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Review: Noncontact Sensing of Animals Using Radar
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SUMMARY There has been a growing interest in the application of
radar technology to the monitoring of humans and animals and their posi-
tions, motions, activities, and vital signs. Radar can be used, for example,
to remotely measure vital signs such as respiration and heartbeat without
contact. Radar-based human sensing is expected to be adopted in a variety
of fields, such as medicine, healthcare, and entertainment, but what can
be realized by radar-based animal sensing? This paper reviews the latest
research trends in the noncontact sensing of animals using radar systems.
We also present examples of our past radar experiments for the respiratory
measurement of monkeys and the heartbeat measurement of chimpanzees.
The trends in this field are reviewed in terms of the target animal species,
type of vital sign, and radar type and selection of frequencies.
key words: animals, radar, noncontact sensing, vital signs, body motion

1. Introduction

The demand for sensing vital signs has increased in a va-
riety of fields, such as medicine, healthcare, security, and
entertainment. First, by observing the vital signs and phys-
iological state of a target person, we can assess physical
and psychological conditions. Second, by observing vital
signs, we can detect signs of diseases and sudden changes in
medical conditions and observe chronic diseases in what is
expected to be a breakthrough in healthcare and medicine.
Although most existing methods of monitoring vital signs
are intended to be used for humans, they can be applied to a
wide range of non-human animals, which is expected to lead
to innovative applications and commercial opportunities [1].

One application of animal sensing is agriculture and
livestock farming, where sensors can make livestock pro-
duction more efficient, sustainable, and precise. A variety
of sensors have been studied for the livestock and agricul-
ture industry, and by adopting such sensors, we can obtain
information of the animal status (e.g., disease, metabolism,
stress, reproduction, behavior, and positioning information)
required to improve efficiency and animal welfare [2].

Most conventional sensors, however, require the instal-
lation of a device on the body, the clothing, a seat, the
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bedding, or a mattress. Electrocardiography (ECG), for
example, has been established as the standard method for
monitoring the heart rate. Implanted ECG radiotelemetry
units are widely used as the gold standard for monitoring
heart activity, especially for laboratory animals such as mice;
such ECG devices have been used in numerous studies on
cardiovascular diseases, stress, aging, the circadian rhythm,
animal welfare, neurology, toxicology, and cancer [3]. How-
ever, wearing such contact-type sensors can create stress for
many animals, and in many cases, the use of anesthesia is
necessary during installation, which might place the target
animals at risk.

It is thus important to introduce a noncontact method
for monitoring vital signs, especially for the physiological
measurement of non-human animals. One existing noncon-
tact method for monitoring physiological signals involves
the use of optical cameras. Its measurement principle is
similar to that of photoplethysmography and involves the de-
tection of variations in skin color related to the local blood
volume. This method, however, cannot be applied to a body
part covered with clothing, hair, or fur. In addition, the accu-
racy of camera-based sensors deteriorates when the lighting
conditions fluctuate.

Recently, new emerging sensing technology using radar
has attracted attention. Radar systems can measure vital
signs (physiological signals) such as body movements, res-
piration, the heartbeat, and blood pressure without requiring
the troublesome installation of sensors, and measurements
can thus be made without making the subject aware of the
presence of sensors. The introduction of the noncontact
radar sensing of animals can eliminate the stress effects of
the repeated handling of animals in taking data as the use of
contact-type sensors can be avoided. The use of radar sys-
tems avoids such issues because microwaves and millimeter-
waves (mmW) penetrate dry clothing, hair, and fur. In ad-
dition, the fluctuation of lighting conditions does not affect
radar measurements.

The volume of data recorded by a radar system is smaller
than that recorded by cameras, and radar-based methods
are thus suitable for edge computing in embedded systems
and reduce the volume of data transmitted in communica-
tions [4]. Radar-based methods can therefore be applied in
the measurement of humans/animals even if the subjects are
dressed or covered with fur in an outdoor setting with fluc-
tuating lighting.

