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SUMMARY Due to the limited lifespan of Micro-Electro-Mechanical 

Systems (MEMS), their components need to be replaced regularly. For 

intelligent devices such as electronic noses, updating an intelligent gas 

sensor system requires establishing a new classifier model for the newly 

inserted gas sensor probes because of the poor consistency between the 

signals collected by the new and original systems. The traditional method 

involves retraining the new model by collecting adequate data of the gas 

sensor array under strict laboratory conditions, which is time-consuming 

and resource-intensive. To simplify and expedite this process, a federated 

learning method called FedGSSU is proposed for gas sensor system 

updating. Two datasets were used to verify the effectiveness of the proposed 

framework. The experimental results show that FedGSSU can effectively 

utilize the original classifier model to obtain a new classifier model while 

only replacing the gas sensor array. The consistency between the new gas 

sensor system and the original one reaches up to 90.17%, and the test 

accuracy is increased by 4 percentage points compared to the traditional 

method. While replacing sensors with FedGSSU will reduce recognition 

accuracy slightly, it is more acceptable in scenarios where high accuracy is 

not required than re-calibrating sensors and re-training the classifier. 

key words: Gas sensor, sensor replacement, model update, classifier model. 

1. Introduction 

The monitoring and detection of volatile organic compounds 

(VOCs) have become increasingly important in recent years, 

with researchers dedicating more attention to this field [1]. 

One common method for air quality monitoring is through 

the use of a simple system architecture that employs an 

independent gas sensor array. This system drives electronics 

and utilizes appropriate pattern recognition algorithms to 

identify different types of gases [2-5]. 

 

In real-time environmental monitoring applications, micro-

electro-mechanical systems (MEMS) with gas sensors offer 

numerous advantages over traditional detection methods [6]. 

These include their small size, high sensitivity, fast response 

time, and ease of integration into arrays. MEMS integrate 

various gas sensors onto a single piece of silicon, utilizing 

different gas sensors to mitigate the cross-effect of 

sensitivity among gases. This allows for the accurate 

recognition of different gases [7-10]. 

 

In practice, however, sensors are not capable of maintaining 

optimal performance over an extended period [11,12]. 

During prolonged usage, unforeseen changes such as 

poisoning or aging may occur within the sensor, limiting its 

lifespan and necessitating replacement [13,14]. Furthermore, 

even sensors of the same type can exhibit varying 

nanostructures in their sensitive films, resulting in disparate 

output signals when exposed to the same gas environment 

[15,16]. Consequently, after replacing a gas sensor array, the 

original gas recognition classifier model may no longer 

accurately identify the target gas [17]. Thus, it becomes 

necessary to recalibrate the classifier model for the new 

sensor array. 

 

The conventional approach to constructing a sensor 

classifier model involves exposing the sensor array to 

various concentrations of gases in distinct environments, 

collecting signal samples, and utilizing these data points to 

create a training dataset for the classification system [18]. 

The objective of this training process is to develop a gas 

recognition system capable of automatically identifying the 

concentration of each gas component.  However, due to the 

intricate nature of the sensor array training process and the 

substantial volume of data required, traditional methods 

struggle to achieve automation [19]. As a result, this method 

necessitates the involvement of professionals in a laboratory 

setting and is not feasible for end-users to execute 

independently. Consequently, the upkeep costs and 

complexity associated with sensor systems are significantly 

high [20]. 

 

Federated Learning (FL) is a cutting-edge technique that 

enables multiple devices to collaboratively learn a robust 

model [21,22]. In recent years, numerous FL frameworks 

have been successfully applied to address practical 

challenges in diverse fields such as intelligent marketing and 

intelligent diagnosis [23]. Inspired by the FL algorithm, this 

paper proposes FedGSSU, an innovative approach that 

streamlines and accelerates the development of an effective 

new classifier model without necessitating experimental 

measurements. Taking advantage of the strong computing 

capabilities of intelligent gas recognition equipment, 

FedGSSU refines the parameters of the new classifier model 

using an overdetermined equation. Through iterative 
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optimization, the optimal model of the new classifier is 

ultimately obtained. 

