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Convergence Characteristics of Domain Decomposition Method for
Full-Wave Electromagnetic Analysis

Toshio MURAYAMA† and Amane TAKEI††, Members

SUMMARY A domain decomposition method is widely utilized for
analyzing large-scale electromagnetic problems. The method decomposes
the target model into small independent subdomains. An electromagnetic
analysis has inherently suffers from late convergence analyzed with itera-
tive algorithms such as Krylov subspace algorithms. The DDM remedies
this issue by decomposing the total system into subdomain problems and
gathering the local results as an interface problem to adjust to achieve the
total solution. In this paper we report the convergence properties of the
domain decomposition method while modifying the size of local domain
and the region shape on several mesh sizes. As experimental results show,
the convergence speed depends on the number of interface problem vari-
ables and the selection of the local region shapes. In addition to that the
convergence property differs according to the target frequencies. In general
it is demonstrated that the convergence speed can be accelerated with large
cubic subdomain shape. We propose the subdomain selection strategies
based on the analysis of the condition numbers of the governing equation.
key words: Finite element method, Domain decomposition method, Itera-
tive algorithm, Convergence characteristics

1. Introduction

The large-scale electromagnetic (EM) analysis is success-
fully utilized to the geometrically complicated product de-
sign, wireless communication or EMC analyses[1]. Several
numerical approaches have been proposed and utilized to
analyze these issues. The Finite Difference Time Domain
(FDTD) method is one of the popular algorithms which has
been applied to large-scale EM problems[2]. The FDTD
algorithm is heavily utilized for many cases because of its
versatile and easiness to implement as a software. In ad-
dition to that nature, the FDTD method can be effectively
parallelized with multi-core processors and can be applied
to the large-scale problems. The algorithm, however, has
critical limitations that the analysis region should be par-
titioned into rectangular blocks. Also the algorithm takes
vast amount of time steps for low frequency problems due
to the Courant-Friedrichs-Lewy condition. The Finite Dif-
ference Frequency Domain (FDFD) method is the algorithm
for frequency domain, however, it has the same limitation as
the rectangular elements[3]. Since the FDFD method is re-
quired to solve the matrix equation, some kind of ingenuity
is required when it is applied to the large-scale EM prob-
lems. The Moment method is another widely used scheme
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for antenna and waveform propagation analyses[4]. Its ad-
vantage is the relatively small number of unknown variables
required for solving the problem. The equation composed
by the moment method is, however, dense and requires huge
calculation costs. It also requires the special treatment to an-
alyze the model including the dielectric materials. The Finite
Element Method (FEM) is versatile and flexible algorithm
for solving time and frequency EM problems. It has been
applied widely applicable to the complex structure and large-
scale problems. It is difficult, however, to solve the problem
when the size of the system becomes large. Furthermore
the EM problems inherently suffer from slow convergence
due to the null space of rotation operator [5][6][7]. 𝐴 − 𝜙
method is one of the countermeasure to this problem[8].
However, large-scale problems still need breakthrough for
the practical analysis. The multigrid methods[9][10] have
been attracting attention and utilized over various problem
domains especially for the elliptic problems[11]. It also has
parallel effective nature[12] and can be processed in par-
allel. It generates the hierarchical coarse grids to correct
global errors[13] while basic iterative method reduces short-
wavelength error. Many studies have shown the methods
are very effective, however, there are some cases that it is
difficult to generate ’coarse grids’ accurately for complex
electromagnetic problems[14].

The Domain Decomposition Method (DDM) [15][16][17]
is one of the countermeasures to overcome the large-scale
problems[18]. The method divides the target problem into
small subdomains which are solved independently as smaller
size problem shown in Fig. 1. These results are assembled
to generate the entire solution and hence can solve the large-
scale problems. It can be applied to many engineering do-
main such as the thermal analysis [19] and can treat not only
frequency domain but also time domain EM problems[20].
Most domain decomposition methods can be categorized
into the two classes. One is the Schwarz methods which di-
vides the total region into the overlapping subdomains. An-
other class is based on the Schur complement method which
is regarded as the non-overlapping subdomains. We focus on
the non-overlapping DDM since the overlapping DDM re-
quires communications between subdomains which become
dominant when the number of subdomains increases which
can be a disadvantage for an extra large-scale analysis[21].
For the DDM preconditioning methods [22] or domain aware
decomposition methods were recently proposed[23] since it
is critical for the method to generate optimal number of sub-
domain variables and shape[24]. The 3D planer decompo-
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sition is also proposed[25]. However, there are less studies
reported for the DDM with rectangular meshes and shape of
the subdomain dependencies. Under these circumstances,
it seems to be worthwhile investigating the characteristics
of the DDM algorithm. In this paper the convergence char-
acteristics of rectangular meshes are newly reported. The
characteristics with different size models when the number
of subdomains and shapes are modified are fully discussed
and the fast convergence strategy is proposed. Optimal mem-
ory and calculation resources required for the DDM are also
discussed and reported.