In this paper, we review the latest research trends in
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the noncontact sensing of animals using radar systems. In
Sect. 2, we first discuss animal species as radar targets in
published studies, then discuss the different types of physio-
logical signals of animals that are measured using radar, and
finally discuss the radar frequencies used in the radar mea-
surement of animals. In Sect. 3, we present two examples
of our past work on the noncontact sensing of animals using
radar systems.

2. Trends in Animal Measurements Using Radar

2.1 Animal Species in Radar Measurement

A variety of animals have been selected as radar targets.
Experimental animals are often selected as target animals
in radar measurements because of their availability for con-
trolled experiments. Examples of such animals are rats [5]–
[13], mice [14], [15], golden hamsters [16], and rabbits [9],
[17]–[24].

From the viewpoint of animal welfare, domesticated
pets, such as dogs [20], [21], [23], [25]–[32] and cats [21],
[23], [26], [31], [33], [34], are often selected for measure-
ment using radar systems. Such application of radar mea-
surement might lead to novel services in the pet industry
as the respiration and heartbeat are associated with a pet’s
physical and psychological stress [35]. In addition, the abil-
ity to detect animal vital signs could be applied to emergency
protection after disasters, such as finding and distinguishing
humans and animals buried under rubble and assessing their
survival status [18], [19], [23], [27].

From the viewpoint of improving agricultural effi-
ciency, the measurement of livestock animals, such as broiler
chickens [36], cows [4], [37], pigs [31], horses [38], [39], al-
pacas [38], and mules [38], affects society. The adoption of
noncontact measurements for livestock animals is important
because the installment and attachment of a sensor can cause
psychological stress.

The importance of studying non-human primates lies
in the possibility of learning the evolutionary history of
humans, and the measurement of physiological signals is
important to monitoring the cognitive reactions of non-
human primates to experimental conditions. Measurements
of non-human primates include the measurements of pig-
tailed macaques [40], [41], rhesus monkeys [42], [43], and
chimpanzees [44], [45].

The radar-based monitoring of African animals such as
giraffes and zebras is important to protecting wildlife from
criminal poaching [46]. There are also reports of the radar
measurement of bears [47], chameleons [48], [49], bull-
frogs [50], tortoises [16], ducks [51], peacocks [34], para-
keets [16], and fish [16], [52]–[55]. As discussed so far,
radar-based noncontact measurements have been made for
many animal species and might lead to innovative services
and applications in the future.

2.2 Radar Measurement of Body Movements

There have been many studies on radar measurements re-
lated to the time-varying Doppler frequency of the non-
translational motion of targets. As for humans and animals,
the most dominant component of a micro-Doppler mea-
surement relates to limb movements. Radar-based micro-
Doppler measurements can be made to monitor the activity
of various animals and to distinguish humans from animals.

Singh et al. [48], for example, measured the body move-
ments of a chameleon using a continuous wave (CW) radar
system, and the same group [49] measured the tongue move-
ment of a chameleon using a quasi-millimeter-wave (quasi-
mmW) radar system. Bao et al. [31] proposed a method
of distinguishing four species (i.e., humans, dogs, cats,
pigs) by applying a convolutional neural network to a radar
echo spectrogram obtained through time–frequency analy-
sis. Darlis et al. [34] classified humans and animals (i.e.,
cats and peacocks) using a mmW radar with a convolutional
neural network. Schiavoni et al. [38] proposed a method of
distinguishing a human from animals (i.e., alpacas, horses,
and mules) using ultra-high frequency (UHF) and X-band
radar systems. Van Eeden et al. [46] proposed a method of
distinguishing between humans and African animals (e.g.,
giraffes and zebras) using an X-band frequency-modulated
continuous-wave (FMCW) radar system.

There have also been studies on the radar-based clas-
sification of stationary humans and animals, where the tar-
get humans and animals have little to no limb motion. In
this case, most of the information contained in the micro-
Doppler components comes from the respiratory pattern.
Ma et al. [56], for example, proposed a method of distin-
guishing a stationary human and dog using a ultrawideband
(UWB) radar system with a central frequency of 500 MHz
in a through-the-wall experimental setup. Ma et al. [23] pro-
posed a method of distinguishing stationary humans, dogs,
cats, and rabbits through respiration in a through-the-wall
setting using a UWB radar system with a central frequency
of 500 MHz and a multiscale residual attention network.