 

The structure of this paper is organized as follows: The 

subsequent section elucidates FL and the methodology 

based on overdetermined equations for parameter 

adjustment. Subsequently, the framework and core 

algorithm are presented in the third section, followed by 

experimental results, discussions, and concluding remarks. 

2. Related Work 

2.1 Federated Learning 

The aim of FL is to develop a resilient model through the 

collaboration of multiple devices. Federated Averaging 

(FedAvg), a synchronous distributed optimization algorithm, 

is arguably the most renowned FL algorithm [24]. It 

encompasses local updates and global aggregation, with the 

learning process outlined in Eq. 1. 

 

w𝑡
𝑖 ≜ {

w𝑡−1
𝑖 − 𝜂∇𝐹𝑖(w𝑡−1

𝑖 ) if 𝑡 mod 𝑛 ≠ 0

∑
|𝐷𝑖|

|𝐷|
[w𝑡−1

𝑖 − 𝜂∇𝐹𝑖(w𝑡−1
𝑖 )]𝑖∈𝑁 if 𝑡 mod 𝑛 = 0

 

(1) 

 

Each node (nodei) utilizes stochastic gradient descent (SGD) 

with a learning rate 𝜂 to iteratively refine its local model wi, 

repeating this process every n epochs. Subsequently, a 

parameter server aggregates all wi to generate a 

comprehensive global model w, which is then disseminated 

back to each node for the subsequent iteration. 

 

However, FedAvg faces scalability issues and performs 

poorly when dealing with non-independent and identically 

distributed (Non-IID) data. To address these challenges, Li 

et al. [25] proposed a decentralized pipelined SGD 

framework (Pipe-SGD) for distributed deep net training. 

This framework enhances FedAvg by eliminating the 

parameter server and replacing global aggregation with 

global inter-node-model transfer. In Pipe-SGD, the learning 

process involves synchronizing a new model wi with the 

previously learned model wi-1, and transferring the model 

from the original nodei-1 to the new nodei in this FL process. 

 

2.2 Solving Overdetermined Equations 

Generally, there is no definitive solution to overdetermined 

equations, necessitating an approximate solution in most 

cases. A linear equation can be defined as follows: 

𝐴𝑥 = 𝑏                  (2) 

where 𝐴 ∈ 𝑅𝑚×𝑛, 𝑥 ∈ 𝑅𝑛 and 𝑏 ∈ 𝑅𝑚. If 𝑚 > 𝑛, then it 

is called an overdetermined equation and is commonly 

solved with the least square method. That is, the following 

problem is solved: 

 

min‖𝐴𝑥 − 𝑏‖2
2                (3) 

 

When the coefficient matrix of Eq. 2 is full rank, Eq. 3 has a 

unique solution. Numerous results have been obtained in the 

study of Eq. 2. The more conventional approach involves 

solving the linear equations using the same method as Eq. 4 

[26]. 

 

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏                 (4) 

3. The Proposed FedGSSU Method 

3.1 Overview of the Method 

The gas sensor system designed in this paper, with the 

required analog and digital circuitry, as shown in Fig.1, 

comprises two independent sets of sensor array sockets 

connected to the signal processing module. Normally, one 

socket is occupied by the sensor array while the other 

remains empty. If the original sensor array is nearing the end 

of its useful life, a new sensor array is inserted into the empty 

socket without altering the original one. During the 

federated cycle in the FedGSSU, the gas sensor system 

undergoes model learning and parameter updating. The 

original classifier model of the gas sensor array serves as the 

basis for this process. Simultaneously, both the original and 

new sensor arrays are exposed to the same gas environment 

to train a new classifier model, as depicted in Fig.2. Finally, 

after completing the updating process, the original sensor 

array is unplugged from its socket. 

3.2 Algorithm Description 

In this paper, the parameters of the model from the original 

gas sensor system are optimized to make it more suitable for 

the new sensor array. This is achieved by solving several 

overdetermined equations at the end of the original sensors' 

lifespan. To obtain datasets for training and testing, both the 

original and new sensor arrays are placed in the same gas 

environment. Multiple overdetermined equations are 

constructed layer by layer between the dataset from the new 

sensor array and the output vector of each layer of the 

original classifier model using the dataset from the original 

sensor array. By solving these equations, an optimized 

classifier model is obtained that can be used with the new 

sensor array. 

