A practical security checking system usually involves the integration of the mentioned methods. An airport security screening process includes using X-ray scans to examine luggage and employing metal detectors or manual techniques to detect any forbidden objects someone may be carrying. Therefore, these conventional methods necessitate individuals to queue and wait for individual inspection. Challenges arise when implementing security screening systems in crowded public spaces or buildings with numerous individuals. This procedure significantly prolongs the waiting time, hinders the effectiveness of security checks, and leads to delays in busy surroundings. Hence, it is essential to develop a security measures system that does not necessitate individuals to wait at a specific location [9-10].

Millimeter-wave (mmW) radiation, classed as non-ionizing radiation, emerges as a viable solution due to its capability to penetrate typical clothing and its safety for human exposure, giving advantages over ionizing radiations like X-rays [11-12]. The use of mmW technology is becoming a potential and innovative approach for applying harmless preventive measures to identify concealed items, enhancing security and surveillance in public spaces [13-15].

MmW imaging systems can be either passive or active based on whether an active illumination is present or not [16-17]. Passive imaging relies on temperature differences to perform imaging [18-19], while an active imaging system transmits mmW signals and measures the reflected signals from the target to generate images [20-23]. Hence, it is relatively less dependent on environmental conditions. Active imaging is suitable for security applications for long-distance imaging due to its high dynamic range and signal-to-noise ratio (SNR) [24-26]. Innovations aimed at improving the speed and accuracy of image generation are crucial to making security systems more practical and efficient in actual scenarios. Efforts are underway to address these challenges and streamline the operation of mmW imaging systems for security screening purposes. In addition, our objective is to develop a new millimeter-wave radio imaging system by utilizing a complex integral/correlation technique. In this regard, this approach enables efficient operation with a significant throughput and reasonable resolution compared to traditional millimeter-wave imaging systems [27-29].

The paper reports experimental results regarding the utilization of a dielectric lens for mmW radio imaging. The research reveals that a target object concealed by a layer of paper or clothing can be successfully recognized with rea-
sonable resolution. Moreover, depth information of a target can be obtained by employing a mmW frequency sweep or emitting multiple frequencies. This approach facilitates the generation of a three-dimensional (3D) image of the object.

2. Millimeter-Wave Imaging Using Lens

Fourier transformation can be employed to analyze mmW imaging. In this manner, the reflected wave from the target is treated as a superposition of plane waves. A lens can serve as a Fourier transform device, facilitating intricate Fourier calculations on mmW imaging of objects. Fourier optics primarily analyzes monochromatic light or electromagnetic waves with a single frequency. These waves are characterized by complex values encompassing amplitude and phase information.

Fig. 1 shows a Fourier transform using a convex lens. The pattern at the back focal plane can be described as follows [30],

$$E(x_i, y_i) = \frac{1}{j \lambda f} e^{j k (f + d)} \times \exp \left[j k \frac{x_i^2 + y_i^2}{2f} \left(1 - \frac{d}{f} \right) \right] G \left(\frac{x_i}{\lambda f}, \frac{y_i}{\lambda f} \right)$$

(1)

when the object is placed at the front focal plane $d = f$, the second exponential factor equals one,

$$E(x_i, y_i) = e^{j 2k f} \frac{1}{j \lambda f} G \left(\frac{x_i}{\lambda f}, \frac{y_i}{\lambda f} \right).$$

(2)

The field distribution $G(x_i/\lambda f, y_i/\lambda f)$ on the observation plane is the Fourier transform of the object function $g(x_0, y_0)$ when the object is located to the front focal plane and the observation plane is positioned at the back focal plane. In addition, changing or moving the position of the object within the lens focus range can affect the reconstruction results.

3. Imaging Experiment

In terms of active mmW imaging which relies on illuminating objects with a mmW signal produced by an external source. The incident wave, whether planar or spherical, generates a scattered field through secondary sources within and on the object’s surface. To obtain a visual representation of mmW signals, the imaging system measures the overall distribution of the scattered signal.