2.3 Radar Measurement of Respiration

The measurement of respiration is important in detecting the
early signs of physical and psychological stress, respiratory
infections. The displacement due to respiration is greater
than that due to the heartbeat, and it is thus easier to measure
respiratory activities although the difficulty depends on the
species. Humans typically have a respiratory rate of 16.6 ±
2.8 breaths per minute, a respiratory cycle of 3.6 ± 0.5 s, an
inspiratory time shorter than the expiratory time by 1.6 ±
0.3 s, and a tidal volume of 383 ± 91 mL per minute. The
displacement due to respiration is affected by both thoracic
and abdominal movements.

Changes in the cross-sectional radius of the thorax at
the third (around the thoracic) and seventh (around the ab-
dominal) costae due to these movements have been reported
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to be approximately 10.7 and 14.0 mm, respectively. Among
the thoracic costae, the greatest displacement occurs near the
sternum, and it has been reported that the sternal area is dis-
placed forward by approximately 4.3 mm during inspiration,
whereas the abdominal area is also displaced forward, by
approximately 4.0 mm, during inspiration [57]. In general,
the peak-to-peak displacement of the chest in the normal
breathing of adults is between 4 and 12 mm [58], [59].

Lin [17] measured the respiration of a rabbit using a
CW radar. Suzuki et al. [47] measured the respiration of
a hibernating black bear using a CW radar. Ma et al. [20]
measured the respiration of a rabbit tied up and deprived of
water and food using UWB radar with a central frequency
of 7.3 GHz and a bandwidth of 2.5 GHz. Wang et al. [26]
measured the respiration (gill breathing) of a fish (grouper)
using an FMCW radar system. Zhao et al. [29] proposed a
method of distinguishing a human from a dog using their res-
piratory features in a post-disaster trapped scenario using a
UWB radar with a central frequency of 500 MHz and a band-
width of 500 MHz. Tuan et al. [4] measured the respiration
of a cow using a mmW FMCW radar system. Matsumoto et
al. [39] measured the respiration of a horse using an FMCW
radar system. Yu et al. [24] measured the heartbeat of anes-
thetized rabbits in hemorrhage states using a quasi-mmW
radar system.

2.4 Radar Measurement of the Heartbeat

The displacement due to a heartbeat is smaller than that due
to respiration and difficult to measure in a noncontact manner
using a radar system. Regarding the heartbeats of humans,
the body displacement was reported to have a peak-to-peak
value of 0.5 mm [60], although the cited study measured the
displacement surface directly above the heart, and this area is
known to have the largest skin displacement due to heartbeats
and pulse waves among body regions. Displacements are
generally smaller at other sites.

Wang et al. [21] measured the heartbeats and respira-
tion of dogs, cats, rabbits, and humans using impulse radio
ultrawideband (IR-UWB) radar with a central frequency of
7.29 GHz and a bandwidth of 1.4 GHz. Matsui et al. [18]
measured the heartbeat and respiration of a rabbit using a 1.2-
GHz microwave radar system. Churkin and Anishchenko [9]
measured both the heartbeats and respiration of a sleeping
rat and rabbit using a 100-GHz radar system. Juan et al. [13]
used a self-injection-locked (SIL) radar system to measure
the respiration and heartbeat of a mouse. Wang et al. [26]
measured both the heartbeats and respiration of a sleeping
dog and cat using a UWB radar with a frequency band be-
tween 6.0 and 8.5 GHz. Hossain et al. [36] used quasi-mmW
CW radar to measure the heartbeats of broiler chickens and
evaluated the accuracy of the measurement by comparing
with ECG data.

2.5 Radar Frequency in Animal Measurements

Radar-based physiological sensing depends on the phase

change over time due to displacement. The use of a higher
radar frequency is advantageous if a small displacement is
to be detected, whereas if the displacement is sufficiently
large relative to the wavelength, a low radar freuqncy can
also be used. The use of low-frequency microwaves has the
advantage that low-cost systems can be adopted, although
the antennas and circuits are generally large and it is difficult
to make the overall system compact and portable. Radar
systems with a variety of frequency bands have been re-
viewed [37].

