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Scatterer Information Estimation Method by TD-SPT Using 
Numerical Data of Response Waveforms of Backward Transient 
Scattering Field Components 
 
 

Keiji GOTO†a) , Toru KAWANO†, and Ryohei NAKAMURA†, Members 

SUMMARY This paper presents a scatterer information estimation method 
for both E- and H-polarizations based on a time-domain saddle-point 
technique (TD-SPT). The method utilizes numerical data of the response 
waveforms of the reflected geometric optical ray (RGO) series, which 
constitute the backward transient scattering field components when a line 
source and an observation point are at the same location. A scatterer selected 
in the paper is a two-dimensional (2-D) coated cylinder. The three types of 
scatterer information are the relative permittivity of a coating medium layer 
and its thickness, and the outer radius of a coated cylinder. Specifically, the 
scatterer information estimation formulas are derived by applying the TD-
SPT represented in RGO series to the amplitude intensity ratios (AIRs) of 
adjacent RGO components. By focusing on the analytical results that the 
AIRs are independent of polarization, we analytically clarify that all the 
estimation formulas derived here denote polarization independence. The 
estimates are obtained by substituting numerical data of the peaks of the 
response waveforms of the RGO components and their arrival times, as well 
as numerical parameters of a pulse source, into the estimation formulas and 
performing iterative calculations. We derive approximations to the 
estimation errors that are useful in quantitatively evaluating the errors of 
the estimates. The effectiveness of the scatterer information estimation 
method is substantiated by comparing the estimates with the set values. The 
polarization independence of the estimation formulas is validated 
numerically by contrasting the estimates for E- and H-polarizations. The 
estimation errors are discussed using the approximations to the errors of the 
estimates when a line source and an observation point are at the same 
location. Thereafter, the discrepancies that arise between the estimation 
errors when a line source and an observation point are at different locations 
are discussed. The methods to control the estimation accuracy and the 
computational time are also discussed. 
key words:  scatterer information estimation method, time-domain saddle-
point technique (TD-SPT), polarization independence of estimation 
formulas, backward transient scattering field components, amplitude 
intensity ratios (AIRs) 

1. Introduction 

One of the canonical problems of high-frequency (HF) 
electromagnetic (EM) wave scattering [1]-[4] includes the 
scattering problems by two-dimensional (2-D) cylindrical 
objects [3]-[19]. The 2-D cylindrical objects are classified 
according to their materials and structures as metal cylinders 
[5]-[7], [10], [14], dielectric cylinders [13], [15], and metal 

cylinders coated with a dielectric medium (coated cylinders) 
[8], [9], [11], [12], [16]-[19]. The analysis methods of EM 
wave scattering from 2-D cylindrical objects can be broadly 
classified into two categories: frequency-domain (FD) 
analysis [5]-[11], [13]-[16] and time-domain (TD) analysis 
[12], [15], [17]-[19]. 

The estimation of non-destructive deterioration 
diagnosis of reinforced concrete structures using ultra-
wideband (UWB) pulse waves [20], as an application of TD 
analysis of EM wave scattering by 2-D coated cylinders, has 
recently become an important research topic [17]-[19]. 
Nishimoto et al. constructed a model of a corroded rebar in 
reinforced concrete as a 2-D coated cylinder and irradiated 
it with UWB pulse waves to investigate the relationship 
between the response waveforms and the corrosion states 
[18]. It has been reported that, with the exception of the 
initial stage of corrosion, it is possible to estimate the 
corrosion state of the rebar by examining the changes in the 
response waveform [19]. 

The authors have developed several asymptotic 
solutions for the HF transient scattering field from coated 
cylinders. These include a TD asymptotic-numerical 
solution (TD-ANS) [21], [22], a TD saddle-point technique 
(TD-SPT) [23], [24], and a TD Fourier transform method 
(TD-FTM) [25], [26]. The aforementioned HF asymptotic 
solutions for a backward transient scattering field when a 
line source and an observation point are at different locations 
are represented by a superposition of a direct geometric 
optical ray (DGO) and a reflected geometric optical ray 
(RGO) series [22]-[ 26]. 

Transient scattering response waveforms contain 
information regarding the structure, dimensions, and 
material of a scatterer. The authors proposed a scatterer 
information estimation method using numerical data of the 
response waveforms of both the DGO and the RGO series, 
which are the backward transient scattering field 
components from a 2-D coated cylinder when a line source 
and an observation point are located at different positions 
[27]. This method combines the interpretation method for 
the inversion phenomena of response waveforms [23] with 
that for the amplitude intensities of response waveforms [26]. 
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We derived the minimum thickness of a coating medium 
layer for which the estimation method is valid and proposed 
the applicable conditions of the estimation method. 
Furthermore, we numerically confirmed the polarization 
independence of the estimation formulas.  

Conversely, when a line source and an observation point 
are at the same location, there is no DGO component and 
only the RGO series reaches the observation point (see Fig. 
2). Consequently, the estimation formulas for the relative 
permittivity of a surrounding medium (see (11) in [27]) and 
the outer radius of a coated cylinder (see (20) in [27]) cannot 
be derived, as there is no DGO. Therefore, in the case of 
backward transient scattering, where a line source and an 
observation point are at the same location, the scatterer 
information estimation method proposed in Section 4.3 of 
[27] is not applicable. Furthermore, the analytical study of 
the polarization independence of the estimation formulas 
used in the estimation method is not covered in [27]. 

With this research background, this paper presents a 
scatterer information estimation method by TD-SPT using 
numerical data of the response waveforms of the RGO series 
that constitute the backward transient scattering field 
components when a line source and an observation point are 
at the same location [28], [29]. A 2-D coated cylinder is 
selected as a scatterer, and the thickness of a coating medium 
layer is assumed to satisfy the applicable condition of the 
estimation method [27], [29]. 

Specifically, we propose a scatterer information 
estimation method for both E- and H-polarizations, where 
the electric and magnetic field components of an incident 
pulse wave are assumed to be perpendicular to the incident 
plane, respectively. The three types of scatterer information 
are the relative permittivity of a coating medium layer and 
its thickness, and the outer radius of a coated cylinder. The 
application of the TD-SPT represented in the RGO series to 
the amplitude intensity ratios (AIRs) of the adjacent RGO 
components yields the estimation formulas for scatterer 
information. By focusing on the analytical results that the 
AIRs are independent of polarization, we will analytically 
clarify that the estimation formulas of scatterer information 
denote the polarization independence. The estimates are 
obtained by substituting numerical data of the peaks of the 
response waveforms of the RGO components and their 
arrival times, and the numerical parameters of a pulse source 
into the estimation formulas and performing iterative 
calculations. We derive approximations to the estimation 
errors that are useful in quantitatively evaluating the 
accuracy of the estimates obtained by the estimation method. 

The effectiveness of the scatterer information estimation 
method is clarified by comparing the estimates with the set 
values. The polarization independence of the estimation 
formulas is validated numerically by contrasting the 
estimates for E- and H-polarizations. We calculate the 
estimation errors using the approximations to the errors of 
the estimates when a line source and an observation point 
are at the same location, and then discuss the discrepancies 
that arise between the estimation errors when a line source  

and an observation point are at different locations which is 
shown in [27]. The methods to control the estimation 
accuracy and the computation time are also discussed. 

The time dependence exp (−𝑖𝜔𝑡)  is assumed but 
suppressed throughout the text. 

2. Formulation 

Figure 1 shows a cross-sectional geometry of a 2-D coated 
cylinder with an outer radius of 𝜌 = 𝑎 (= 𝑏 + ℎ) . The 
cylinder is a metal cylinder with an inner radius of 𝜌 = 𝑏, 
coated with a coating medium 2 (𝜀 , 𝜇 )  of thickness ℎ (= 𝑎 − 𝑏). The coordinate systems (𝑥, 𝑦, 𝑧) and (𝜌, 𝜙) 
are employed. The permittivity 𝜀  of medium 2 is defined 
by 𝜀 = 𝜀 𝜀 ,  where 𝜀   is a relative permittivity of 
medium 2. The constitutive parameters 𝜀   and 𝜇   are a 
permittivity and a permeability in free space, respectively. 
An electric or magnetic line source Q(𝜌 , 𝜙 )  is placed 
parallel to the central axis of a coated cylinder in a 
surrounding medium 1 (𝜀 , 𝜇 ) . The permittivity 𝜀   of 
medium 1 is defined by 𝜀 = 𝜀 𝜀  , where 𝜀   is the 
relative permittivity of medium 1. An observation point 
P(𝜌, 𝜙) in medium 1 is placed at the same location as the 
line source Q . It is assumed that the permittivities of 
medium 1 and medium 2 are lossless and that 𝜀 < 𝜀  . 
Furthermore, it is assumed that the thickness ℎ of a coating 
medium layer is greater than or equal to the minimum 
thickness ℎ  (ℎ ≥ ℎ ) , which satisfies the applicable 
condition of the scatterer information estimation method 
(see (A∙3) in Appendix A) [27], [29]. 