A photograph of the measurement set-up is shown in Fig. 2. The systems use an electrically controlled antenna to scan a two-dimensional aperture plane while keeping the target fixed on a platform. The receiver (Rx) antenna scans backscattered data over the observation plane via a motorized two-axis rail. A transmitter (Tx) antenna, operating as a millimeter-wave source, illuminates the target, and reflected signals travel through a lens to reach the receiver on the scanning plane. The received signal power must exceed the receiver’s internal noise level to ensure data relevance. Hence, dielectric lenses collimate reflected signals and also enhance received signal intensity. Distance between transmitter and receiver or obstacles in the path can decrease received signal strength, compounded by signal spreading during transmission. Magnitude and phase information of the millimeter-wave signal reflected off the object is transmitted through a dielectric lens, sampled using an X-Y positioning stage, and the data is then analyzed to generate the reconstructed image.

The mmW source, equipped with horn antennas operating at 75-110 GHz, radiates waves to the object at an optimal angle for maximum reflection amplitude. On the receiving end, reliable imaging is expected to be achieved with small sampling sizes using a waveguide probe antenna (WR-10) as the Rx is placed on a scanning platform that moves in both the x and y directions. The target, centered on the platform and backed by microwave absorbers, prevents unwanted reflections. A dielectric lens made of PTFE or Teflon (refractive index of $n = 1.45$ at the mmW frequency) with a 250 mm diameter collimates the reflected wave. The object and antenna are positioned 600 mm in the lens’s front and back focal planes. The observation plane aperture size is 240 mm \times 240 mm, which is considered sufficient for analyzing

![Fig. 1 Fourier transformation by lens.](image1)

![Fig. 2 Photograph of experimental setup.](image2)
collimated reflected signals from the target. To demonstrate the performance, the experiment was conducted using a flat gun-shaped object as a target. The object target was made from a general aluminum foil of 0.011 mm thickness, which is considered enough to give the amount of reflection in the W-band operation frequency. The dimension size of the object is about 70 mm × 50 mm in length and width, respectively. The collected data were analyzed to reconstruct the object image from the reflected wave of the target after passing the lens.

4. Results and Discussion

Figure 3 shows magnitude and phase profiles obtained from data gathered throughout the observation plane for the 78 GHz frequency. Experimental data was collected utilizing a 24 × 24 scanning grid arrangement with a sample interval of 10 mm and a 64 × 64 scanning grid arrangement with a sample interval of 3.75 mm. This investigation of different sample intervals was conducted to improve the resolution. The results show a comparison of the magnitude and phase patterns at the observation plane for 78 GHz using measurements of 24 × 24 points and 64 × 64 points, respectively. Increasing the sampling or the number of measurement points can lead to improved resolution, as demonstrated by the smoother pattern obtained compared to less sampling. However, it should be noted that increasing the sampling point will cause the measurement to take longer to complete. Moreover, the results show that the system effectively captures both the amplitude and phase of the signal.

The next step is to generate the reconstructed image. The magnitude and phase data obtained across the observation plane were combined and converted into complex values for reconstruction purposes. By applying the Fast Fourier Transform (FFT) to the measured mmW signal at the observation plane, the image of the target object can be effectively reconstructed. Fig. 4 shows the intensity of the acquired data after processing, demonstrating the successful reconstruction of target images by analyzing millimeter-wave signals reflected from the target. Utilizing a dielectric lens configured for Fourier imaging, a 2-dimensional image can be generated by simply performing an FFT on the collected data from the observation plane. The results coincide with the theory presented in the preceding section. A comparison of the reconstructed images of measurements for scan step intervals of 10 mm and 3.75 mm at frequencies of 78 GHz and 96 GHz can be seen in the figure. As anticipated, increasing the sampling size can result in higher resolution for the reconstructed images. Moreover, the utilization of higher frequencies can also lead to an improvement in resolution.

Several conditions were tested to demonstrate this approach as a security application. Target covers are utilized. A sheet of paper and a shirt were employed as a general cover for concealing a thing. Fig. 5 shows the reconstructed images of the objects concealed by the cover when operating at a frequency of 78 GHz and 96 GHz. The results indicate that the object image was successfully detected for recognition regardless of whether it was covered. Clear reconstruction images were obtained when no cover was present in front of the object. However, when objects were covered, the cover material reduced the reflection amplitude, resulting in slightly blurred or reduced intensity reconstructed images. Despite this, the objects remained recognizable in shape. These findings reveal the potential to detect hidden objects, which conventional methods may not achieve. Moreover, the study demonstrated that even with thin materials like aluminum foil, reconstructed images could be generated.