We first review studies that made radar measurements
of animals in the UHF (300 MHz–3 GHz) band but not in
the microwave (> 1 GHz) band. Yu et al. [25] used the UHF
band of 400 MHz for radar measurement; Ma et al. [20],
Zhao et al. [29], Hafner et al. [52], and Yin et al. [22] used the
UHF band of 500 MHz for radar measurement; Schiavoni et
al. [38] used UHF radar; and Hui et al. [16] used a 950-MHz
transmitting signal that passed through passive harmonic
RFID tags to monitor the respiration and heartbeat of small
animals (i.e., a golden hamster, parakeet, Russian tortoise,
and betta splendens).

We next review studies that used microwave radar sys-
tems in the L band (1–2 GHz) and S band (2–4 GHz). Matsui
et al. [18], [19] used 1.2-GHz low-frequency microwaves;
Bao et al. [31] used 1–2-GHz microwaves. In addition, the
low-frequency microwave band at 2.4 GHz is often used as
it corresponds to the industrial, scientific, and medical band
that can be used without a government license. Hafner et
al. [53], [54], Juan et al. [13], and Gordon et al. [14] all used
the 2.4-GHz band. Among studies that used microwave
radar systems in the C band (4–8 GHz), Zeng et al. [5] used
5.8-GHz microwaves and Ma et al. [20], [27] and Wang et
al. [21], [28] used 7.3-GHz microwaves.

We next review studies that used X-band (8–12 GHz)
radar systems. Schiavoni et al. [38] and Gong et al. [51] used
an X-band radar but did not mention the actual frequencies.
Singh et al. [48], van Eeden et al. [46], Lin [17], Suzuki et
al. [47], and Kropveld et al. [15] all used 10-GHz radar sys-
tems.

Gong et al. [51] used the Ku band (12–18 GHz) but did
not mention the actual frequency. Anishchenko et al. [7]
used a 13.8-GHz radar system. The K band of microwaves
(18–26.5 GHz) is also referred to as the quasi-mmW band.
Yu et al. [24], Hossain et al. [36], Singh et al. [49], Lai et
al. [33], and Tazen et al. [32] all used 24-GHz radar systems
for animal measurements.

Recently, mmW (30–300 GHz) radar systems have been
widely used because they are available at a low cost and have
high sensitivity to small displacements, which makes the
mmW radar an attractive option for the physiological mea-
surement of humans and animals. Huang et al. [10]–[12]
used a 60-GHz radar system; Darlis et al. [34] and Wang
et al. [26], [55] used 77-GHz radar systems; and Tuan et
al. [4], Matsumoto et al. [39], [45], Iwata et al. [44], and
Sakamoto et al. [42] used 79-GHz radar systems. An even
higher frequency of 100 GHz was used by Churkin and An-
ishchenko [9] and Ma et al. [50] for radar measurements of
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Table 1 Classification of studies on the radar-based measurement of animals

rats and rabbits.

2.6 Distance between Animals and Radar Antennas

As the accuracy of the radar-based measurement of physio-
logical signals depends on the signal-to-noise ratio (SNR),
it is important to set up a measurement system that ensures a
high signal power of echoes reflected off the target animals,
although the accuracy also depends on the interference of
multiple echoes, large body movements [42], and the physi-
ological nature of the target humans/animals. In addition, a
low SNR can be acceptable in measuring body movements,
whereas a high SNR is required to measure the heartbeat.
Therefore, one selects an appropriate distance to the tar-
get animal according to the target animal species and target
physiological signals.

The radar equation shows that the echo power Pr is
proportional toσ and 1/r4, whereσ is the radar cross section
and r(≃ d0) is the distance between the target animal and
radar antenna (i.e., Pr ∝ σ/r4). In general, to measure the
physiological signals of small animals (smallσ), the distance
r must be short to ensure a large echo power.