Figure 2 shows the propagation paths of backward 
transient scattering waves (     : solid curve with arrow), 
in which a cylindrical pulse wave is radiated from a line 
source Q and incident perpendicularly on a coated cylinder. 
The wave then arrives at an observation point P. Since the 
points Q and P are at the same location, there is no DGO, 
and the RGO series components ( RGOp, 𝑝 = 0, 1, ⋯ , 𝑀 ,𝑗 = E, H  see Appendix B) reach the point P . The symbol 𝑀  represents the number of truncated terms in the RGO  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Cross-sectional geometry of a 2-D coated cylinder of outer radius 𝜌 = 𝑎 , and coordinate systems (𝑥, 𝑦, 𝑧)  and (𝜌, 𝜙) . Q(𝜌 , 𝜙 ) : electric 
or magnetic line source, P(𝜌, 𝜙): observation point. The thickness ℎ of a 
coating medium 2 is assumed to be greater than or equal to the minimum 
thickness ℎ  (ℎ ≥ ℎ )  that satisfies the applicable condition of the 
scatterer information estimation method (see (A∙3) in Appendix A). 
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Fig. 2  Schematic diagram of backward transient scattering from a 2-D 
coated cylinder when a line source Q(𝜌 , 𝜙 = 0.0°) and an observation 
point P(𝜌, 𝜙) are at the same location. The propagation paths of backward 
transient scattering field components:  RGOp=0= RGO0(Q→Q0→P), 
RGOp = RGO1(Q→Q0→R→Q0→P),  and RGOp(Q→p(Q0→R→) 
Q0→P), 𝑝 = 2, 3, 4.   The propagation path p (Q0→R→)Q0  represents 
multiple reflection effect in a coating medium 2. The p denotes the number 
of reflections at the point R on a metal surface of inner radius 𝜌 = 𝑏. 

series shown in (B∙1) in Appendix B. 

3. AIRs Using TD-SPT 

3.1 UWB Pulse Source 

It is assumed that the following truncated Gaussian-type 
modulated pulse source, 𝑠(𝑡) , is located at the point Q 
[21]-[23], [25]-[29]: 

𝑠(t) = exp −𝑖𝜔 (𝑡 − 𝑡 ) − (𝑡 − 𝑡 )(2𝑑)  for 0 ≤ 𝑡 ≤ 2𝑡                               0                           elsewhere
 

(1) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  Truncated Gaussian-type modulated UWB pulse source 𝑠(𝑡) 
defined by (1). (a) Real part of 𝑠(𝑡).  (b) Absolute value of 𝑆(𝜔).  
Numerical parameters: 𝜔 = 1.0 × 10 rad s⁄ , 𝑡 = 2.0 × 10 s,  and 𝑑 = 3.371 × 10 s . The fractional bandwidth (FB) is 0.90, which 
satisfies the UWB definition (FB> 0.25) in [20]. 

where 𝜔   is a central angular frequency, and 𝑡   and 𝑑 
are constant parameters. The frequency spectrum 𝑆(𝜔) of 𝑠(t) is given by using the error function erf 𝑧 [30]. 𝑆(𝜔) = 2𝑑√𝜋Re[erf𝛽(𝜔)] exp 𝑖𝜔𝑡 − 𝑑 (𝜔 − 𝜔 )  

 (2) 𝛽(𝜔) = 𝑡2𝑑 − 𝑖𝑑(𝜔 − 𝜔 ) (3) 

erf 𝑧 = 2√𝜋 exp(−𝑡 ) 𝑑𝑡. (4) 

Figures 3(a) and 3(b) show the real part of 𝑠(𝑡) in (1) 
and the absolute value of 𝑆(𝜔)  in (2), respectively. With 
the numerical parameters depicted in Fig. 3, 𝑠(𝑡)  in (1) 
represents the UWB pulse source (see Fig. 3 caption). 

3.2 Derivation of AIRs using TD-SPT 

The peak of the response waveform of each backward 
transient scattering field component in (B∙2), which forms 
the TD-SPT in (B∙1) shown in Appendix B, and its arrival 
time are given by [28] Re[𝑦 , SPT, RGO (𝑡RGO )] = Re[𝐷(𝜔 )]𝐴 ,RGO erf𝛽(𝜔 ), 𝑝 = 0, 1, ⋯ , 𝑀  (5) 𝑡 = 𝑡RGO = 𝑡 + 𝐿RGO𝑐 , 𝑝 = 0, 1, ⋯ , 𝑀 . (6) 

In order to obtain (5) from (B∙2), we employed the following 
relation: 𝜔 ,RGO = 𝜔   for  𝑡 = 𝑡RGO . (7) 

In the following section, we utilize the TD-SPT to 
derive the AIRs for both E- and H-polarizations [28]. It 
should be noted that the DGO component does not exist 
when a line source and an observation point are at the same 
location. Consequently, there is no AIR , ⁄ ,   𝑗 =E, H  of the RGO (= RGO0)  with respect to the DGO 
which is shown in (8) in [27]. 

First, we derive the AIR , ⁄ ,   𝑗 = E, H  of RGO (= RGO1)  with respect to RGO (= RGO0) . To 
do so, we apply (B∙6) and (B∙12) to (5), which yields the AIR , ⁄  as follows: AIR , ⁄ = Re[𝑦 , SPT, (𝑡 )]Re[𝑦 , SPT, (𝑡 )]                              = Re[𝐷(𝜔 )]𝐴 , RGO erf𝛽(𝜔 )Re[𝐷(𝜔 )]𝐴 , RGO erf𝛽(𝜔 ) 

                             = 2𝐿(𝑎 + 𝐿)2𝐿(𝑎 + 𝐿) + 𝐷 (𝑇 , 12𝑇 , 21) 𝑅 , 2𝑅 , 11 ,  𝑗 = E, H. (8) 
The AIR , ⁄   is expressed as the product of three 
influence factors: the divergence factor (square root term), 
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the transmission factor (𝑇 , 12𝑇 , 21) (see (B∙16) and (B∙17)), 
and the reflection factor (𝑅 , 2 𝑅 , 11⁄ )  (see (B ∙ 11) and 
(B∙18)). 

Next, we derive the AIR , ⁄ , 𝑗 = E, H, 𝑝 =2, 3, ⋯ , 𝑀   of RGO   with respect to RGO  . By 
applying (B∙12) to (5), the AIR , ⁄  is given by  

AIR , ⁄ = Re[𝑦 , SPT, (𝑡 )]Re[𝑦 , SPT, (𝑡 )] 
                                 = Re[𝐷(𝜔 )]𝐴 , erf𝛽(𝜔 )Re[𝐷(𝜔 )]𝐴 , erf𝛽(𝜔 ) 

                                 = 2𝐿(𝑎 + 𝐿) + 𝐷2𝐿(𝑎 + 𝐿) + 𝐷  (𝑅 , 2𝑅 , 22), 𝑗 = E, H, 𝑝 = 2, 3, ⋯ , 𝑀 . (9) 
The AIR , ⁄  is expressed as the product of two 
influence factors: the divergence factor (square root term) 
and the reflection factor (𝑅 , 2𝑅 , 22) (see (B∙18) and (B∙19)). 

3.3 Polarization independence of AIRs 

Substituting (B∙11) and from (B∙16) to (B∙18) into (8) gives AIR , ⁄ = AIR , ⁄                                = 2𝐿(𝑎 + 𝐿)2𝐿(𝑎 + 𝐿) + 𝐷  4√𝜀 𝜀𝜀 − 𝜀  . (10) 

Substitution of (B∙18) and (B∙19) into (9) yields AIR , ⁄ = AIR , ⁄  
                                   = 2𝐿(𝑎 + 𝐿) + 𝐷2𝐿(𝑎 + 𝐿) + 𝐷  √𝜀 − √𝜀√𝜀 + √𝜀  , 𝑝 = 2, 3, ⋯ , 𝑀 . (11) 

By combining (10) with (11), the AIRs of the E-
polarization and the H-polarization are expressed by the 
following relationship: AIR , ⁄ = AIR , ⁄ ,  𝑝 = 1, 2, 3, ⋯ , 𝑀 . (12) 
Analytical confirmation can be provided from the 
relationship in (12) that both the AIRs in (8) and (9) are 
independent of polarization. The polarization independence 
of the AIRs in (12) will be verified numerically in Section 
5.3. 