Fig. 1 Domain decomposition method. Bold edges are interface edge
elements and others are inner edges.

2. FEM Formulation with Edge Elements

A 3D EM problem is formulated and discretized with edge
elements from the vector Helmholtz equation as follows [7]
[11]:

5 ×
1
𝜇𝑟

5 × ®𝐸 + 𝑗𝜔𝜇0𝜎 ®𝐸 − 𝜔2𝜇0𝜖0𝜖𝑟 ®𝐸 = − 𝑗𝜔𝜇0 ®𝐽𝑣 (1)

where ®𝐸 is the electrical field intensity vector, 𝜇0 and 𝜇𝑟
are the permeability of free space and relative permeability,
respectively, 𝜖0 and 𝜖𝑟 are the permittivity of free space
and relative permittivity, respectively, 𝜎 is conductivity 𝜔 is
angular frequency and ®𝐽𝑣 is an excitation current vector. By
expanding ®𝐸 with edge elements ®𝜔𝑒,𝑖 we obtain the following
discretized system of equations

𝑀𝑥 = − 𝑗𝜔 𝑓 (2)

where

𝑀𝑖 𝑗 =
∫∫∫

Ω
5 × ®𝜔𝑒,𝑖 ·
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Ω

®𝜔𝑒,𝑖 · 𝜖𝑟 ®𝜔𝑒, 𝑗𝑑𝑣 (3)

𝑓𝑖 = 𝜇0

∫
®𝑤𝑒,𝑖 · ®𝐽𝑣𝑑𝑣. (4)

Here, 𝑀 is a sparse symmetric complex matrix. In order
to analyze the open region electromagnetic waveform scat-
tering problems, the finite region must be enclosed by a
radiation condition or absorbing boundary layers. Many ap-
proaches are proposed for the radiation condition. In our

implementation the perfectly matched layers (PML) are em-
ployed to absorb the outgoing waveform.

3. Domain Decomposition Method

The domain decomposition is a very broad research subject
and has received intensive attention in the advent of parallel
computation[21]. In this paper we divide the analyzed model
into non-overlapping subdomains. Equation (2) is divided
into the following form(

𝑀𝑎𝑎 𝑀𝑎𝑏

𝑀𝑏𝑎 𝑀𝑏𝑏

) (
𝑥𝑎
𝑥𝑏

)
= 𝑗𝜔

(
𝑓𝑎
𝑓𝑏

)
(5)

where 𝑀𝑎𝑎 corresponds to the internal edge elements con-
tained in the subdomains. By eliminating 𝑥𝑎 we obtain a
reduced system for the unknowns on the interface edge ele-
ments as

(𝑀𝑏𝑏 − 𝑀𝑏𝑎𝑀
−1
𝑎𝑎𝑀𝑎𝑏)𝑥𝑏 = 𝑗𝜔( 𝑓𝑏 − 𝑀𝑏𝑎𝑀

−1
𝑎𝑎 𝑓𝑎).(6)

In order to reduce the required memory, usually 𝑀𝑎𝑎 is
chosen as a set of small diagonal blocks which correspond
to the subdomains as follows:

𝑀𝑎𝑎 =

©«
𝑀00 0 . . . 0
0 𝑀11 . . . 0
...

...
. . .

...
0 0 . . . 𝑀𝑛−1,𝑛−1

ª®®®®¬
. (7)

By assembling the subdomains as a block diagonal matrix,
𝑀𝑎𝑎 is easily factorized as upper and lower triangle matrices
as 𝑀𝑎𝑎 = 𝐿 ∗𝑈 with modest memory resources, and can be
used to calculate instead of 𝑀−1

𝑎𝑎 .