 

The first step in this process is to collect datasets from both 

the original and new sensor arrays simultaneously. The 
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parameters of the new model are then adjusted to achieve 

optimization, with a focus on adjusting the parameters of 

each layer. The layer parameters of the original classifier 

model are extracted and used to calculate the output vector 

of each layer of neurons using the dataset from the original 

sensor array. The output of each layer of the original model 

is then combined with the input vector of the same position 

layer of the new model to build equations layer by layer. The 

solutions to these equations become the parameters for the 

new layer. This optimization process allows the classifier 

model to better adapt to unknown data within the same task 

field. The main contribution of this paper is that through 

FedGSSU, a new classifier model can be obtained from the 

original classifier model by replacing only the gas sensor 

array, without having to replace the entire gas identification 

system. 

 

The entire process involves changing only the model 

parameters of the network, without altering the network 

structure. The specific method is as follows: 

 

Step 1: The model A for the classifier is known, its inputs 

X𝐴 = {𝑥1
𝐴, 𝑥2

𝐴, ⋯ , 𝑥𝑛
𝐴} are obtained from the original sensor 

array, and its outputs are Y𝐴 = 𝑓𝐴(X𝐴) = {𝑦1
𝐴, 𝑦2

𝐴 , ⋯ , 𝑦𝑛
𝐴}, 

where 𝑛 is the number of feature vectors. The model B of 

which the network structure is exactly the same as A is 

unknow, and its inputs X𝐵 = {𝑥1
𝐵 , 𝑥2

𝐵, ⋯ , 𝑥𝑛
𝐵} are obtained 

from the new sensor array. The outputs of the classifier with 

the model B are expected to be equal to Y𝐴. The model B 

cannot be trained by dataset D which are formed by X𝐵 and 

Y𝐴 , because Y𝐴  does not contain all labels under the 

condition of no laboratory measurements. Starting from the 

first layer of each model, the output of each layer of Model 

B will approximate the output of the antipodal layer of 

Model A. 

 

Step 2: The parameters of model B will be adjusted. In the 

federated period, the parameters of the original classifier 

model A, namely, the weight matrix 𝑊𝑒𝑖𝑔ℎ𝑡 and the bias 

matrix 𝐵𝑖𝑎𝑠 , are extracted. The original sensor array 

acquires the feature vector of the dataset as the input vector 

X. The hidden layer output is calculated as 𝐻 =
𝑓1(𝑊𝑒𝑖𝑔ℎ𝑡1

𝑇 ∙ 𝑋 + 𝐵𝑖𝑎𝑠1) , and the output layer output is 

𝑂 = 𝑓2(𝐻𝑇 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡2 + 𝐵𝑖𝑎𝑠2). For the i-th input sample 

in the dataset 𝑄𝑡 measured by the newly placed sensors, the 

bias term is expressed as 𝑊0
𝑖 , 𝑋0

𝑖 = 1 . Then, the 

overdetermined equations can be established: 

𝑊𝑒𝑖𝑔ℎ𝑡1
𝑇 ∙ 𝑋 + 𝐵𝑖𝑎𝑠1 = 𝑊1

𝑇 ∙ 𝑋𝑖         (5) 

In this way, the weight vector 𝑊1  of the first layer 

(including the bias term) can be obtained. Similarly, the 

weight vector 𝑊2  of the second layer (including the bias 

term) can be obtained. The solution vector obtained by this 

method is the least squares solution, which will not fine-tune 

the parameters by combining all the layers together. 

 

Step 3: The weight parameter obtained in the previous step 

is constructed to obtain the final classifier B. 

 

 

Fig. 1  Sensor arrays with interface electronics blocks, which include the 

amplifiers, multiplexer (MUX), low-pass filter (LPF), analog to digital 

converter (ADC), microcontroller (µC) and memory. 