4. Scatterer Information Estimation Method by TD-SPT 

4.1 Simulation Model 

In this section, we introduce a simulation model that will be 
utilized in the scatterer information estimation method to be 
proposed in Section 4.3. Since there is no DGO component 
when a line source and an observation point are at the same 
location, it is challenging to derive an estimation formula for 
the relative permittivity 𝜀  of the surrounding medium 1 
which is shown in (11) in [27]. The three types of scatterer 
information are the relative permittivity 𝜀   of a coating 
medium 2 and its thickness ℎ, and the outer radius 𝑎 of a 
coated cylinder. 

4.1.1 Assumptions for the Estimation Method and Notations 

Initially, the scatterer information estimation method 
assumes the following: 
(A) The structure of a scatterer is a 2-D coated cylinder 

covered with a uniform coating medium layer. 
(B) The numerical parameters (𝜔 , 𝑡 , 𝑑)  of a pulse 

source 𝑠(𝑡) in (1) are known. 
(C) The pulse wave is radiated from a line source Q placed 

parallel to the central axis of a coated cylinder, and a 
line source Q and an observation point P are at the same 
location. 

(D) The outer radius of a scatterer is sufficiently large 
compared to the wavelength of the central angular 
frequency 𝜔  of a pulse source 𝑠(𝑡). 

(E) At an observation point P, the peak of the response 
waveform of each backward transient scattering field 
component and its arrival time can be observed with 
high accuracy. 
The estimation method then employs the following 

notations (A) and (B). 
(A) Estimates are indicated by a caret “^” and denoted as 𝜀̂ , ℎ, and 𝑎. 
(B ) Numerical data observed in the response waveforms, 

numerical parameters of a pulse source 𝑠(𝑡) , and set 
values are marked with the overline symbol “⬚” and 
denoted as  Re[𝑦 , SPT,RGO𝑝(𝑡RGO𝑝)], 𝑡RGO𝑝, 𝑡 , and 𝜀̅ , 
etc. 

4.1.2 Simulation Model and Numerical Data of Response 
Waveforms 

Figure 4(a) shows a schematic diagram of a 2-D coated 
cylinder of outer radius 𝑎 coated with a coating medium 
layer (𝜀 𝜀̂ , 𝜇 ) of thickness ℎ. A line source Q and an  
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Fig. 4  Simulation model of a scatterer information estimation method. (a) 
Schematic diagram of a 2-D coated cylinder, an electric or magnetic line 
source Q and an observation point P are at the same location. Q  : a point 
on a coating surface of outer radius 𝑎, R : a point on a metal surface of 
inner radius 𝑎 − ℎ . (b) An example of the response waveforms of 
backward transient scattering electric field components. Also shown are 
numerical data for four sets of peaks and their arrival times calculated from 
(5) and (6), respectively. 

observation point P are placed at the same location in a 
surrounding medium 1 (𝜀 𝜀̅ , 𝜇 ).  

Figure 4(b) shows an example of the response 
waveforms of the backward transient scattering electric field 
components. The numerical data of the peaks and their 
arrival times of RGO , p  = 0, 1, 2, 3  calculated from (5) 
and (6) are represented by Re[𝑦E, SPT,RGO (𝑡RGO )]   and 𝑡RGO , respectively.  

4.2 Derivation of Scatterer Information Estimation 
Formulas 

In the absence of a DGO component when a line source and 
observation point are at the same location, there is no 
AIR , ⁄ ,   𝑗 = E, H . In this section, we derive the 
three types of estimation formulas (𝜀̂ , ℎ, 𝑎)  of the 

scatterer information (𝜀 , ℎ, 𝑎)  by applying the TD-SPT 
in Appendix B, the numerical data of the response 
waveforms of the backward transient scattering field 
components, and the numerical parameters of a pulse source 𝑠(𝑡) in (1) to the two types of AIRs derived in Section 3.2. 

4.2.1 Estimation Formula 𝜀̂  of the Relative Permittivity 𝜀  

Substituting (B ∙ 8) into (6), we obtain the distance QQ0 
(Q0P) from the source point Q (point Q0) to the point Q0 
(observation point P)  𝐿 = 𝑐2 (𝑡 − 𝑡 ) = QQ0 = Q0P (13) 

where point Q0 is the point on a coating surface of outer 
radius 𝜌 = 𝑎 (see Fig. 4(a)). In deriving (13), 𝑡RGO  and 𝑡   are replaced by the numerical data 𝑡   and the 
numerical parameter 𝑡  , respectively. Thus, substituting 𝑡   and 𝑡  , as well as the speed of light 𝑐   in the 
surrounding medium 1 (see (B∙ 4)) into (13), we obtain 𝐿 
numerically. 

Substituting (B ∙ 18) and (B ∙ 19) into (9) yields the 
following formula: 𝜀̂ = �̅� ⁄ − �̅� , ⁄�̅� ⁄ + �̅� , ⁄ 𝜀 ̅ , 𝑝 = 2, 3, ⋯ , 𝑀  (14) 

�̅� ⁄ = 2𝐿(𝑎 + 𝐿) + 𝐷2𝐿(𝑎 + 𝐿) + 𝐷  (15) 

𝐷 = 𝑝 (𝑎 + 𝐿) (2ℎ)𝑎 − ℎ 𝜀̅𝜀̂  (16) �̅� , ⁄ = AIR , ⁄  

                =  Re[𝑦 , SPT, (𝑡 )]    Re[𝑦 , SPT, (𝑡 )]   (17) 

where �̅� ⁄   in (15) is a divergence factor. In the 
derivation of 𝐷   in (16), 𝑎 , ℎ , and 𝜀   as well as 𝜀  
and 𝐿 are replaced by the estimates 𝑎, ℎ, and 𝜀̂ , and the 
numerical data 𝜀̅  and 𝐿, respectively. �̅� , ⁄  in (17) is 
the numerical data of AIR , ⁄   in (9) obtained 
from Fig. 4(b). Therefore, by substituting 𝜀̅ , �̅� ⁄ , and �̅� , ⁄   into (14), the estimate of 𝜀̂   is obtained 
numerically. 

While 𝜀̂  in (14) can be simplified by approximating �̅� ⁄  in (15) with one as follows: 𝜀̂ = 1 − �̅� , ⁄1 + �̅� , ⁄ 𝜀 ̅ , 𝑝 = 2, 3, ⋯ , 𝑀 . (18) 
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4.2.2 Estimation Formula ℎ of the Thickness ℎ 

Substituting (B∙4) and (B∙15) into (6), we obtain ℎ = 𝑐2 𝜀̂ 𝑡 − 𝑡 , 𝑝 = 1,2, ⋯ , 𝑀 . (19) 

In the derivation of ℎ  in (19), 𝑡   and 𝑡   are 
replaced by the numerical data 𝑡   and 𝑡  , 
respectively. Consequently, by substituting the speed of 
light 𝑐  in free space (see (B∙4)), 𝑡 , 𝑡 , and 𝜀̂  
into (19), we can obtain the estimate of ℎ numerically. 

4.2.3 Estimation Formula 𝑎 of the Outer Radius 𝑎 

Substituting (B ∙ 16) to (B ∙ 19) into (8), we obtain the 
following formula: 𝑎 = 2𝐿ℎ (�̅� , ⁄ ) − 𝐸 − 𝐿𝐹(�̅� , ⁄ )2𝐿 (�̅� , ⁄ ) − 𝐸 + 𝐹(�̅� , ⁄ )  (20) 

𝐸 = 4 𝜀̅ 𝜀̂𝜀̂ − 𝜀̅  (21) 

𝐹 = 2ℎ 𝜀̅𝜀̂  (22) 

�̅� , ⁄ = AIR , ⁄  =  Re[𝑦 , SPT, (𝑡 )]    Re[𝑦 , SPT, (𝑡 )]   . 
 (23) 

The numerical data of AIR , ⁄  in (8), represented 
by �̅� , ⁄  in (23), is obtained from Fig. 4(b). In deriving 𝑎 
in (20), the values of ℎ and 𝜀 , as well as 𝜀  and 𝐿, are 
replaced by the estimates ℎ  and 𝜀̂   and the numerical 
data 𝜀̅  and 𝐿, respectively. Consequently, by substituting �̅� , ⁄  , ℎ , 𝜀̂  , 𝜀̅  , and 𝐿  into (20), we can obtain the 
estimate of 𝑎 numerically. 