3.1 Iterative Algorithms

A system of linear matrix equation is solved by direct meth-
ods and iterative methods. The former algorithms directly
modify the matrix to be solved and obtain solution within
finite calculation operations. Some studies try to develop
direct solution of large-scale EM problems[26]. However,
when the size of the equation becomes large, it takes vast
amount of memory and calculation resources. Therefore it
is not suitable for a large-scale problem.

Iterative algorithms such as Krylov subspace methods
are heavily used for large-scale problems[27]. COCG[28]
or COCR[29] and their derivation schemes [30][31] are
commonly applied to the EM problems since the govern-
ing equations are symmetric complex matrices. The COCG
algorithm is expressed as shown in Fig. 2. In the DDM
algorithm, the matrix vector product 𝐴𝑝 𝑗 is performed as
(𝑀𝑏𝑏 − 𝑀𝑏𝑎𝑀

−1
𝑎𝑎𝑀𝑎𝑏)𝑝 𝑗 where 𝑀−1

𝑎𝑎 is replaced by 𝐿𝑈
substitution.

3.2 Characteristics of the Reduced System

The reduced system (6) becomes the smaller size matrix
and relatively easier to be solved by the iterative algorithms.
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𝑟0 ⇐ 𝑏 − 𝐴𝑥0
𝑝0 ⇐ 𝑟0
𝐹𝑜𝑟 𝑗 = 1, · · ·, 𝑚 𝐷𝑜 :

𝛼 =
(𝑟 𝑗 ,𝑟 𝑗 )

(𝐴𝑝 𝑗 𝑝 𝑗 )
𝑥 𝑗+1 ⇐ 𝑥 𝑗 + 𝛼𝑗 𝑝 𝑗

𝑟 𝑗+1 ⇐ 𝑟 𝑗 − 𝛼𝑗𝐴𝑝 𝑗

𝛽 𝑗 =
(𝑟 𝑗+1 , ¯𝑟 𝑗+1 )

(𝑟 𝑗𝑟 𝑗 )
𝑝 𝑗+1 ⇐ 𝑟 𝑗+1 + 𝛽 𝑗 𝑝 𝑗

𝐼 𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑆𝑡𝑜𝑝.

Fig. 2 COCG algorithm [32].

The Krylov subspace iterative methods take much iterations
when the condition number 𝜅(𝑀) of the matrix is large[32].
The reduced matrix has a smaller condition number com-
pared with that of the original system as depicted in Fig. 3
where the target model consists of 10x10x10 meshes with
size of 1mm operating at 1GHz frequency. This fact means
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Fig. 3 Condition numbers of reduced matrices.

that when the number of subdomain variables increases, the
number of the interface variables decreases since they cor-
respond to the remainder after subtracting the subdomain
variables from the overall variables. As a result the condi-
tion of the reduced system becomes better and the equation
converges faster. In order to verify this we performed several
numerical experiments.

4. Comparison of Convergence Characteristics

Numerical experiments have been done to investigate the
convergence properties with three models shown in Fig. 4
(Mesh I through III). They consists of 160x160x160 cubic
elements backed by 16-layer perfectly matched layers. We
choose the number of PML layers with margin for our pur-
pose according to the results shown in [21] where 10-layer
PML shows enough performance. Each model has the exci-
tation source located at the center of the model. The sources
are single frequency sinusoidal current sources. Mesh sizes
are 𝜆

60 , 𝜆
300 and 𝜆

600 where 𝜆 is a wavelength of an electro-
magnetic wave. Experimental statistics are shown in Table

Table 1 Simulation statistics.
Num. of elements 4,096,000
Num. of freedom 12,134,800

Absorbing boundary 16 Perfectly matched
condition layers unless otherwise specified

Element type Brick Nédélec 1st order
Element size 5mm × 5mm × 5mm (Mesh I)
Element size 1mm × 1mm × 1mm (Mesh II)
Element size 0.5mm × 0.5mm × 0.5mm (Mesh III)

Operation frequency 1Ghz
Convergence criterion Relative error < 1e-6

Platform AMD EPYC 7502 32-Core
Numerical library Intel oneAPI Math Kernel Library [33]

1. The subdomain sizes which mean the number of x, y and
z meshes applied to the Model I through III are shown in
Table 2.

