
magnetic fields of opposite polarity at the connection points
cancel each other, and only the magnetic fields from the poles
at both ends survive.

In the end, the Biot-Savart’s equation (9) can be applied
even for unsteady (open) currents, just with the modification
of integration path;

∮
→

∫
, which is beyond the originally

intended scope of application.
Although it is an integral of the current distribution J ,

the total current J tot = J + Jdisp is automatically taken into
account and the corresponding magnetic field is given.

This fact has been pointed out by from time to time [7],
[19], [30], but many people still mistakenly believe that when
using Biot-Savart they can calculate the magnetic field only
due to the conduction currents that they give. But even if you
don’t order the displacment current, it will always come by
itself. This “hidden trick” is one of the sources of confusion
over the displacement current.

Even though both Biot-Savart’s law and Ampère’s law
were established in the same year (1920), only the former
consealed the effect of displacement current that will be
exposed 45 years later.

6. Helmholtz Decomposition of Vector Fields

From a mathematical point of view, we take a closer look at
how the Biot-Savart equation automatically incorporates the
effect of displacement currents. The current density field J
(or a three dimensional vector field in general) can be divided
into the “curl-free” component JL and the “divergence-free”
component JT, namely,

J(r) = JL(r) + JT(r),
curl JL(r) = 0, div JT(r) = 0. (12)

This is the so-called Helmholtz decomposition [19], [20],
[22]. The uniqueness of the decomposition requires that the
field quantities converge quickly to zero at infinity, which is
satisfied in the present case. The curl-free and divergence-
free fields are also called the “longitudinal” and “transverse”
fields, respectively, which are denoted by subscripts “L” and
“T”. The latter names are derived from the relations of their

Fourier transform to the wavevector k;

k × (F JL)(k) = 0, k · (F JT)(k) = 0.

The Biot-Savart law for the three-dimensional current
density J(r) is

H(r) =
∫
V

dv ′J(r ′) × G(r − r ′), (13)

and its vortex is

curl H(r) = J(r) −
∫
V

dv ′(∇′·J(r ′))G(r−r ′). (14)

The first term is just the given current density. With the
charge conservation of law∇·J(r)+∂t ϱ(r, t) = 0, the second
term turns out to be the displacement current density:∫

V

dv ′∂t ϱ(r ′, t)G(r − r ′) = ∂tD(r, t).

We can verify that ∂tD is longitudinal.
Equation (14) can be rewritten as

curl H(r) = J(r) − L̂J(r) = (1̂ − L̂)J(r),

where 1̂ is the identity operator, and the operator L̂ acts on
the vector field J(r) to create a new vector field:

(L̂J)(r) :=
∫
V

dv ′(∇′·J(r ′))G(r − r ′). (15)

The operator L̂ gives the longitudinal field components of a
vector field.

We define another operator T̂ := 1̂ − L̂, which gives
the transverse field component T̂ J . The operators L̂ and
T̂ are equipped with the properties of projection operators,
namely,

T̂2 = T̂, L̂2 = L̂, T̂ L̂ = L̂T̂ = 0.

As shown in Fig. 3, the Biot-Savart law gives the mag-
netic field due to the transverse component of the current
density JT = T̂ J = J − JL, or due to the total current
density
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Fig. 3 Helmhortz decomposition of current distribution

J tot := J + Jdisp.

From these equations, we know that the displacement current
is the curl-free (longitudinal) component with sign changed
of the given current:

Jdisp = −JL (= ∂tD). (16)

Adding the displacement current density Jdisp to the current
density J means the cancellation of the longitudinal com-
ponent JL to yield JT or J tot. The difference between the
subtraction and the sum gives a very different impression.

In the cource of deriving the Biot-Savart’s law from
Maxwell’s equations, we confirm why the former includes
the effect of displacement currents. With the curl of the
Maxwell-Ampères’s law, curl curl H = curl JT, JT = J +
∂tD, and div(µ0H) = 0, we have

∇2H = − curl JT,

where curl curl = grad div−∇2 is used. The solution to this
(vector) Poisson’s equation [22] is

H(r) =
∫

dv ′JT(r ′) × G(r − r ′) =: ( f̂TJT)(r), (17)

where the operator f̂T is defined so as to map a transverse
current JT to the corresponding magnetic field H . This
map, which can be written symbolically H = curl−1 JT,
is invertible, i.e., one-to-one. For a general current J , we
should have

H = f̂TT̂ J =: f̂BSJ,

which correponds to the Biot-Savart’s law (13). The two-step
operation, f̂BS = f̂TT̂ is not invertible. The current distribu-
tion cannot be uniquely determined from the magnetic field.
This fact is overlooked so often.