4.3 Scatterer Information Estimation Method 

In this section, we present a method to obtain the estimates (𝜀̂ , ℎ, 𝑎)  of the scatterer information (𝜀 , ℎ, 𝑎)  by 
substituting the numerical data of the response waveforms 
of backward transient scattering field components presented 
in Section 4.1 and the numerical parameters of the pulse 
source 𝑠(𝑡) in (1) into the estimation formulas derived in 
Section 4.2 and performing the iterative calculations. 
(a) First, set the number of reflections 𝑝  used in the 

estimation formulas (see Section 4.2), the convergence 
degree 𝜀 , the initial value 𝐼 = 1  of the number of 
iterations 𝐼, and its upper limit 𝐼 = 𝐼MAX. 

(b) Substituting the numerical data �̅� , ⁄  and 𝜀̅  into 
(18), a simplified estimate 𝜀̂ = 𝜀̂ , I can be obtained. 
The subscript I indicates the number of iterations. 

(c) Substituting the numerical data 𝑡 , 𝑡 , and the 
estimate 𝜀̂ ,  obtained in (b) into (19), we obtain the 
estimate ℎ = ℎ I. 

(d) Substituting the numerical data 𝜀̅  , 𝐿 , and �̅� , ⁄  
along with the estimates ℎ I and 𝜀̂ ,  into (20) yields 
the estimate 𝑎 = 𝑎 I. 

(e) Calculating 𝐷   in (16) using 𝐿 , 𝜀̅  , 𝜀̂  , ℎ , and 𝑎 , 
followed by the updating of �̅� ⁄   in (15) using 𝐿 , 𝑎, 𝐷 , and 𝐷 . 

(f) Substituting the numerical data 𝜀̅  , �̅� ⁄ , and �̅� , ⁄   into (14) yields a new estimate 𝜀̂ = 𝜀̂ , I 
with improved accuracy compared to (b). 

(g) To count the number of iterations, the value of I  is 
incremented by one. Then, new estimates ℎ = ℎ I  , 𝑎 = 𝑎 I  , and 𝜀̂ = 𝜀̂ , I+1  are obtained in (c), (d), 
and (f). Iterate the calculations in (c), (d), (e), and (f) to 
improve the accuracy of the estimates. 

(h) Calculate the convergence values of the estimates using 
the following equation |𝛥𝑋| < 𝜀 (24) 𝛥𝑋 = 𝑋I − 𝑋I 1𝑋I

 for  𝑋 = 𝜀 , ℎ, 𝑎. (25) 

In (24), convergence to the set value is considered to 
have occurred if the relative difference |𝛥𝑋|  between 
the previous estimate 𝑋I 1 and the new estimate 𝑋I is 
less than the convergence degree 𝜀. After storing I in 
IEND, proceed with (j). 

 (i) If I  satisfies 𝐼MAX , store 𝐼MAX  in IEND  and then 
proceed with (j). 

(j) Finally, output the estimates (𝜀̂ , ℎ, 𝑎) and the number 
of iterations IEND. 
The estimation errors 𝛿𝑋, 𝑋 = 𝜀 , ℎ, 𝑎  of the 

estimates 𝑋 for the set values 𝑋 are defined as follows:  𝛿𝑋 = 𝑋 − 𝑋𝑋  for  𝑋 = 𝜀 , ℎ, 𝑎. (26) 

The degree of influence of the three factors that comprise 
the estimation error 𝛿𝜀̂   in the estimate 𝜀̂   will be 
discussed in Sections 5.4 and 5.5. The aforementioned three 
factors are the convergence degree 𝜀, the ratio 𝛥𝜀̂ 𝜀⁄  of 𝛥𝜀̂   in (25) to 𝜀 , and the ratio 𝛿𝜀̂ 𝛥𝜀̂⁄   of 𝛿𝜀̂   in 
(26) to 𝛥𝜀̂ . 

4.4 Deriving Approximations for Estimation Errors 

In this section, we derive the approximations 𝛿𝑋asy, 𝑋 =ℎ, 𝑎 for the estimation errors 𝛿𝑋, 𝑋 = ℎ, 𝑎 of the estimates 𝑋, 𝑋 = ℎ, 𝑎  obtained in Section 4.3 using the estimation 
formulas in Section 4.2. 
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An approximation formula for the estimate 𝜀̂  of the 
relative permittivity 𝜀  is given by the following equation, 
in which the set value 𝜀̅  and the estimation error 𝛿𝜀̂  in 𝜀̂  are used. 𝜀̂ = 𝜀̅ (1 + 𝛿𝜀̂ )  for  |𝛿𝜀̂ | ≪ 1. (27) 

First, we derive the estimation error 𝛿ℎ  in the 
estimate ℎ of the thickness ℎ. Substituting (27) into (19), 
we obtain the following approximation formula for ℎ ℎ = ℎ(1 + 𝛿ℎ) ∼ ℎ(1 + 𝛿ℎasy)  (28) ℎ = 𝑐2 𝜀̅ 𝑡 − 𝑡 , 𝑝 = 1,2, ⋯ , 𝑀  (29) 

where ℎ is the set value and the approximation 𝛿ℎasy of 𝛿ℎ is given by 𝛿ℎ ~ 𝛿ℎasy = − 𝛿𝜀̂ 2⁄ . (30) 
In deriving (28), we employed the following first-order 
approximate expression (1 + 𝑥) ∼ 1 + 𝑛𝑥   for |𝑥| ≪ 1. (31) 

Next, we derive the estimation error 𝛿𝑎  in the 
estimate 𝑎 of the outer radius 𝑎. Substituting (27) and (28) 
into (20) associated with (21), (22) and (23) and then using 
the first-order approximate expression in (31) gives an 
approximation formula for 𝑎. 𝑎 = 𝑎(1 + 𝛿𝑎) ∼ 𝑎(1 + 𝛿𝑎asy)  (32) 
where 𝑎 is the set value and the approximation 𝛿𝑎asy of 𝛿𝑎 is given by 𝛿𝑎 ~ 𝛿𝑎asy = − 2𝐿𝐸 + 𝐹(�̅� , ⁄ )2𝐿 (�̅� , ⁄ ) − 𝐸 + 𝐹(�̅� , ⁄ ) 𝛿𝜀̂  

 (33) 𝐸 = 4 𝜀̅ 𝜀 ̅𝜀 ̅ − 𝜀̅  (34) 

𝐹 = 2ℎ 𝜀̅𝜀 ̅  . (35) 

The approximations 𝛿𝑋asy, 𝑋 = ℎ, 𝑎  for the 
estimation errors 𝛿𝑋, 𝑋 = ℎ, 𝑎 are given by (30) and (33) 
using the estimation error 𝛿𝜀̂  . These approximations 𝛿𝑋asy, 𝑋 = ℎ, 𝑎 are useful for the analytical interpretation 
of the estimation error 𝛿𝑋 in the estimate 𝑋 obtained by 
the estimation method in Section 4.3. 

The effectiveness of the interpretation method for the 
estimation errors 𝛿𝑋, 𝑋 = ℎ, 𝑎  using the approximations 𝛿𝑋asy, 𝑋 = ℎ, 𝑎 will be demonstrated in Sections 5.4, 5.5, 
and 5.6. 

4.5 Polarization Independence of the Estimation Formulas 

In this section, we analytically clarify the polarization 

independence of the three types of estimation formulas (𝜀̂ , ℎ, 𝑎)  of the scatterer information derived in Section 
4.2, by focusing on the analytical results that the AIRs are 
independent of polarization, as revealed in Section 3.3. 

First, we consider the independence of the simplified 
formula 𝜀̂  in (18) with respect to polarization. The 𝜀̂  
used as the initial value in the estimation method is obtained 
by substituting the numerical data 𝜀̅   and �̅� , ⁄   into 
(18). Since �̅� , ⁄  in (17) is polarization independent, it 
can be analytically confirmed that 𝜀̂   in (18) is 
polarization independent. 

Next, we examine the polarization independence of ℎ 
in (19). Since 𝜀̂  in (18) is polarization independent, it is 
easy to verify that ℎ in (19) is polarization independent. 

Third, we consider the polarization independence of 𝑎 
in (20). The 𝑎 is obtained by substituting �̅� , ⁄ , ℎ, 𝜀̂ , 𝜀̅ , and 𝐿 into (20). Since �̅� , ⁄  in (23) is independent of 
polarization, it can be analytically confirmed that 𝑎 in (20) 
is independent of polarization. 