 

Fig. 2  Overview of the FedGSSU Method. 

4. Experiment and Analysis 

Three separate experiments were conducted utilizing three 

distinct datasets to validate the proposed methodology. The 

subsequent experiments serve a dual purpose: 

 

• The aim of the study is to ascertain whether a viable 

classifier model can be developed through FedGSSU. 

• Another objective is to establish guidelines for 

determining the federated cycle and the coexistence 

environment of two distinct sets of gas sensors. 

4.1 Experiment 1 

(1) Dataset Description 

The dataset contains time series data from 16 chemical 

sensors exposed to different concentrations of a gas mixture. 

The mixture consists of two pairs of gases: methane and 

ethylene, as well as carbon monoxide and ethylene. Each 

pair was measured 16 times consecutively, and the sensor 

array was operated continuously for 12 hours without 

interruption. The operating voltage of the sensors was 

maintained at approximately 5V throughout the experiment. 

Each measurement involved collecting 16 sensor array 

signals continuously, and the concentration level was 

randomly varied [27]. In this study, data samples of methane, 

carbon monoxide, and ethylene were selected after 
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processing the experimental dataset. 

 

After the gas measurements were completed, 8 features were 

extracted from the time series data collected by each specific 

sensor. These features included two different types: 

 

The maximum resistance changes in the sensor during the 

steady change of the gas concentration, that is, the difference 

between the maximum value, and the baseline value [25]: 

𝛥𝑅 = 𝑚𝑎𝑥
𝑚

𝑟[𝑚] − 𝑚𝑖𝑛
𝑚

𝑟[𝑚]          (6) 

The rate of change in Δ𝑅 is: 

‖∆𝑅‖ =
𝑚𝑎𝑥

𝑚
𝑟[𝑚]−𝑚𝑖𝑛

𝑚
𝑟[𝑚]

𝑚𝑎𝑥
𝑚

𝑟[𝑚]
           (7) 

where 𝑟[𝑚]  represents the time series of the sensor 

resistance and 𝑚 is the discrete index of time. 

 

The set of dynamic characteristics of the sensor that reflect 

the increase in the sensor response or the decay of the 

transient portion, that is, the exponential moving average 

( 𝑒𝑚𝑎𝛼  ), under controlled conditions throughout the 

measurement process. 

𝑦[𝑚] = (1 − 𝛼)𝑦[𝑚 − 1] + 𝛼(𝑟[𝑚] − 𝑟[𝑚 − 1])  (8) 

where α  (𝛼 ∈ [0,1] ) is the smoothing coefficient and the 

initial state is 𝑦[0] = 0 . Δ𝑅  and ‖Δ𝑅‖  are the 

characteristics of the steady-state response signal of the gas 

sensors. When α  = 0.1, 0.01, 0.001, the maximum and 

minimum values of 𝑒𝑚𝑎𝛼(𝑟[𝑚]) are the characteristics of 

the transient response signal. Therefore, the sensor array 

obtains the 128 × (8 × 16)-dimensional feature vectors to 

form each test [29]. 

 

The aim of this experiment is to eliminate the impact of drift. 

To achieve this, we have set an interval of 6 hours between 

each dataset and divided the data into two subsets, as 

illustrated in Table 1 and 2. 

Table 1  Details of the dataset. Each row corresponds to the number of 

three samples collected during a period of one batch. 

Batch ID 
Number of samples 

Methane CO Ethylene 

Batch 1 30 30 30 

Batch 2 40 30 30 

Table 2  Dataset details. The number of data samples per batch and the 

time intervals. 

Batch ID Number of samples Time interval 

Batch 1 90 6 h 

Batch 2 100 6 h 

(2) Experiment 

The table presents a total of two datasets, which are 

categorized as original and new datasets in this experiment. 

The purpose of using batch1 as the coexistence period for 

both sets of sensors is to clearly observe the performance of 

the newly developed classifier. To simulate a real-world 

scenario with fewer gas analytes, only one gas analyte was 

selected for the dataset. Subsequently, the new classifier 

model was optimized based on the methodology proposed 

in this paper. 