The received signal intensity of the imaging system was also measured. The measurement results for the received signals where Rx is fixed at the center point of the observation plane are illustrated in Fig 6. The figure shows that utilizing the lens can enhance the received signal intensity by around 10 dB while placing covers such as paper and a shirt in front of the object.
of the object reduces the signal but still maintains a relatively satisfactory level of the received signal from 75-110 GHz. There is a notable decrease in signal strength for objects covered by shirt around the 98 GHz frequency. This could be attributed to the material used for painting on the shirt. The degradation observed in the reconstructed images of the paper and shirt covered, as shown in Fig. 5, can be attributed to the lower signal level affecting the clarity of the images. Therefore, utilizing a lens is rather effective to improve the signal level, potentially enhancing the overall image quality.

The results show that the basic performance of mmW imaging was conducted. Moreover, the imaging system is also capable of producing images of three-dimensional (3D) information through either a mmW frequency sweep or the emission of multiple frequencies, which are currently being investigated. However, the raster scan approach employed in the experiment is relatively time-consuming due to limitations in the stage motor and data acquisition on the Vector Network Analyzer (VNA). Therefore, utilizing a lens is rather effective to improve the signal level, potentially enhancing the overall image quality.

The paper reported on a mmW imaging system incorporating a dielectric lens and its basic characteristics, such as its broadband functionality and signal strength. This approach facilitates imaging objects within opaque materials at various frequencies and enables comprehensive inspection such as 3D imaging. A setup involving multiple dielectric lenses to magnify the target size is underway.

Imaging using electromagnetic waves in the THz frequency range can be used for security purposes due to its better resolution. However, privacy concerns must be addressed when using this technology in public spaces. An interesting approach involves combining laser display technologies to create and project a 3D image using data obtained from the mmW imaging technique also can be employed.

5. Conclusion

The paper reported on a mmW imaging system incorporating a dielectric lens and its basic characteristics, such as its broadband functionality and signal strength. This approach facilitates imaging objects within opaque materials at various frequencies and enables comprehensive inspection such as 3D imaging. A setup involving multiple dielectric lenses to magnify the target size is underway.

Imaging using electromagnetic waves in the THz frequency range can be used for security purposes due to its better resolution. However, privacy concerns must be addressed when using this technology in public spaces. An interesting approach involves combining laser display technologies to create and project a 3D image using data obtained from the mmW imaging technique also can be employed.

Acknowledgments

This work was supported in part by the MLIT, Japan.

References

Hitoshi Nohmi president at Alouette Technology Inc. He can be contacted at email: h-nohmi@altek.jp.

Hiroshi Murata received the B.Eng., M.Eng., and D.Eng. degrees in Electrical Engineering from Osaka University, Osaka, Japan in 1988, 1990, and 1998, respectively, for studies on the guided-wave systems with third-order optical nonlinearity and their applications to all-optical functional devices. In 1991, he joined the Department of Electrical Engineering, Faculty of Engineering Science, Osaka University. In 2018, he moved to the Area of Electric Engineering, Graduate School of Engineering, Mie University, Tsu, Japan, where he is currently a Professor. He is the author and coauthor of more than 260 scientific publications in his areas of research, and holds various patents too. His research interests include 5G/Beyond 5G mobile systems, microwave photonics, integrated optics and nonlinear optics. Prof. Murata is an Associate Editor of the IEICE Electronics Express (ELEX) in the IEICE, Japan, in 2009-2012 and was the Guest Editor of the Journal Advances in OptoElectronics in the Special Issue: “Progress in Domain-Engineered Photonic Materials”, in 2007–2008. He is also a member of the EuMA, the IEEE Photonics and MTT societies, the OSA, the JSAP, the IEICE, and the Laser Society of Japan. He was the recipient of the 35th European Microwave Conference Microwave Prize in 2005, the IEEE Photonics Global Singapore Best Paper Award in 2008, the 2017 Micro-Optics Conference Paper Award in 2017, and the IEC Award in 2017. He can be contacted at email: murata@elec.mie-u.ac.jp