In order to fix the problem of improper division of
Eq. (4), we can apply T̂ for each current.

curl H = T̂ J = J + ∂tD, curl Hd = T̂(∂tD) = 0.

Then, in the second equation, the displacement current ∂tD
certainly disappears and Hd vanishes. But we should re-
member that it reapears in the first equation and contribute
to H . We cannot erase the displacement current.

7. Example of Helmholtz Decomposition of Current
Distribution

In Fig. 4, the Helmholtz decomposition is shown for several
current distributions. All of these examples has been used
to discuss displacement currents. Each of them is briefly
described below. We have already mentioned in Sect. 5 about
the current elements in the first row. In the case of point
charge q moving at velocity v , we can set p = qv, instead of
I∆l.

7.1 Semi-Infinite Linear Current

If a constant current I is flowing along the half line (z ≤ 0)
along the z-axis, the charge must be accumulated at the origin
as Q(t) = It +Q(0), where Q(0) is the charge at time t = 0.

Electric flux density of Coulomb type and the asso-
ciated displacement current density ∂tD(t, r) = IG(r) are
generated. We can derive the magnetic fields in two ways,
i.e., with Biot-Savart’s law and Maxwell-Ampère’s formula.

Using cylindrical coordinates (ρ, ϕ, z), the Biot-Savart
law for an open path, L = {r ′ = zez | −∞ < z ≤ 0}, we
have

Hϕ(r) = Hϕ(ρ, z) =
∫
L

Idzez × G(r − r ′)

=
I

4π

∫ 0

−∞

ρ dz′

[(z − z′)2 + ρ2]3/2
=

I
4πρ

(
1 − z√

z2 + ρ2

)
.

Secondly, to apply Maxwell-Ampère’s formula, con-
sider a spherical surface with radius R =

√
ρ2 + z2 cen-

tered at the origin. We have a latitude line C defined by
θ = tan−1(ρ/z) = const. Let S+ (S−) be the northern (south-
ern) spherical crown cut by C. Note that C = ∂S+ = −∂S−.
Applying the Maxwell-Ampère formula (1) for both surfaces,
we have∮

C

H · dl =
∫
S+

∂tD · dS = −
∫
S−

(J + ∂tD) · dS.

The left hand side is 2πρHϕ(ρ, z). The middle side is eval-
uated as follows. Since the magnitude of the displace-
ment current on a sphere of radius R is ∂tD = I/(4πR2),
it is perpendicular to the sphere, and the area of S+ is
|S+ | = 2πR2(1 − cos θ), we have

∂tD |S+ | =
I
2
(1 − cos θ).

Similary for the right hand side using |S− | = 2πR2(1+cos θ)
and

∫
S−

J · dS = −I, we have

I − ∂tD |S− | = I − I
2
(1 + cos θ).

Thus, the same result is obtained by using either of the
surfaces:
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Fig. 4 Examples of Helmholtz decomposition of current distribution

Hϕ(ρ, z) =
I

4πρ
(1 − cos θ) = I

4πρ

(
1 − z√

ρ2 + z2

)
.

This result agrees with the previous result by Biot-Savart’s
law. In this method we had to consider the displacement
currents explicitly, otherwise, the solution is not uniquely
determined.

7.2 Spherically Symmetric Current Distribution

To back up the false claim that displacement currents do not
create magnetic fields, the fallacious theory that “spherically
symmetric currents do not create a magnetic field due to their
symmetry” is developed. Combining Biot-Savart’s equation
and symmetry for each part of the current, it is attempted to
to show that the magnetic field is zero.

As an example, let’s take a look at Sect. 9.2 of Purcell’s
textbook [18]. Noting that a curl-free field like displacement
current density can be written as a superposition of spheri-
cally symmetric Coulomb-type vector fields, it continues,

. . . the magnetic fields of any radial, symmetri-
cal current distribution, calculated via Biot-Savart,
is zero. To understand why, consider a radial line
through a given line through a given location. At
this location, the Biot-Savart’s contributions from
a pair of points symmetrically located with respect
to this line are equal and opposite, as you can ver-
ify. The contributions therefore cancel in pairs,
yielding zero field at the given location.

Here the fact is forgotten that Biot-Savart’s law includes the
effect of displacement current, which in this case is spheri-
cally symmetric but flows in the opposite direction.

In his famous series of text book [23], Feynman cor-
rectly explained the situation of spherically symmetric cur-
rent using a model where a small sphere with radioactive
material is squirting out some charged particles.

Physically speaking, as shown in Fig. 3, spherically
symmetric currents can be thought of as a large number of
semi-linear currents isotropically combined at a single point.

Fig. 5 Charging capacitor. The spacing d is exaggerated compared with
the radius R. The displacement current is uniformly distributed.