 

A comparison of consistency was made between the original 

classifier model and the new classifier model. This involved 

comparing the labels obtained from the new model with the 

predicted labels from the original model under different test 

data and batches to observe the effect. The experimental 

results revealed that the unoptimized new model had an 

average consistency of 65.78% when compared to the 

original model. However, after optimization, the consistency 

of the new model relative to the original model improved 

significantly, with an average consistency of 90.165%. 

These results are presented in Table 3. 

Table 3  Performance of the classifiers. 

Batch ID 
Consistency (in %) for batches 1 and 2. 

Unoptimized new model Optimized new model 

Batch 1 65.56 93.33 

Batch 2 66.00 87.00 

Batch 3 65.78 90.17 

Table 4  Comparison of accuracy of several methods. 

Performance of models under the federated batch (%) 

Traditional method TCA FedGSSU 

93.00 81.00 97.00 

 

(3) Discussion 

Table 3 illustrates that the proposed method successfully 

migrates and obtains a new classifier model, with optimized 

performance after tuning. From a model consistency 

perspective, the new classifier demonstrates the ability to 

learn the original model structure. The classifier, which 

adjusts parameters layer by layer, exhibits a consistency of 

over 90% when compared to the original model. This paper 

also compares three methods for obtaining the new classifier 

model after replacement: the traditional method which trains 

the first batch of data from the new sensor array in a standard 

environment, the classic transfer learning method (TCA) 

[30], and the method proposed in this paper, which fully 

utilizes residual classification information from the original 

sensor array. Table 4 presents the test accuracy of the three 

methods under federated batches, indicating that the model 

obtained through the proposed method performs better when 

there is no significant drift in the sensor array. 
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4.2 Experiment 2 

(1) Dataset Description 

To validate the effectiveness of the new classifier model, this 

experiment employs the test dataset published by The 

University of California, Irvine. The sensor array utilized 

comprises 16 gas sensors, with four types of sensors and four 

sensors of each type. Six gases are tested, including 

acetaldehyde, ammonia, ethylene, acetone, toluene, and 

ethanol, with gas concentrations ranging from 5 ppmv to 

1000 ppmv. The resulting dataset encompasses 13,910 

recordings of 16 chemical sensors spanning over 36 months. 

The dataset contains six gas analytes at varying 

concentrations, aiming to distinguish between the six 

analytes regardless of their concentrations. 

 

The data collected over a period of 36 months is divided into 

ten batches of datasets to fulfill the training requirements of 

the classifier. The data processing method employed in this 

experiment is precisely identical to that utilized in the initial 

experiment, and further details regarding the dataset are 

provided in [11]. 

(2) Experiment 

In order to facilitate the observation of the classification 

effect of the newly obtained classifier after model migration, 

we opted not to use the end of the original sensor array's 

lifespan as the coexistence cycle for the old and new sensors. 

Instead, we chose the 16th month as the coexistence period 

for both sets of sensors to simulate practical applications. 

After a certain period of time has passed since the original 

sensor array was put into use, a new sensor array is 

introduced to learn the classification labels. 

 

However, when the sensor is exposed to an analyte, its 

response is significantly different from when it is exposed to 

clean air (not exposed to the analyte) [27]. By analyzing the 

sensor array, a more suitable classifier model can be 

obtained for a specific classification task. In actual air 

monitoring applications, the concentration of gaseous 

analytes is usually low. To verify the validity of the new 

classifier after model migration in cases with fewer gas 

analytes, only one analyte from the data collected in the 16th 

month (Batch 5) is selected as the dataset. During this period, 

the new dataset learns the classification labels and completes 

the model migration. The classifier model is then optimized 

according to the method proposed in this paper. 

 

Five settings are considered to better validate the method. 

The dataset is divided into two parts: the original dataset 

(Old Batch) and the new dataset (New Batch). To better 

present the recognition performance of the classifier, the 

toluene sample was removed from the entire dataset. 

 

• Setting 1: A classifier was trained using data from the 

original sensors for the first two months (Old Batch 1) as 

the original classifier model. The subsequent batches 

were used as test sets. 