Table 2 Subdomain sizes applied to the models.
Subdomain Total number The number of variables

size of variable in interface problem
10x10x10 12,134,800 2,042,880
20x20x20 12,134,800 1,044,960
40x40x40 12,134,800 453,600
80x80x80 12,134,800 152,160

Fig. 4 Target model. It consists of 160x160x160 cubic elements.

Fig. 5 DDM model decomposition with cubic subdomain.
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Table 3 Required iteration counts.
Subdomain size

Model 10x10x10 20x20x20 40x40x40 80x80x80
𝜆
60 3,530 2,050 2,014 1,112
𝜆

300 2,732 1,588 951 1,013
𝜆

600 1,571 1,318 662 733

The DDM algorithm is applied to the simulation models
with COCG algorithm where the models are decomposed
into cubic subdomains shown in Fig. 5. The convergence
profiles are shown in Fig. 6.

4.1 Iteration Counts

First, the iteration counts required to converge to the approx-
imation solution are shown. Three models are solved with
different number of subdomain size 10x10x10, 20x20x20,
40x40x40 and 80x80x80 (Table2). According to these re-
sults the algorithm converges within less iteration counts
when the number of subdomain variables is larger (Table3).
There are minor exceptions that the model with 40x40x40
subdomains are a little faster than one with 80x80x80 sub-
domains in Mesh II and Mesh III, which are almost the same
number of iterations. As the number of subdomain variables
becomes large, the number of interface problem variables
decreases. As for the effect of the number of subdomain
variables it can be said that generally speaking the smaller
the number of variables in the interface problem, the smaller
the required iteration count becomes.

4.2 Mesh Size dependency

The difference of the mesh size corresponds to the operation
frequency when the size of the mesh is normalized. In our
previous report[34] the convergence rate of Krylov subspace
methods has dependency on the operation frequency. In this
time’s cases, when the size of the mesh is smaller, which
corresponds to the low frequency operation, the DDM con-
verges in fewer iterations. Over the Mesh I through III the
DDM converges in fewer iterations according to the number
of subdomain variables. This is because when the number
of subdomain variables increases, the variables in the inter-
face problem decreases resulting in good condition of the
governing matrix.

4.3 Memory Resources

In Fig. 7 it is shown that the subdomain size increases,
the required memory resources increase. The main part
of the memory consumption is a 𝐿𝑈 factorization of the
internal variables. When formulated with edge elements
with the hexahedron meshes there are 1 diagonal and up
to 32 off-diagonal elements in one line of the governing
equation matrix. The expected required memory resource
are roughly estimated with the band matrix with the size of
33. According to the numerical experiments, the required
memory roughly proportional to 𝑂 (𝑛1.2∼1.3) where 𝑛 is the

number of unknowns.

4.4 Calculation Cost

As discussed above, the DDM completes the analysis within
small iteration counts when the number of interface variables
is smaller. On the other hand, it takes much calculation costs
when solving 𝑀−1

𝑎𝑎 × 𝑟 at one iteration in COCG process.
The required total simulation time is the product of the time
of one iteration and the number of the iteration count for
convergence. The elapsed times for the convergence in our
experiments are shown in Fig. 8. It was shown that the
total required time is minimal around 20x20x20 subdomains
over Mesh I through Mesh III models. Even if the number
of interface problem variables is smaller, the total required
simulation time may increase. This means that there are op-
timal number of subdomain variables which depends on the
problem characteristics. In our experiments when the size
of the subdomain variables increases, it takes 𝑂 (𝑛1.2∼1.3)
larger computational costs which cannot be compensated by
the iteration count acceleration by large subdomain size.

4.5 Subdomain Shape Dependency

Until here, we discussed the DDM properties with cubic
subdomain decomposition. However, it is possible to select
subdomains as a rectangular parallelepiped. In this sub-
section the effect of different shape of the subdomains is
considered. Two cases are experimented where the number
of the subdomain variables and the interface variables are al-
most the same but the shapes are cubic and planer rectangular
parallelepiped (Fig. 9). The required memory resource for
decomposition are almost the same when the number of the
internal variables are nearly equal. It is clear that the mod-
els with cubic subdomains is much faster than those with
rectangular parallelepiped. In Fig. 10 the required memory
resources for the different subdomain shapes are shown. It
is depicted that the rectangular parallelepiped subdomain re-
quires less memory compared to the cubic shape when the
number of subdomain variables are almost same. Also, the
parallelepiped subdomain does not consume twice as much
memory as the cubic subdomain whose number of subdo-
main variables is almost half of the parallelepiped. In Mesh
I with the rectangular subdomain did not converge within
10,000 iterations(Fig. 11).