In this case, the displacement currents at the endpoints add
up to exactly cancel the original currents. The total current
becomes zero in all places, and therefore the magnetic field
is also zero. The magnetic field vanishes not owing to the
cancellation of real currents. In short, if the symmetric cur-
rent (conducting or displacement) is purely longitudinal, the
total current is zero.

7.3 Charging Capacitor

The charging capacitor problem is one of the reasons why
Maxwell came up with the idea of displacement current. The
debate continues over this model, as to whether the displace-
ment current between the electrodes creates a magnetic field
or not [14], [15], [24].

Surprisingly, miscalculations are found, from time to
time, in dealing with this problem. For example, Roche [14]
made wrong calculation in his historical survey paper on
the controversy over the reality of displacement current.
Jackson [15] pointed out the mistake and complained that
the paper is marred by imprecision, sloppy notation, and
downright mistakes.

For simplicity, let us assume an axisymmetric system
around z-axis as shown in Fig. 5. Let R be the radius of the
electrodes and d be the spacing. The system is assumed to be
charged by a constant current I through the conducting wires.
Assuming that d ≪ R, the electric flux density between the
electrodes is spatially uniform and given as Dz(t) = It/πR2.
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Since the current has no angular component, Jϕ = 0, the
magnetic field has only the azimuthal component Hϕ . The
magnetic field due to the current I on the straight conductor
is

H(1)
ϕ (ρ, z) = I

2πρ
. (18)

The current I in the wire z < −d/2 reaches the eletrode
at z = −d/2 and spreads radially and the electrode is charged
with a uniform charge surface density. The linear density of
this radial current Kρ(ρ) is dependent on ρ and can be de-
termind by the charge conservation condition and the unifor-
mity. With the two-dimensional divergence formula we have
ρ−1(d/dρ)[ρKρ(ρ)] = const. Under the boundary conditions
(2πρKρ)(0) = I and Kρ(R) = 0, the differential equation can
be solved;

Kρ(ρ) =
I

2πρ

(
1 − ρ

2

R2

)
. (19)

For the other electrode at z = d/2, the surface current density
is −Kρ(ρ).

The straight conductor has a gap −d/2 < z < d/2 of
length d. The H(1)

ϕ includes its contribution. Therefore, we
have to introduce a current of−I flowing in this segment [15].
(Roche [14] missed this contribution, which remains even in
the limit, d → 0.) If we connect this current element to the
two surface currents, the displacement currents from these
two connection points become zero and only those between
the electrodes remain.

In order to apply Ampère-Maxwell’s law, we set up a
circular loop, ρ = const between the electrodes (−d/2 < z <
d/2). For ρ ≤ R, we have 2πρH(2)

ϕ = −I + Iρ2/R2, or

H(2)
ϕ (ρ, z) = I

2πρ

(
−1 +

ρ2

R2

)
,

For ρ > R, we note H(2)
ϕ = 0. By superposition, we have the

magnetic field of all position as

Hϕ(ρ, z) = H(1)
ϕ (ρ, z) + H(2)

ϕ (ρ, z)

=


I

2π
ρ

R2 (ρ ≤ R, −d/2 < z < d/2)
I

2π
1
ρ

(otherwise)
. (20)

The difference between the magnetic fields inside and outside
the electrodes is equal to the surface current density (19):

Hϕ(ρ, d/2 + 0) − Hϕ(ρ, d/2 − 0) = Kρ(ρ).

This current splitting in Fig. 5, which follows the rule (5),
is a clever way to avoid displacement currents except those
between these electrodes.

Many experiments on charging capacitor have been con-
ducted [25]–[28]. Especially, the careful measurement by
Bartlett and Corle [27] seems very precise and consistent
with Eq. (20). But the title of paper “Measuring Maxwell’s

displacement current inside a capacitor” is misleading, be-
cause what was measured was the magnetic field inside the
capacitor. As authors admitted in the very last paragraph
(and later in [29]),

What we have shown, then, is that the Biot-Savart
law applies to open as well as to closed circuits.
One may write the differential form of this law as
dB = Idl × R/R3, without the usual caveat that
only the integral around a closed loop is meaning-
ful.

The experiment does not answer the question whether the
displacement current generate magnetic field or not (or the
question itself is meaningless). In my opinion, it should be
stressed that the vortex of the magnetic field between the
electrodes was actually measured. The existence of such
vortices cannot be explained without displacement currents.
Further more it might be interesting to demonstrate that when
the wiring path to the capacitor is changed (e.g., to form
a coil) so as the magnetic field between the electrodes is
disturbed, the uniform vortex is still maintained.