Finally, we consider the polarization independence of 
the highly accurate 𝜀̂   in (14). The 𝜀̂   is obtained by 
substituting �̅� ⁄  , �̅� , ⁄  , and 𝜀̅   into (14). Since �̅� ⁄ , �̅� , ⁄ , and 𝜀̅  are independent of polarization, 
it is analytically confirmed that 𝜀̂  in (14) is independent 
of polarization. 

From the above discussions, it is analytically confirmed 
that the three types of estimation formulas (𝜀̂ , ℎ, 𝑎) of the 
scatterer information derived in Section 4.2 are polarization 
independent. The polarization independence of the 
estimation formulas is verified numerically in Section 5.3. 

5. Numerical Results and Discussions 

In this section, we first evaluate the calculation accuracy and 
effectiveness of TD-SPT and extract the numerical data of 
the response waveforms of the backward transient scattering 
field components needed for the estimation. Then, we 
clarify the effectiveness of the scatterer information 
estimation method and the polarization independence of the 
estimation formulas. We discuss the accuracy of the 
estimates using the approximations to the estimation errors. 
Furthermore, we discuss the discrepancies that arise 
between the estimation errors when a line source and an 
observation point are at different locations which is shown 
in [27] and those when a line source and an observation 
point are at the same location. Finally, we discuss the 
methods to control the estimation accuracy and the 
computation time. 

In the following numerical calculations, the common 
factor 𝐷(𝜔 )  in (B∙3), where 𝜔  is replaced by 𝜔  , is 
assumed to be unity (𝐷(𝜔 ) = 1). 
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5.1 Calculation Accuracy and Effectiveness of TD-SPT 

Figures 5(a) and 5(b) show the response waveforms of the 
backward transient scattering fields for E- and H-
polarizations, respectively. The numerical parameters used 
in the calculations are given in the caption of Fig. 5. In this 

case, the numerical parameters in Fig. 5 satisfy the 
applicable condition (𝑡 ≥  𝑡 )  for the time in (A∙1) and 
the applicable condition (ℎ ≥ ℎ )  for the thickness of a 
coating medium layer in (A∙3). 

We evaluate the calculation accuracy and effectiveness 
of TD-SPT for E-polarization. In Fig. 5(a), Re[𝑦E, TD-SPT(t)]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5  Response waveforms of backward transient scattering fields for E- and H-polarizations under the condition 𝜀 < 𝜀 . 
The numerical parameters used in the calculations are 𝑎 = 2.0m, 𝜀 = 𝜀 𝜀 , 𝜀 = 1, 𝜀 = 𝜀 𝜀 , 𝜀 = 9,  𝑡 = 9.4248 ×10 s > 𝑡  (= 2.0 × 10 s) (see (A ∙ 1)), and ℎ = 0.47091m (= 0.23546𝑎) > ℎ  = 0.099931m (= 0.049966𝑎)  (see 
(A∙3)), source point Q(𝜌 , 𝜙 ) = (3.0𝑎, 0.0°), and observation point P(𝜌, 𝜙) = (3.0𝑎, 0.0°). The pulse source 𝑠(𝑡) used in 
the calculations is the UWB pulse source shown in Fig. 3. (a)       : Re[𝑦E, TD-SPT(t)],      : Re[𝑦E,reference(t)]. (b)       : 
Re[𝑦H, TD-SPT(t)],       : Re[𝑦H, reference(t)]. 

Table 1  Numerical data for five sets of peaks and their arrival times of RGO , 𝑝 = 0, 1, ⋯ , 𝑀 (= 4), 𝑗 = E, H for both E- and 
H-polarizations calculated from (5) and (6). Also shown are the numerical data of the AIRs calculated from (8) and (9). The 
numerical parameters used in the simulation experiments are the same as those used in Fig. 5. Here, the thickness ℎ  is 0.47091 m (= 0.23546𝑎).  
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Table 2  Set values, estimates, and estimation errors of scatterer information for E- and H-polarizations. The numerical data of 
response waveforms in Table 1 are used for the estimations. The numerical parameters used in the simulation experiments are  𝑝 = 4, 𝜀 = 1.0 × 10 , and 𝐼MAX = 200. The number of iterations is 𝐼END = 117. 

                                             
 
 
 
 
 

(     : solid line) set to 𝑀E = 4  (see (B∙1)) agrees very 
well with the reference solution Re[𝑦E,  reference  (𝑡)] (    ) 
[21], [22] using TD-ANS over the whole region. This allows 
us to verify the computational accuracy of TD-SPT. The 
calculation times for Re[𝑦E, TD-SPT(t)]  and 
Re[𝑦E,  reference  (𝑡)]  are 0.0252 s  and 0.1629 s , 
respectively. The calculation speed ratio of TD-SPT to the 
reference solution is 6.464, confirming the effectiveness of 
TD-SPT. 

The calculation accuracy and effectiveness of TD-SPT 
for H-polarization shown in Fig. 5(b) can be verified in the 
same way as for E-polarization described above. 

5.2 Extraction of Numerical Data Required for Estimation 

Table 1 shows the numerical data of the peaks of the 
response waveforms Re[𝑦 , SPT, RGO (𝑡)], 𝑗 = E, H, 𝑝 = 0,  1, ⋯ , 𝑀j (= 4) and their arrival times, which are required 
for the estimation of the scatterer information. Comparing 
the numerical data, the following relationship is observed 
between the peaks for the E- and H-polarizations. 

Re[𝑦 , SPT,  RGO (𝑡 ̅RGO )] = −Re[𝑦 , SPT,  RGO (𝑡 ̅RGO )] 
for 𝑝 = 0, 1, ⋯ , 𝑀 (= 4). (36) 

The sign reversal phenomena of the peaks of the response 
waveforms due to the difference of polarization in (36) are 
also observed in the response waveforms in Fig. 5. The 
reason for the sign reversal of the peaks is that the following 
relationship holds for 𝐴 ,RGO , 𝑗 = E, H, 𝑝 = 0, 1, ⋯ , 𝑀 (=4) in (5). 𝑅E, = −𝑅H,   for  𝑝 = 0 (37) (𝑅E, ) = −(𝑅H, )   for  𝑝 = 2𝑛 + 1, 𝑛 = 0, 1 (38) (𝑅E, ) = −(𝑅H, )   for  𝑝 = 2𝑛, 𝑛 = 1, 2. 

 (39) 
The Re[𝑦 ,  reference  (𝑡)], 𝑗=E, H by TD-ANS using the 

Fast Fourier Transform (FFT) numerical code [31] can be 
calculated for each backward transient scattering field 
component. However, it is difficult for Re[𝑦 ,  reference  (𝑡)] 
to derive the peaks of the backward transient scattering field 
components and their arrival times as analytical solutions. In 
contrast, TD-SPT can derive analytical solutions for the 
peaks of the backward transient scattering field components 
and their arrival times using (5) and (6), respectively. TD-
SPT can also analytically interpret the sign reversal 

phenomena of the peaks of the response waveforms due to 
the difference of polarization using (5) associated with (B∙6) 
and (B∙12). From these excellent features of TD-SPT, we can 
confirm the practicality of TD-SPT. 

5.3 Effectiveness of the Estimation Method and Polarization 
Independence of the Estimation Formulas 

In this section, we verify the effectiveness of the estimation 
method proposed in Section 4.3 and the polarization 
independence of the estimation formulas clarified in Section 
4.5. In the simulation experiments, the numerical data of the 
response waveforms of the backward transient scattering 
field components shown in Table 1 are used. The number of 
reflections 𝑝 in the estimation formulas 𝜀̂  in (14) and ℎ 
in (19), the convergence degree 𝜀 of the estimates, and the 
upper limit 𝐼MAX of the number of iterations are set to 𝑝 =4, 𝜀 = 1.0 × 10 , and 𝐼MAX = 200, respectively. 

First, we examine the effectiveness of the estimation 
method for E-polarization. Table 2 shows the set values (𝜀̅ , ℎ, 𝑎) , estimates (𝜀̂ , ℎ, 𝑎) , and estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎)  of the scatterer information. Since the 
number of iterations 𝐼END  is 117 (𝐼END < 𝐼 ) , the 
estimates (𝜀̂ , ℎ, 𝑎)  satisfy the convergence condition in 
(24). From the high accuracy of the estimates (𝜀̂ , ℎ, 𝑎) 
shown in Table 2, we can verify the effectiveness of the 
estimation method for E-polarization. 