This fact reveals that the shape of the subdomain
strongly affects the convergence characteristics. Although
much more experiments will be required to determine the
optimal subdomain shape, however, it is a better strategy to
select the shape of the subdomain as nearly as the cubic form
even though the condition number of the flat decomposition
is better and the required memory is less in comparison with
the cubic one.

5. Discussion

According to the results of our numerical experiments, It is
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Fig. 6 Convergence Profiles of Different Mesh Size. (”IF” in the graphs means the number of interface
variables.)
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clear that the DDM is robust and effective algorithm for the
EM problems. It converges all cases with different size of

Fig. 9 Flat Decomposition.
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Fig. 10 Required memory resources for the different shapes.

the meshes. It is a beneficial strategy that the subdomains
are selected as cubic shape and its size is chosen depending
on the experimental results for the fast convergence.

The operation frequency affects the convergence prop-
erty and the lower the frequency the faster the iteration con-
vergence in our cases. However, there should be optimal
frequency and this requires more experiments in various fre-
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Fig. 11 Convergence profiles of different subdomain shape models. (”IF” in the graphs means the
number of interface variables.)

quencies. It seems that the lower the operation frequency
becomes, the fewer the DDM iteration requires for conver-
gence (Table 3). The elapsed time of Mesh II, however, takes
more than that of Mesh I in many cases (Fig. 8). This re-
versal phenomenon is due to the calculation costs required
to solve the subdomain with a direct sparse matrix solution
algorithm. The direct matrix solver performs pivoting for
the required accuracy and fill-ins occur differently according
to the frequency. The optimized mesh size for the specified
operation frequency depends on these factors and it will be
possible to obtain empirical rules through more numerical
experiments.

It was shown that the shape of the subdomains affects the
convergence characteristics. In our cases, the cubic subdo-
main is effective than that of the rectangular parallelepiped.
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Fig. 12 Condition numbers with cubic and flat subdomains.

As shown in Fig. 12 the condition number decreases
according to the number of interface problem variables. In

these results, the flat decomposes have smaller condition
numbers which is not compatible with the convergence pro-
file in Fig.11. This means that the condition number is not
strongly related to the upper bound of the iteration count
when the subdomain shapes are different. However, the ten-
dency to decrease and saturate of the condition number is
verified useful and the condition number can be a good indi-
cator when the model is composed of the same subdomain
shapes.

6. Conclusions and Future Work

In this paper we make it clear that the convergence prop-
erties of the DDM applied to the electromagnetic full-wave
analyses with rectangular mesh edge elements. It is also
clarified that the convergence speed can be accelerated by
increasing the number of subdomain which leads to the de-
crease of the number of interface variables. The strategy
for selecting the subdomain size is proposed in accordance
with condition number of the governing matrix. Generally
the required number of iterations has a negative correlation
to the number of interface variables, however, the more the
number of variables in the subdomains increases, the more
the memory resources are required. The properties with dif-
ferent subdomain shapes are also investigated. It is shown
that the convergence rate largely depends on the shape of the
subdomain. Frequency dependencies are also studied. The
convergence ratio differs on the analysis frequency, however,
the required iteration counts depend on the iterative algo-
rithms and need more studies on this issue. Therefore the
frequency dependency should be studied more in detail. In
this report the DDM converges faster when the operation
frequency is lower, however, the convergence characteris-
tics depends on the frequency and it also differs with the
kind of Krylov subspace algorithms. The optimal frequency
of the DDM with the interface size, subdomain shape and
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the iteration algorithms will be the next study themes. In
this paper we use structured lattice for the numerical experi-
ments, however, the DDM can be applied to the unstructured
meshes such as tetra elements. We will further study the
convergence properties in case of unstructured meshes.