For small animals such as rats, radar antennas are placed
close to the target animal in general. Hafner et al. [53], [54],
for example, installed a radar antenna directly on a target fish

(i.e., r = 0); Lai et al. [33] set r = 0 and r = 0.1 m for a cat;
Hossain et al. [36] set r = 0.2 m for a broiler chicken; Huan
et al. [10], [12] and Anishchenko et al. [6] both set r = 0.3 m
for a rat; Lin [17] and Yu et al. [24] both set r = 0.3 m for
a rabbit; Tazen et al. [32] set r = 0.3 m for a dog; Matsui et
al. [18], [19] set r = 0.4 m for a rabbit; Wang et al. [55] set
r = 0.4 m for a fish; and Juan et al. [13] set r = 0.5 m for a
rat in a box.

For larger animals, the radar antennas can be placed far-
ther from the target animals. Ma et al. [20], for example, set
r = 0.6 m for a dog; Ma et al. [20] set r = 0.6 m for a rabbit;
Ma et al. [50] set r = 0.6 m for a bullfrog; Zeng et al. [5]
set r = 0.7 m for a rat; and Iwata et al. [44] and Matsumoto
et al. [45] set r = 0.7 m for a chimpanzee. Among studies
adopting r ≥ 1 m, Ma et al. [27] and Wang et al. [21], [28]
set r = 1.0 m for a dog; Matsumoto et al. [39] set r = 1.5 m
for a horse; Hui et al. [16] set r = 1.5 m for a golden hamster,
parakeet, Russian tortoise, and betta splendens; and Darlis
et al. [34] set r = 0.5, 1.0, and 2.0 m for a cat and peacock.

Among studies adopting a larger distance r > 2 m, Bao
et al. [31] set r = 2.5 m for a dog, cat, and pig; Ma et al. [23]
set r = 2.5 m for a dog, cat, and rabbit; Yu et al. [25] set
r = 3 m for a dog; Yin et al. [22] set r = 3 m for a rabbit;
Minami et al. [43] and Sakamoto et al. [42] set r > 5 m
for a rhesus macaque; Gong et al. [51] set r = 11.8 m for
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birds; and van Eeden et al. [46] set r = 1–3 km for African
wild animals. As discussed in this subsection, the distance
between the radar antenna and target animal is selected to be
less than 3 m in many cases, especially for the measurement
of tiny displacements of small animals. Studies on the radar
measurements of animals are summarized in Table 1.

3. Examples of Radar-Based Measurements of Animals

3.1 Respiratory Measurement of a Rhesus Macaque

In our study [42], we developed an accurate method for the
noncontact respiratory measurement of a rhesus monkey
using a mmW radar system. Relatively large and gentle
animals, such as horses and cows, do not make frequent
body movements, and conventional radar-based sensing tech-
niques can thus be used for their respiratory measurement.
In contrast, the radar measurement of smaller animals that
make frequent movements is much more difficult and its ac-
curacy is reduced by the body motion components contained
in the radar signals.

As rhesus monkeys are generally restless and hyperac-
tive by nature, the study [42] developed a method of sup-
pressing their body motion components in radar signals and
accurately estimated the respiratory intervals. Our method
suppresses nonperiodic components due to body movements
and emphasizes periodic components due to respiration con-
tained in the radar echoes. The method combines infor-
mation from multiple echoes to improve the accuracy of
respiratory measurement by emphasizing the periodic com-
ponents related to respiration, whereas in many conventional
methods, the respiratory interval is estimated from the signal
for a specific point corresponding to the maximum peak in
the radar image.

We used a pair of mmW array radar systems and eval-
uated the measurement accuracy by comparing estimates
obtained with the two systems as attaching contact-type res-
piration sensors to a rhesus monkey is not easy. Both were
79-GHz FMCW radar systems with a multiple-input and
multiple-output array having a bandwidth of 3.6 GHz. The
beamwidths in the E-plane of the transmitting and receiv-
ing elements were ±4◦ and ±4◦ respectively whereas the
beamwidths in the H-plane of the transmitting and receiving
elements were ±33◦ and ±45◦, respectively. The multiple-
input and multiple-output array comprised three transmit-
ting and four receiving elements, with the spacings between
transmitting elements begin 7.6 mm (2λ) and the spacings
between receiving elements being 1.9 mm (λ/2).