Table 1 also shows the numerical data of the AIRs 
calculated from (8) and (9). From Table 1, we can observe 
the following relationship between the E-polarized AIRs and 
the H-polarized AIRs.  AIR , ⁄ = AIR , ⁄  ,  𝑝 = 1, 2, 3,  𝑀 (= 4). (40) 
From the relationship in (40), we can numerically verify the 
polarization independence of the AIRs in (12).  

Second, we examine the effectiveness of the estimation 
method for H-polarization. The estimates (𝜀̂ , ℎ, 𝑎) for H-
polarization were the same as in Table 2. Thus, the 
effectiveness of the estimation method for H-polarization 
can be verified in the same way as for E-polarization 
described above. 

The fact that the estimates (𝜀̂ , ℎ, 𝑎) shown in Table 2 
are identical for both E- and H-polarizations allow us to 
numerically verify the polarization independence of the 
estimation formulas, which was clarified analytically in 

estimation errorsestimatesset valuesscatterer information
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Section 4.5. 
Finally, if the numerical parameters (𝜔 , 𝑡 , 𝑑) satisfy 

the applicable condition (𝑡 ≥  𝑡 )  shown in (A∙1) for a 
pulse source 𝑠(𝑡) in (1), then the estimates (𝜀̂ , ℎ, 𝑎) can 
be computed using the estimation methods in Section 4.3. 
For example, the numerical parameters (𝜔 , 𝑡 , 𝑑) shown 
in Fig. 3 of [27] satisfy the applicable condition (𝑡 ≥  𝑡 ). 
Consequently, utilizing a pulse source 𝑠(𝑡) shown in Fig. 3 
of [27], we obtain the same number of iterations 𝐼END , 
estimates (𝜀̂ , ℎ, 𝑎) , and estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) 
as in Table 2 in this paper. 

 5.4 Discussion of the Accuracy of the Estimates 

In this section, we examine the accuracy of the estimates (𝜀̂ , ℎ, 𝑎)  using the approximations 𝛿𝑋asy, 𝑋 = ℎ, 𝑎  of 
the estimation errors 𝛿𝑋, 𝑋 = ℎ, 𝑎 derived in Section 4.4. 

First, we will express the numerically obtained 
estimation error 𝛿𝜀̂  in (26) as the product of the factors 
affecting 𝛿𝜀̂  . Fig. 6 shows the magnitudes of the 
estimation errors |𝛿𝜀̂ |  in (26) (    : solid line) and 
those of the convergences |𝛥𝜀̂ |  in (25) (     : broken 
line) as the number of iterations 𝐼 is varied. The numerical 
parameters utilized in the simulation experiments are the 
same as those used in Table 2. It should be noted that the 
differences between |𝛿𝜀̂ | and |𝛥𝜀̂ | are not dependent 
on the number of iterations 𝐼 and remain constant. 

The numerical results for the ratio 𝛥𝜀̂ 𝜀⁄  (= 𝛼 ) of 
the convergence value 𝛥𝜀̂   in (25) to the convergence 
degree 𝜀  and the ratio 𝛿𝜀̂ 𝛥𝜀̂⁄ (= 𝛽 )  of the error 𝛿𝜀̂   in (26) to 𝛥𝜀̂   at the number of iterations 𝐼END =117 are presented below. 𝛼 = 𝛥𝜀�̂� = −1.0719 × 101.0 × 10                          = −1.0719 × 10  ~ − 10 .  

for Table 2 (41) 𝛽 = 𝛿𝜀̂𝛥𝜀̂ = −4.8106 × 10−1.0719 × 10                        = 4.4879 × 10  ~ 10 .  
 

for Table 2. (42) 
From (41) and (42), the estimation error 𝛿𝜀̂   can be 
expressed as the product of three factors 𝜀 (= 1.0 × 10 ), 𝛼 , and 𝛽 . 𝛿𝜀̂ = 𝜀𝛼 𝛽 = −4.8106 × 10 ~ − 10 .  

for Table 2. (43) 
Next, the accuracy of the estimates 𝑋, 𝑋 = ℎ, 𝑎  will 

be evaluated quantitatively using the approximations 𝛿𝑋asy,𝑋 = ℎ, 𝑎 derived in Section 4.4. Substituting the numerical 
parameters presented in the caption of Fig. 5, the numerical 
data for AIRs in Table 1, and the numerical value for 𝛿𝜀̂  
in Table 2 or (43) into the approximations 𝛿𝑋asy, 𝑋 = ℎ, 𝑎 
in (30) and (33), the following approximate results are  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  The magnitudes of the estimation errors |𝛿𝜀̂ | in (26) and those 
of the convergences |𝛥𝜀̂ | in (25) for E- and H-polarizations when the 
number of iterations 𝐼 is varied under the condition that the number of 
reflections 𝑝  of the estimation formulas 𝜀̂   in (14) and ℎ  in (19) is 
fixed at 𝑝 = 4 . The numerical parameters utilized in the simulation 
experiments are the same as those used in Table 2, and 𝐼END =117.        : |𝛿𝜀̂ |,        : |𝛥𝜀̂ |. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  The magnitudes of the estimation errors |𝛿𝜀̂ | in (26) and those 
of the convergences |𝛥𝜀̂ | in (25) for E- and H-polarizations when the 
number of iterations 𝐼 is varied. The numerical parameters utilized in the 
simulation experiments are the same as those used in Table 2 in [27], and 𝐼END = 6.        : |𝛿𝜀̂ |,        : |𝛥𝜀̂ |. 
obtained 𝛿ℎ ~ 𝛿ℎasy = −0.5𝛿𝜀̂ = 2.4053 × 10  (44) 𝛿𝑎 ~ 𝛿𝑎asy = 10.399𝛿𝜀̂ = −5.0025 × 10 . (45) 
As demonstrated in (46) and (47), the numerical confirma-
tion can be provided that the approximations 𝛿𝑋asy, 𝑋 =ℎ, 𝑎 have good approximation accuracies to the estimation 
errors 𝛿𝑋, 𝑋 = ℎ, 𝑎 in Table 2. |𝛿ℎasy 𝛿ℎ|⁄ = 0.9993 (46) | 𝛿𝑎asy 𝛿𝑎⁄ | = 1.2340. (47) 
From the approximate results in (44) and (45), it can be seen 
that ℎ  is twice as accurate as 𝜀̂   (see (55)), while 𝑎  is 
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approximately one order of magnitude less accurate than 𝜀̂  (see (56)).  

 5.5 Comparison of Errors with Estimates in [27] 

In this section, we calculate the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎)  of the estimates (𝜀̂ , ℎ, 𝑎)  when a line 
source and an observation point are at different locations, as 
shown in [27], and discuss the discrepancies that arise 
between the estimation errors of the estimates when a line 
source and an observation point are at the same location as 
proposed in this paper. 

Figure 7 shows the magnitudes of the estimation errors |𝛿𝜀̂ |  in (26) (   : solid line) and those of the 
convergences |𝛥𝜀̂ |  in (25) (     : broken line) as the 
number of iterations 𝐼 is varied. The numerical parameters 
utilized in the numerical experiments are the same as those 
used in Table 2 of [27]. It can be observed that the 
differences between |𝛿𝜀̂ | and |𝛥𝜀̂ | are independent of 
the number of iterations 𝐼 and remain constant. 

The numerical results for 𝛼  in (41) and 𝛽  in (42) 
at the number of iterations 𝐼END = 6 are presented below. 𝛼 = 𝛥𝜀�̂� = 2.6758 × 101.0 × 10                          = 2.6758 × 10  ~ 10 .  

for Table 2 in [27] (48) 𝛽 = 𝛿𝜀̂𝛥𝜀̂ = 6.3159 × 102.6758 × 10                        = 2.36038 × 10  ~ 10 .  
 

for Table 2 in [27]. (49) 
Substituting the convergence degree 𝜀 = 1.0 × 10 , (48), 
and (49) into (43) gives the following value for 𝛿𝜀̂ : 𝛿𝜀̂ = 𝜀𝛼 𝛽 = 6.3159 × 10 ~10 .  

for Table 2 in [27]. (50) 
The approximation formulas for the estimates 𝑋, 𝑋 =ℎ, 𝑎  were derived in the same way as in Section 4.4. 