• Setting 2: A new classifier model was trained using data 

from the new sensors for the first two months (New Batch 

1), and subsequent batches were used as test sets. 

• Setting 3: The model from Setting 1 was utilized to 

directly test the data of New Batches 5-10. 

• Setting 4: A classifier was trained using the labels from 

Old Batch 5 tested in Setting 1 and the input set from New 

Batch 5. Subsequent batches were used as test sets. 

• Setting 5: The method proposed in this paper is utilized 

to optimize the classifier model in Setting 4. 

 
Fig. 3  The performance of the classifiers obtained from Setting 1 (), 

Setting 3 (), Setting 4 (), and Setting 5 () is depicted in the graph. 

The red continuous line represents the results achieved using Setting 5 

(), which is the proposed method in this paper. 

 
Fig. 4  The classifier performance comparison between the traditional 

method (Setting 2 (+)) and the proposed method in this paper (Setting 5 

()) is shown in the graph. 

(3) Discussion 

The classifier trained in Setting 1 is considered the original 

classifier model as it cannot be known in advance during the 

experiment. As observed from the trend curve, there is a 

decline in sensor recognition performance after drifting. In 

Setting 3, the original classifier model is directly applied to 

the response data of the new sensor array, resulting in 

relatively poor classification performance. On the other 

hand, Settings 4 and 5 are based on the proposed model 
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migration method. The original classifier model is first 

migrated to the new sensor array, and then optimized by 

adjusting the parameters to obtain the final classifier model. 

 

As shown in Fig.3, the recognition rate of the classifier 

generally decreases over time due to the drift in sensor 

performance within the selected dataset. This phenomenon 

is caused by the aging of the sensor structure, which 

inevitably affects their test results over time [27]. However, 

it can be observed that the classifier model under Setting 4 

still maintains a certain level of recognition rate, indicating 

that the proposed method in this paper is capable of 

efficiently migrating the original classifier model to a new 

sensor array. 

 

Furthermore, after parameter adjustment, the optimized 

model demonstrated a better recognition rate than the 

unoptimized model, and its performance was close to that of 

the original classifier model. This suggests that layer-by-

layer adjustment can effectively optimize the performance 

of the classifier. 

 

The data recognition rate of the 9th batch was notably high, 

considering the impact of the gas concentration of the test 

set on the performance of the classifier in this experiment. 

 

The classifier trained in Setting 2 represents the novel 

classifier model, utilizing the same methodology as that 

employed in Setting 1. This configuration aims to assess the 

recognition performance of the newly proposed method's 

classifier model and compare it with a traditionally trained 

classifier model in the same gaseous environment. The 

experimental outcomes are illustrated in Fig.4. 

 

4.3 Experiment 3 

(1) The experimental setup 

Through the first two experiments, we verify the 

effectiveness of FedGSSU algorithm using public data. We 

then developed a hardware system (Fig.5) to further validate 

the FedGSSU algorithm through a year of measurements, as 

well as the deviations from the original data as the number 

of sensor replacements increased. 

 

The sensor system has two sets of sensor array sockets, each 

containing eight sockets. In this experiment, 8 sensors, 

TGS2600, TGS2602, TGS2610 and TGS2620 (2 of each) 

produced by Figaro Inc, were selected for each array. All the 

sensors are installed in a quartz tube, one end of which is 

connected to a computer-controlled continuous gas supply 

system and the other end to the exhaust system.  

 

The analytes under analysis (i.e., 300±100 ppmv acetone, 

150±50 ppmv ethylene and 300±100 ppmv ethanol) are 

added to this background in random order. The total flow 

rate across the sensing chamber is set to 200 ml/min and kept 

constant for the whole measurement process. 

 

To generate the dataset, we followed a measurement 

procedure consisting of the following steps. First, the 

desired concentration of the odorant was injected by the 

continuous flow system into the quartz tube for 100s.   

Then, the quartz tube was cleaned with dry air for 300s 

before the concentration phase of a new measurement.  

Finally, the measurement process herein described was 

replicated for subsequent measurements. 

 

 
Fig. 5  Experimental setup used for data acquisition. 