References

[1] A. Takei, S. Sugimoto, M. Ogino, S. Yoshimura, and H. Kanayama,
“EMC analysis in a living environment by parallel finite element
method based on the iterative domain decomposition method,” The-
oretical and Applied Mechanics Japan, vol.62, pp.237–245, 2014.

[2] A. Taflove, Computational Electrodynamics : The Finite-Difference
Time-Domain Method, Artech House, 1995.

[3] T. Watanabe and H. Asai, “Macromodel generation for hybrid sys-
tems consisting of electromagnetic systems and lumped RLC circuits
based on model order reduction,” IEICE Transactions on Fundamen-
tals, vol.E87-A, pp.398–405, Febrary 2004.

[4] W.C. Gibson, The Method of Moments in Electromagnetics, Chap-
man and Hall/CRC, 2007.

[5] R. Hiptmair and J. Xu, “Auxiliary space preconditioning for edge
elements,” IEEE Transactions on Magnetics, vol.44, no.6, pp.938–
941, June 2008.

[6] T. Murayama and S. Yoshimura, “Fast electromagnetic simulation
with superimposed multigrid preconditioner,” IEICE Transactions
on Communications, vol.J92-B, pp.1449–1456, January 2009.

[7] T. Murayama, A. Takei, and S. Yoshimura, “Fast full-wave electro-
magnetic simulation by multiplicative Schwarz preconditioning with
alternating direction node blocks,” IEICE Transactions on Electron-
ics, vol.J93-C, pp.647–656, December 2010.

[8] T. Iwashita, T. Mifune, S. Moriguchi, and M. Shimasaki, “Physical
meaning of the advantage of A-phi method in convergence,” IEEE
Transactions on Magnetics, vol.45, pp.1424–1427, March 2009.

[9] D.N. Arnold, R.S. Falk, and R. Winther, “Multigrid in H (div) and
H (curl),” Numerische Mathematik, vol.85, no.2, pp.197–217, 2000.

[10] A. Aghabarati and J.P. Webb, “An algebraic multigrid method for the
finite element analysis of large scattering problems,” IEEE Transac-
tions on Antennas and Propagation, vol.61, no.2, pp.809–817, Feb
2013.

[11] Y. Zhu and A. Cangellaris, Multigrid Finite Element Methods for
Electromagnetic Field Modeling, Wiley-IEEE Press, 2006.

[12] Y. Hirotani, T. Mifune, T. Iwashita, T. Murayama, and H. Ohtani,
“Large-scale high-frequency electromagnetic finite element analysis
using the parallel geometric multigrid method,” IEICE Transactions
on Communications, vol.J93-B, pp.1331–1341, September 2010.

[13] A. Ida, T. Iwashita, T. Mifune, and Y. Takahashi, “Variable precon-
ditioning of Krylov subspace methods for hierarchical matrices with
adaptive cross approximation,” IEEE Transactions on Magnetics,
vol.52, no.3, pp.1–4, March 2016.

[14] T. Iwashita, Y. Hirotani, T. Mifune, T. Murayama, and H. Ohtani,
“Large-scale time-harmonic electromagnetic field analysis using a
multigrid solver on a distributed memory parallel computer,” Parallel
Computing, vol.38, pp.485–500, 2012.

[15] A. Takei, S. Yoshimura, and H. Kanayama, “Large-scale analysis of
high frequency electromagnetic field by hierarchical domain decom-
position method,” IEEJ Transactions on Fundamentals and Materials,
vol.128, pp.591–597, Sep. 2008.

[16] A. Takei, S. Sugimoto, M. Ogino, S. Yoshimura, and H. Kanayama,
“Full wave analyses of electromagnetic fields with an iterative domain
decomposition method,” IEEE Transactions on Magnetics, vol.46,
no.8, pp.2860–2863, Aug 2010.

[17] A. Takei, M. Ogino, and S.I. Sugimoto, “High-frequency electro-
magnetic field analysis by cocr method using anatomical human
body models,” Transactions on Magnetics, vol.54, no.3.

[18] L. Yin and W. Hong, “A fast algorithm based on the domain decom-
position method for scattering analysis of electrically large objects,”

Radio Science, pp.1–9, Jan. 2002.
[19] X. Zhang and M. Tang, “Non-conformal domain decomposition

method for thermal analysis of integrated packages,” IEEE 10th Asia-
Pacific Conference on Antennas and Propagation (APCAP), pp.1–2,
2022.