Substituting numerical values into the approximation 
formulas yields the following approximate results for the 
errors 𝛿𝑋, 𝑋 = ℎ, 𝑎: 𝛿ℎ ~ 𝛿ℎasy = −0.5𝛿𝜀̂ = −3.1580 × 10  

for Table 2 in [27] (51) 𝛿𝑎~ 𝛿𝑎asy = −1.018𝛿𝜀̂ = −6.4296 × 10  
for Table 2 in [27]. (52) 

As demonstrated in (53) and (54), we can confirm that the 
approximations 𝛿𝑋asy, 𝑋 = ℎ, 𝑎 have good approximation 
accuracies to the estimation errors 𝛿𝑋, 𝑋 = ℎ, 𝑎 in Table 2 
of [27]. |𝛿ℎasy 𝛿ℎ|⁄ = 1.1648 (53) 

|𝛿𝑎asy 𝛿𝑎⁄ | = 0.8644 . (54) 
From the approximate results in (51) and (52), we can 
confirm that ℎ  in Table 2 of [27] is twice as accurate as 𝛿𝜀̂ , while 𝑎 is approximately as accurate as 𝛿𝜀̂ . 

A comparison of (43) and (50) reveals that the 𝜀̂  
proposed in this paper is less accurate than the 𝜀̂  in [27] 
by 10 . (= | − 10 . /10 . |) . The factor-
by-factor impact of the accuracy degradation of 10 .  
is 10  (= 1.0 × 10 /1.0 × 10 )  for 𝜀  (see Table 2 
in this paper and Table 2 in [27]), 10 .  (=|−10 . 10 .⁄ |) for |𝛼 | (see (41) and (48)), 
and 10 . (= |10 . /10 . |)  for |𝛽 |  (see 
(42) and (49)). 

The discrepancy between the estimation error 𝛿ℎ (𝛿𝑎) 
in Table 2 of this paper and the estimation error 𝛿ℎ (𝛿𝑎) in 
Table 2 of [27] can be evaluated by comparing the 
approximate results of (44) and (51) ((45) and (52)). 

5.6 Methods to Control Estimation Accuracy and 
Computation Time 

The initial step in this section is to discuss a method for 
controlling the estimation accuracy of the estimates. Fig. 8 
shows the magnitudes of the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) of the estimates (𝜀̂ , ℎ, 𝑎) and the number 
of iterations IEND for E-polarization when the convergence 
degree 𝜀 is varied under the condition that the value of the 
number of reflections 𝑝 in the estimation formulas 𝜀̂  in 
(14) and ℎ in (19) is fixed at 𝑝 = 4. It can be observed that 
for smaller (larger) values of 𝜀 , the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎)  become smaller (larger), while IEND 
becomes larger (smaller). Upon reduction of the value of 𝜀 
by one order of magnitude, the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎)  become approximately one order of 
magnitude smaller (see three broken auxiliary lines (     ) 
in Fig. 8), while the value of IEND  increases by 
approximately 10 (see single dash-dotted auxiliary line 
(     ) in Fig. 8). From the preceding discussions, it can be 
demonstrated that the estimation accuracy of the estimates 
for E-polarization can be controlled by varying 𝜀 with the 
value of 𝑝 fixed. 

From Fig. 8, it can be observed that the differences 
between the three types of estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) 
are independent of 𝜀  and remain constant throughout the 
entire range of 10 ≤ 𝜀 ≤ 10 . The ratios of the errors 𝛿𝑋, 𝑋 = ℎ, 𝑎  to the error 𝛿𝜀̂  , utilizing the approximate 
results 𝛿𝑋asy, 𝑋 = ℎ, 𝑎 in (44) and (45), yield the following 
numerical results. 𝛿ℎ𝛿𝜀̂ ~ 𝛿ℎasy𝛿𝜀̂ = 0.5~10 .  (55) 𝛿𝑎𝛿𝜀̂ ~ 𝛿𝑎asy𝛿𝜀̂ = 10.399~10 . . (56) 
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Fig. 8  The magnitudes of the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) and the 
number of iterations IEND for E- and H-polarizations are presented as a 
function of the convergence degree 𝜀 when the number of reflections 𝑝 
in the estimation formulas 𝜀̂  in (14) and ℎ in (19) is fixed at 𝑝 = 4. 
The numerical parameters used in the simulation experiments are the same 
as those used in Fig. 5.      : |𝛿𝜀̂ | ,      : |𝛿ℎ| ,       : |𝛿𝑎|,       : number of iterations 𝐼END. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9  The magnitudes of the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) and the 
number of iterations IEND  for E- and H-polarizations are presented as a 
function of the number of reflections 𝑝 in the estimation formulas 𝜀̂  in 
(14) and ℎ  in (19) when the convergence degree 𝜀  is fixed at 𝜀 =1.0 × 10 .  The numerical parameters used in the simulation 
experiments are the same as those used in Fig. 5.      : |𝛿𝜀̂ |,      : |𝛿ℎ|,       : |𝛿𝑎|,       : number of iterations 𝐼END. 

From (55), it can be observed that the estimate formula ℎ 
in (19) provides an estimate that is twice as accurate as 
compared to 𝜀̂ . In contrast, from (56), we can confirm that 
the estimate formula 𝑎  in (20) gives an estimate that is 
approximately one order of magnitude less accurate than 
that of 𝜀̂ . 

While, the control of the estimation accuracy of the 
estimates for H-polarization when the value of 𝜀 is varied, 
under the condition that the value of 𝑝 is fixed at 𝑝 = 4, 
can be discussed in the same way as in the E-polarization 
case described above. Since the estimation formulas derived 
in Section 4.2 are polarization independent, the estimation 
errors and number of iterations for H-polarization were 

identical to those in Fig. 8. Consequently, a quantitative 
discussion of the method to control the estimation accuracy 
for H-polarization is also possible. 

Secondly, we will discuss how to control the 
computation time of the estimation method. Fig. 9 shows the 
magnitudes of the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎)  of the 
estimates (𝜀̂ , ℎ, 𝑎) and the number of iterations IEND for 
E-polarization when the number of reflections 𝑝  in the 
estimation formulas 𝜀̂   in (14) and ℎ  in (19) is varied 
under the condition that the value of the convergence degree 𝜀 is fixed at 𝜀 = 1.0 × 10 . No significant variations in 
the magnitudes of the estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) are 
observed for the three types of estimates when the value of 𝑝 is varied (see three broken auxiliary lines (     ) in Fig. 
9). Conversely, we observe a decrease (increase) in the value 
of IEND when the value of 𝑝 is increased (decreased) (see 
single dash-dotted auxiliary line (     ) in Fig. 9). This 
reduction (increase) in IEND indicates a reduction (increase) 
in the computation time required for the estimation method. 
Based on the preceding discussions, it can be confirmed that 
by varying 𝑝  while the value of 𝜀  is fixed, the 
computation time of the estimation method can be controlled 
while ensuring the estimation accuracy of the estimates for 
E-polarization. 

From Fig. 9, it can be observed that the differences 
between the three types of estimation errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) 
are independent of 𝑝 and remain constant throughout the 
entire range of 4 ≤ 𝑝 ≤ 10 . The ratios of the errors 𝛿𝑋, 𝑋 = ℎ, 𝑎 to the error 𝛿𝜀̂  are given by (55) and (56). 
Consequently, the quantitative evaluations of the errors (𝛿𝜀̂ , 𝛿ℎ, 𝛿𝑎) can be discussed in the same manner as in 
Fig. 8. 

Similarly, controlling the computation time of the 
estimation method for H-polarization by varying 𝑝  while 
the value of 𝜀 is fixed can be discussed in the same way as 
in the E-polarization case described above. As the estimation 
formulas derived in Section 4.2 are polarization independent, 
the estimation errors and the number of iterations for H-
polarization were identical to those in Fig. 9. Consequently, 
it is also possible to discuss the quantitative aspects of 
controlling the computation time of the estimation method 
for H polarization. 

6. Conclusions 

This paper has presented a scatterer information estimation 
method for both E- and H-polarizations by TD-SPT utilizing 
numerical data of the response waveforms of the RGO series, 
which constitute the backward transient scattering field 
components when a line source and an observation point are 
at the same location. A 2-D coated cylinder was selected as 
the scatterer, and the thickness of a coating medium layer 
was assumed to satisfy the applicable condition of the 
estimation method. 

Specifically, by applying the TD-SPT represented in 
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RGO series to AIRs, we have derived the three types of 
estimation formulas: the relative permittivity of a coating 
medium layer and its thickness, as well as the outer radius 
of a coated cylinder. By focusing on the polarization 
independence of AIRs, it was analytically demonstrated that 
all the estimation formulas for scatterer information denote 
the polarization independence. The estimates were obtained 
by substituting the numerical data of the response 
waveforms of the RGO components and the numerical 
parameters of a pulse source into the estimation formulas 
and performing iterative calculations. We derived 
approximations to the estimation errors that are useful in 
quantitatively evaluating the accuracy of the estimates 
obtained by the estimation method. 