Magnetic fields generated by a capacitor discharging
through the partially conducting spacer are dicussed in con-
fusion from time to time (leaky capacitor) [13]. The field
profile can better be understood in terms of that for a current
element (see Fig. 4).

8. Displacement Currents and Electromagnetic Waves

Let us look at the relationship between displacement currents
and electromagnetic waves utilizing the Helmholtz decom-
position (12). From two of the Maxwell equations and the
constitutive relation of vacuum

∂B

∂t
= − curl E,

∂D

∂t
= curl H (21)

D = ε0E, H = µ−1
0 B,

we have the equations for the plane waves propageted in the
z direction (assuming ∂x = ∂y = 0 and x polarization, i.e.,
Ey = 0)

ε0
∂Ex

∂z
= −
∂Hy

∂t
, µ0

∂Hy

∂z
= −∂Ex

∂t
.

The d’Alembert solution to the hyperbolic partial differential
equations is

Ex(t, z) = f (z − c0t) + g(z + c0t).

The f and g are arbitrary functions. These waves are prop-
agated at the velocity ±c0 = ±

√
µ0/ε0. If there were no

displacement current term, then c0 → ∞ and no wave solu-
tion existed.

So far, we assumed the case where the steady current
condition is violated (div J , 0, i.e. ∂tD , 0). We now
relax the condition further and consider the case where the
magnetic field is also time-varying (∂tB , 0).

We separate Maxwell’s equations into the longitudinal
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and transverse components. Since the magnetic flux density
satisfies div B = 0, we have B ≡ BT, or BL = 0. The
equation of electromagnetic induction is

curl(ET + EL) = curl ET = −∂tBT. (22)

For the electric flux density, from div(DT + DL) = div DL =
ϱ, the longitudinal component DL is related to the charge
density ϱ. On the other hand, the transverse component
DT = ε0ET is related to the electromagnetic induction equa-
tion (22).

Substituting H = HT = µ
−1
0 BT, into Maxwell-

Ampère’s equation, we have

curl HT = JT + ∂tDT + (JL + ∂tDL).

Since the left-hand side is a transverse field (divergence-
free), as in the case of a stationary field, the longitudinal
components cancel each other; JL + ∂tDL ≡ 0. This can
be regarded as the role of the longitudinal component of the
displacement current. In summary, we have

curl ET = −∂tBT, curl HT = JT + ∂tDT, (23)
BL = 0, div DL = ϱ, JL + ∂tDL = 0.

Since there is no divergence for both fields JT and ∂tDT,
they can be splitted properly and the magnetic field created
by each of them can be defined. By the coupling of the first
two equations due to the transverse displacement currents,
hybridization of the transverse components of the electric
and magnetic fields, i.e., electromagnetic wave modes are
enabled.

In particular, for JT = 0, a free solution exists. Since
the transverse displacement current ∂tDT is not bounded by
the real current, the electromagnetic wave can propagate far
from the source. In fact the dependence of the longitudinal
component of the displacement current on the distance from
the source is at most 1/R2, that of the electromagnetic wave,
i.e., the transverse component, is 1/R.

Sometimes the Jeffimenko equation, which is a dynam-
ical extension of Coulombs’s law and Biot-Savart’s law, is
used to rule out the contribution of displacement currents in
quasi-static cases [31]. But arguments in this direction only
complicate things and do not seem useful.

9. Conclusion

The controversy over the meaning of displacement currents
tends to get lost in the choice between creating a magnetic
field or not. Such confusion arises from the following facts.

• In the case of non-stationary currents, neither magnetic
field created by conduction current nor that created by
displacement current can be defined.

• In solving Maxwell-Ampère’s equation by superposi-
tion, the right-hand side cannot be divided arbitrary
ignoring the inseparability of the displacement current
and the current.

• The effect of displacement current is automatically in-
corporated in the magnetic field calculated by Biot-
Savart’s law.

The existence of displacement current is subtle and elu-
sive, and it was only discovered through Maxwell’s deep
insight. He emphasized the importance of the unity of the
current and the displacement current, and defined the sum of
them as total current J tot. He wrote down the fundamental
equations of the electromagnetic field using the total current
J tot.

As we have seen, each of the longitudinal and transverse
components of displacement currents plays a different role.
Although the former was the initial impetus for the intro-
duction of displacement currents, it plays a shadow role to
counteract the longitudinal component of the current. On the
other hand, the latter plays a prominent role in propagating
electromagnetic waves.

While attempting to distinguish the roles of current and
displacement current, researchers have fallen for the trap of
Biot-Savart’s equation. In particular, the statement that the
displacement current does not produce a magnetic field may
leads to underestimation of displacement currents, or even
to lost sight of its essential role in electromagnetic waves.
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