(2) Experiment 

The dataset was collected over a period of 12 months using 

three sets of sensors. The first set was installed in the array 

socket A and was used from the 1st to 7th month, and then 

removed. The second set was installed in the array socket B 

and was used from the 4th to 12th month. The third set was 

installed in the array socket A and was used from the 8th to 

12th month. The exact distribution of the number of 

measurements per month is shown in Table 5. 

Table 5  Dataset details. Each column corresponds to samples collected 

during a period of one month for three gases. 

Analytes 
Monthly Number of Examples  

1 2 3 4 5 6 7 8 9 10 11 12  

Acetone 40 154 9 80 23 34 67 51 19 60 100 102  

Ethylene 74 11 79 15 24 68 85 68 80 52 56 27  

Ethanol 66 15 93 85 133 78 27 61 81 69 24 51  

The first set of the sensors is considered the original sensor 

array. The original gas classification model is trained with 

its dataset in the 1st month. This model was used to identify 

the dataset from the first set from the 2nd to 7th month. The 

classification accuracies are shown by the blue curve (+) in 

Figure 6. 

Assume that in the 4th month we are going to replace the first 

set of sensors with the second set. Through FedGSSU, the 

second classifier model is obtained from the original 
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classifier model using the datasets from the first and second 

sets at the 4th month. The second model was used to identify 

the dataset from the second set from the 4th to 12th month. 

The classification accuracies are shown by the red curve () 

in Figure 6. 

It is also assumed that in the 8th month we are going to 

replace the second set of sensors with the third set. Through 

FedGSSU, the third classifier model is obtained from the 

second classifier model using the datasets from the second 

and third sets at the 8th month. The third model was used to 

identify the dataset from the second set from the 4th to 12th 

month. The classification accuracies are shown by the green 

curve () in Figure 6. 

 

 
Fig. 6  The classification performance of the original sensor array and 

that after two sensor replacements. 

(3) Discussion 

Figure 6 shows the gas recognition performance using the 

original sensor array and two replacements. It can be found 

that all the classification accuracies of the three sets of 

sensors decrease with time. This is mainly caused by the 

time drift of the sensors. Using the original, second and third 

sets of sensors, the average accuracy is 77.65%, 72.57% and 

66.53, respectively. Overall accuracies decrease by 5.08% 

and 6.04%, respectively. This is not only due to the 

replacement of sensors and models, but also due to the time 

drift of the sensors.  

 

Over the same time period, such as from the 4th to 7th month, 

the average accuracies using the original and second set of 

sensors is 76.72% and 76.22%. The accuracy rate remains 

basically the same after the first sensor replacement. From 

the 8th to 12th month, the average accuracy using the second 

and third sets of sensors was 69.64% and 66.53%. After the 

second sensor replacement, the accuracy decreases by 

3.11%. This decrease is mainly due to errors introduced by 

the FedGSSU algorithm when updating the model. 

 

5. Conclusion 

This paper investigates the performance of a newly 

developed classifier model, which is derived from the 

original model. The approach involves transferring the 

original model to additional sensors with limited time and 

cost constraints. The classifier's performance is optimized 

by fine-tuning its parameters layer by layer. Three distinct 

datasets were chosen to validate our methodology. The first 

dataset spans 36 months, while the second covers a period 

of 12 hours, mimicking real-world sensor applications and 

short-term drift-free operation, respectively. The third 

dataset, which spans 12 months, is collected by us to 

measure the decline in accuracy after multiple sensor 

replacements. 

 

The experimental findings demonstrate the following: a) 

Migration learning can yield a novel classifier model by 

merely replacing the gas sensor array. b) Even with a 

reduced model transition time, an effective classification 

model can still be achieved. c) The new gas sensor array 

must coexist with the original one for a certain duration to 

obtain the classifier model. d) Although replacing the sensor 

will reduce the gas recognition accuracy, considering the 

actual life of the sensors are 1.5 to 2 years, replacing the 

sensor once can extend the life of the gas recognition system 

by at least 1.5 years. In application scenarios where high 

accuracy is not required, this decrease in accuracy is 

acceptable. 
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