The effectiveness of the proposed estimation method 
was substantiated by a comparison of the estimates with the 
set values. The polarization independence of the estimation 
formulas was validated through a numerical comparison of 
the estimates for E- and H-polarizations. The estimation 
errors were discussed using the approximations to the errors 
of the estimates when a line source and an observation point 
were at the same location. The discrepancies that arise 
between the estimation errors when a line source and an 
observation point are at different locations were then 
discussed. Finally, the methods to control the estimation 
accuracy and computational time were also discussed. 
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Appendix A: Applicable Conditions of the Scatterer 
Information Estimation Method and 
Minimum Thickness of a Coating Medium 
Layer 

First, the applicable condition of the scatterer information 
estimation method for the time in Section 4.3 is given by the 
following equation [27], [29] 𝑡 ≥  𝑡  (A∙1) 
where 𝑡  is a constant parameter of 𝑠(𝑡)  in (1). The 
notation 𝑡  is the time required for a round trip through a 
coating medium layer of thickness ℎ (see propagation path 
Q0→R→Q0 in Fig. 2) and is expressed by the following 
equation using the speed of light 𝑐  in medium 2 𝑡 = 2ℎ𝑐 ,   𝑐 = 1𝜀 𝜇 = 𝑐√𝜀  .  (A∙2) 

Second, the applicable condition of the scatterer 
information estimation method for the thickness of a coating 
medium layer in Section 4.3 is given by the following 
equation [27], [29] ℎ ≥ ℎ  (A∙3) 
where ℎ  is the minimum thickness given by ℎ =  𝑡 𝑐2 = 𝑡 𝑐2√𝜀  . (A∙4) 

Appendix B: Time-Domain Saddle-Point Technique 
(TD-SPT) When a Line Source and an 
Observation Point are at the Same 
Location 

As shown in Figs. 1 and 2, the TD-SPT for the 𝑧 −direction 
component 𝑦 (𝜌 , 𝜙 , 𝜌 = 𝜌 , 𝜙 = 𝜙 ; 𝑡) = 𝑦 (𝑡), 𝑗 =
E, H of the backward transient scattering field when a line 
source Q(𝜌 , 𝜙 ) and an observation point P(𝜌, 𝜙) are at 
the same location is given by the following formula, which 

employs the RGO series [28]. 

𝑦 (t) ~ 𝑦 , TD-SPT(t) = 𝑦 , SPT, RGOp(t)
p

, 𝑗 = E, H 

 (B∙ 1) 
where 𝑦 , SPT, RGO (𝑡)  is the RGO solution reflected 𝑝 
times at point R on a metal surface of inner radius 𝜌 = 𝑏 
shown in Fig. 2. The 𝑦 , SPT, RGO (𝑡) is given by 𝑦 , SPT, RGO (t) = 𝐷(𝜔 ,RGO )𝐴 ,RGO  

                               ∙ Re erf𝛽(𝜔 ,RGO ) 𝑠 𝑡 − 𝐿RGO𝑐  for 𝐿RGO𝑐 ≤ 𝑡 ≤ 2𝑡 + 𝐿RGO𝑐  (B∙2) 

where 𝐷(𝜔)  and 𝑐   denote a common factor and the 
speed of light in a surrounding medium 1, respectively, and 𝜔 ,RGO  is a saddle point [28]. These factors are given by 𝐷(𝜔) = 𝑐8𝜋𝜔 exp (𝑖𝜋 4⁄ ) (B∙3) 

𝑐 = 1𝜀 𝜇 = 𝑐√𝜀 ,    𝑐 = 1𝜀 𝜇  (B∙4) 

𝜔 ,RGO = 𝜔 − 𝑖 12𝑑 𝑡 − 𝑡 − 𝐿RGO𝑐 . (B∙5) 

In (B∙2), erf 𝑧 and 𝑠(𝑡) denote the error function [30] in 
(4) and a pulse source in (1), respectively. The symbol 𝛽(𝜔) is defined in (3) and 𝑀  is the number of truncated 
terms in the RGO series. 

In 𝑦 , SPT, RGO (𝑡)  in (B ∙ 2), 𝐷(𝜔 ,RGO )𝐴 ,RGO  Re[erf𝛽(𝜔 ,RGO )]  and 𝐿RGO   are the amplitude and 
distance functions of 𝑦 , SPT, RGO (𝑡), respectively. 

B.1 Symbols 𝐴 , RGO  and 𝐿RGO  of RGO  in (B∙2) 

The symbols 𝐴 , RGO   and 𝐿RGO   of RGO   propagating 
along the path Q→Q0→P (see Fig. 2), which is emitted at 
point Q and reflected at point Q0 on a coating surface of 
outer radius 𝜌 = 𝑎 before arriving at point P, are given by 
[28] 𝐴 , RGO = 𝐴 , RGO 𝑅 , 11 (B∙6) 

𝐴 , RGO = 𝑎2𝐿(𝑎 + 𝐿) (B∙7) 

𝐿RGO = 𝐿 +𝐿 = 2𝐿 (B∙8) 𝐿 = 𝜌 − 𝑎 = 𝐿 = QQ0 (B∙9) 𝐿 = 𝜌 − 𝑎 = 𝐿 = Q0P. (B∙10) 
The symbol 𝐴 , RGO   is a divergence factor [2], [3] of 
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RGO  and 𝐿 is a symbol for the same distance as 𝐿 (=
QQ0) and 𝐿 (= Q0P) (see Fig. 2). 

In (B∙6), 𝑅 , 11 is a reflection coefficient on the convex 
side at point Q0 and is defined as 

𝑅 , 11 = ⎩⎪⎨
⎪⎧− √𝜀 − √𝜀√𝜀 + √𝜀    for 𝑗 = E+ √𝜀 − √𝜀√𝜀 + √𝜀    for 𝑗 = H

.  (B∙11) 

B.2 Symbols 𝐴 , RGOp  and 𝐿RGOp  of RGO , p =1, 2, ⋯ , 𝑀  in (B∙2) 

The symbols 𝐴 , RGOp  and 𝐿RGOp  of RGO , p =1, 2, ⋯ , 𝑀   propagating along the path 
Q→𝑝(Q0→R→)Q0→P (see Fig. 2), including the multiple 
reflection effect 𝑝(Q0→R→)Q0 which is emitted at point 
Q and reflected p times at point R before arriving at point 
P, are given by [28] 𝐴 , RGOp = 𝐴 , RGOp𝑇 , 12 𝑅 , 

p 𝑅 , 𝑇 ,  (B∙12) 

𝐴 , RGOp = 𝑎2𝐿(𝑎 + 𝐿) + 𝐷  (B∙13) 

𝐷 = 𝑝 (𝑎 + 𝐿) (2ℎ)𝑎 − ℎ 𝜀𝜀    (B∙14) 

𝐿RGOp = 2𝐿 + 𝑝 𝜀𝜀 (2ℎ) (B∙15) 

where 𝐴 , RGOp  represents a divergence factor of RGOp 
and 𝑇 , 12 (𝑇 , ) expresses a transmission coefficient from 
medium 1 (medium 2) to medium 2 (medium 1) at point Q0 
(see Fig. 2), and are defined as follows 

𝑇 , 12 = ⎩⎪⎨
⎪⎧ 2√𝜀√𝜀 + √𝜀    for 𝑗 = E2√𝜀√𝜀 + √𝜀    for 𝑗 = H

 (B∙16) 

𝑇 , = ⎩⎪⎨
⎪⎧ 2√𝜀√𝜀 + √𝜀    for 𝑗 = E2√𝜀√𝜀 + √𝜀    for 𝑗 = H

. (B∙17) 

In (B∙12), 𝑅 ,   and 𝑅 ,   represent a reflection 
coefficient at point R and a reflection coefficient on the 
concave side at point Q0 (see Fig. 2), respectively, and are 
defined as follows 𝑅 , = −1   for 𝑗 = E+1   for 𝑗 = H (B∙18) 

𝑅 , = ⎩⎪⎨
⎪⎧+ √𝜀 − √𝜀√𝜀 + √𝜀    for 𝑗 = E− √𝜀 − √𝜀√𝜀 + √𝜀    for 𝑗 = H

. (B∙19) 
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