Our experiments were conducted at a cylindrical mon-
key enclosure at the Kyoto City Zoo, where 12 rhesus mon-
keys were housed. The diameter and depth of the enclosure
were 18.0 and 4.0 m, respectively, as shown in Figs. 1 and
2. Using the developed method, the respiratory intervals of
a monkey were measured as shown in Fig. 3. Estimations
are missing for the period 75 s ≤ t ≤ 80 s owing to the body
movements of the target monkey. The root-mean-square dif-
ference (error) between the estimated respiratory intervals

Fig. 1 Schematic of the experiment using a pair of radar systems on a
rhesus monkey [42].

Fig. 2 Photograph of the experimental site in the zoo [42].

Fig. 3 Respiratory intervals estimated from radar systems 1 (black) and
2 (red) [42].

obtained with radar systems 1 and 2 was 0.08 s, which is
sufficiently small relative to the average respiratory interval,
demonstrating the effectiveness of the developed method.

3.2 Measurement of the Heartbeat of a Chimpanzee

In our study [44], we measured the heart interbeat interval
(IBI) of a chimpanzee using a mmW radar system. In mea-
suring a heartbeat using a radar system, the most challenging
task is to suppress the effect of the respiration because the
displacement due to the heartbeat is much smaller than that
due to the respiration. The fundamental frequency of the
heartbeat is known to be in the range of 1.0–1.7 Hz for hu-
mans and 1.5–2.2 Hz for chimpanzees, which can be masked
by higher harmonic frequency of the respiration.

The study provided a method of optimizing the cutoff
frequency of a high-pass filter to suppress the respiratory
component contained in the radar signal. To determine the
cutoff frequency, our approach is to suppress the fundamental
frequency component of the heartbeat while maintaining
the second harmonic frequency. In adopting the method,
we identify the second harmonic frequency of the heartbeat
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Fig. 4 Photograph of the subject chimpanzee during the radar measure-
ment [44].

Fig. 5 IBIs estimated using radar (red dots) and ECG (black line) for the
chimpanzee [44].

using the power spectrum of the body displacement and set
the optimum cutoff frequency to extract the second harmonic
frequency of the heartbeat.

We used the same FMCW radar system described in
the previous subsection for the respiratory measurement of
the rhesus monkey. The measurement was performed during
a health checkup of the chimpanzee (adult male), who was
anesthetized before the experiment. The distance between
the radar antenna and the chimpanzee was 0.7 m and the radar
module faced the front chest wall. During the measurement,
ECG electrodes were attached to the chimpanzee’s arm and
leg.

The IBI estimated using the proposed method is shown
in Fig. 5. The figure shows good agreement between the IBIs
obtained from the radar and ECG. In addition, it is seen that
the IBI increases with time, possibly because the chimpanzee
calmed down during the experiment. The root-mean-square
error of the IBI estimation was 2.6 ms, which is sufficiently
small relative to the average IBI. This result suggests the
effectiveness of our method in making a noncontact heartbeat
measurement of a chimpanzee using a radar system.

4. Conclusion

In this paper, we surveyed and reviewed recent studies on
radar-based measurements of animals. We first reviewed an-
imal species that have been measured using radar systems
in published studies. Numerous studies involved rats, mice,
rabbits, dogs and cats. There were also studies involving

cows, horses, birds, fish, monkeys and chimpanzees. We
then discussed the types of physiological signals and their
applications. The measurements of body movements were
often used for the identification of humans and animals. In
addition, there were numerous studies on the measurements
of respiration and heartbeats. We then discussed the se-
lection of frequency in radar-based animal measurements.
Although the phase shift due to the displacement is propor-
tional to the frequency and higher frequencies are sensitive to
small motion, researchers have introduced a variety of radar
systems with different frequency bands for animal sensing.
This variety is partly due to system costs and partly due
to the accuracy being dependent on other factors, such as
the interference of echoes, large body movements, and the
physiological nature of the target subject. Finally, we gave
two examples of the radar-based measurement of animals.
One example was the respiratory measurement of a rhesus
monkey and the other was the heartbeat measurement of a
chimpanzee. We believe that this review paper will benefit
researchers who are interested in the measurement of animals
using radar systems.
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