[20] I. Massaoudi and P. Bonnet, “A non-overlapping time domain decom-
position method,” International Conference on Electromagnetics in
Advanced Applications (ICEAA), pp.612–612, 2023.

[21] J.M. Jin, The Finite Element Method in Electromagnetics, Third
Edition, Wiley-IEEE Press, 2014.

[22] H. Kanayama, M. Ogino, S.Sugimoto, and Q. Yao, “A preconditioner
construction for domain decomposition analysis of large scale 3d
magnetostatic problems,” Fourth International Conference on Mod-
eling, Simulation and Applied Optimization, pp.1–4, 2011.

[23] Q. Lim, H.W. Gao, and Z. Peng, “Full-wave simulation of a 10,000-
element reconfigurable intelligent surface with a single workstation
computer,” IEEE International Symposium on Antennas and Prop-
agation and USNC-URSI Radio Science Meeting (USNC-URSI),
pp.587–588, 2023.

[24] S. Sun and D. Jiao, “Split-field domain decomposition parallel al-
gorithm with fast convergence for electromagnetic analysis,” IEEE
Journal on Multiscale and Multiphysics Computational Techniques,
pp.135–146, 2023.

[25] H. Wang, L. Xu, J. Yin, H. Liu, X. Li, and B. Li, “A 3d planar par-
titioning method for finite element domain decomposition method,”
IEEE International Symposium on Antennas and Propagation and
USNC-URSI Radio Science Meeting (USNC-URSI), pp.1–2, 2023.

[26] N. Lochner, D.G. Makris, and M.N. Vouvakis, “Low rank direct
finite element solvers,” IEEE International Symposium on Antennas
and Propagation and USNC-URSI Radio Science Meeting (USNC-
URSI), pp.45–46, 2023.

[27] T. Sogabe, Iterative Methods for Sparse Linear Systems, Second
Edition, Springer, 2023.

[28] H.A. van der Vorst and J.B.M. Melissen, “A Petrov-Galerkin type
method for solving Axk=b, where A is symmetric complex,” IEEE
Transactions on Magnetics, vol.26, no.2, pp.706–708, Mar 1990.

[29] T. Sogabe and S.L. Zhang, “A COCR method for solving complex
symmetric linear systems,” J. Comput. Appl. Math., vol.199, no.2,
pp.297–303, February 2007.

[30] X.M. Gu, T.Z. Huang, L. Li, H.B. Li, T. Sogabe, and M. Clemens,
“Quasi-minimal residual variants of the COCG and COCR methods
for complex symmetric linear systems in electromagnetic simula-
tions,” IEEE Transactions on Microwave Theory and Techniques,
vol.62, no.12, pp.2859–2867, Dec 2014.

[31] M. Ogino, A. Takei, and S. Sugimoto, “Performance evaluation of
finite element analysis for high frequency electromagnetic fields us-
ing the MINRES-like CS method,” IEICE technical report, vol.116,
no.212, pp.77–80, 2016.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edi-
tion, SIAM, 2003.

[33] “Intel oneAPI Math Kernel Library.” https://software.intel.
com/en-us/intel-mkl.

[34] T. Murayama, A. Muto, and A. Takei, “Convergence properties of
iterative full-wave electromagnetic FEM analyses with node block
preconditioners,” IEICE Transactions on Electronics, vol.E101.C,
pp.612–619, August 2018.



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Toshio Murayama received the M.E. de-
gree from the University of Tokyo in 1987, the
M.S. degree from the University of California
at Santa Barbara in 1991 and the Ph. D. de-
gree in engineering from the University of Tokyo
in 2012. He joined Sony Corporation in 1987.
He has been researching numerical analysis of
electromagnetics. His research interest convers
also multi-domain circuit electromagnetic co-
simulation.

Amane Takei received the B. E. and the
M. E. degree from Hosei University in 1997 and
1999, respectively, and the Ph.D. of environmen-
tal study degree from The University of Tokyo
in 2006. He has worked as Postdoctoral Fellow
for The University of Tokyo from 2006 to 2010,
and Associate professor for Tomakomai National
Collage of Technology from 2010 to 2014. He is
working as Associate Professor for Department
of Electrical and systems Engineering, Univer-
sity of Miyazaki from 2014.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

