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NRD Guide as a Transmission Medium Launched from Japan at
Millimeter-Wave Frequency Applications

SUMMARY  Nonradiative dielectric waveguide is a transmission
medium for millimeter-wave integrated circuits, invented in Japan. This
transmission line is characterized by low transmission loss and non-radiating
nature in bends and discontinuities. It has been actively researched from
1980 to 2000, primarily at Tohoku University. This paper explains the
fundamental characteristics, including passive and active circuits, and pro-
vides an overview of millimeter-wave systems such as gigabit-class ultra-
high-speed data transmission applications and various radar applications.
Furthermore, the performance in the THz frequency band, where future
applications are anticipated, is also discussed.

key words: millimeter-waves, THz waves, integrated circuits, system appli-
cations

1. Introduction

With the commencement of 5G deployment, the nature of
communication has evolved from the conventional era of
person-to-person interactions to new forms such as group-
to-group, group-to-device, and device-to-device. As soci-
ety undergoes continuous digitization, the communication
speed and the number of multiple access will be expected
to increase by several tens of times compared to those of
5G because the global proliferation of IoT devices and the
Al market will be expected to expand [1]. In anticipation of
these trends, research on Beyond 5G has become increasingly
active, particularly as we move towards the 2030s [2]-[4].
Frequencies such as millimeter and submillimeter waves,
where there are currently few users, are expected to play a
crucial role in facilitating these new communication tech-
nologies [5].

The nonradiative dielectric waveguide (NRD guide)
was invented as a transmission medium for millimeter-wave
integrated circuits in 1981 by Professor Tsukasa Yoneyama
of Institute of Electrical Communication, Tohoku Univer-
sity envisioning their novel types of applications [6]—[8]. As
illustrated in Fig. 1, research on NRD guides has been vigor-
ously conducted both domestically and internationally over
the 43-year period from 1981 to 2023, with 241 publications
featured in the IEEE Explorer® Digital Library.

This paper provides a comprehensive review of NRD
guides, covering fundamental aspects to applied systems,
and discusses the potential utilization of the THz frequency
band in the future.
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Fig.1 Number of papers regarding NRD guide as included in IEEE
Explorer® Digital Library during 43 years from 1981 to 2023.

2. Operation Principle of NRD Guide

2.1 Principle of Operation of Non-Radiating Nature [6]—
(91

Figure 2 shows typical structure of the NRD guide which
consists of dielectric strips inserted in a parallel metal plate
waveguide.

In a parallel metal plate waveguide, whose spacing is
set at half a free space wavelength, electromagnetic wave
having the magnetic wall boundary condition at the hori-
zontally symmetric plane cannot propagate. For example,
assuming an operating frequency of 60 GHz and the spacing
of 2.25 mm between parallel plates, the dispersion curve of
the parallel metal plate waveguide is shown by the dotted
curve in Fig.3. In the frequency range below 65.5 GHz,
transmission modes cannot propagate in cutoff nature.

Inserting dielectric strips into such parallel metal plate
waveguide, as shown in Fig. 2, the cutoff condition is elim-
inated and electromagnetic waves can propagate along the
dielectric strip. When PTFE with a relative permittivity of
2.04 having low loss nature in millimeter frequencies is used
as an example of dielectric strips, the dispersion curve of the
NRD guide with a height of 2.25 mm and a width of 2.5
mm, respectively, is depicted by the solid curve in Fig. 3. In
the frequency range above 55 GHz, electromagnetic waves
become transmittable. Unwanted radiation waves generated
at bends and discontinuities, as observed in conventional di-
electric circuits, are suppressed in NRD guide because the
locations of their occurrence are within the parallel metal
plates, as indicated by the dispersion characteristics in Fig. 3.
This illustrates the principle of non-radiating nature of the
NRD guide.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Fig.2  Typical structure of NRD guide.
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Fig.4 Rough sketched field distributions of non-radiating modes in NRD
guide.

2.2 Operational Modes

As shown in Fig.4, the modes of the NRD guide can be
classified into LSMy; and LSEy; modes, respectively, the
former being characterized by magnetic fields in parallel to
air-dielectric interfaces and the latter having electric fields
in parallel to those interfaces [10].

The cutoff frequency of the LSE(y; mode is lower than
that of the LSM(; mode. However, when using low permit-
tivity materials with a relative permittivity of 2 to 3 for the
dielectric strips, the LSM(; mode is chosen as the operating
mode for the ease of constructing functional circuit elements
and the LSE(; mode is regarded as the parasitic mode [11].
The LSE(; mode is then removed using a mode suppressor,
as mentioned later.

In contrast, when using high permittivity materials with
a relative permittivity of 10 or more for the dielectric strips,
the LSEp; mode is convenient as the operating mode due
to its ability to create broadband performance and simple
radiators [12].

The dimensions of the NRD guide for LSMy; mode
using dielectric strips with a relative permittivity of around
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where the suffixes “M” and “E” correspond to the NRD
guides with LSMy; and LSEy; modes, respectively [13].

In this paper, unless specifically stated otherwise, the
various characteristics of the NRD guide with the LSMy;
mode as the operating mode will be explained.

2.3 Transmission Loss [14]

The current on the metal plate, induced by the LSM(; mode,
is distributed entirely in the transverse direction. This behav-
ior is similar to that of the TE, circular waveguide mode with
the loss characteristics, where the conductor losses decrease
with increasing frequency [15]. Therefore, by constructing
the dielectric strip with low-loss dielectric materials, low-
loss characteristics of the NRD guide can be ensured. The
PTFE is commonly used as the dielectric material, and when
copper is used as the metal plate, the transmission loss is
4 dB/m at 50 GHz. In practice, to ensure robustness, rigid
aluminum is often used as the metal plate, but even in this
case, the transmission loss is 6 dB/m, representing a signifi-
cantimprovement in losses compared to printed transmission
lines.

2.4 Bend[16],[17]

Within the NRD guide bend, mode coupling [18] occurs be-
tween the operating LSM(; mode and parasitic LSE(; mode.
As the LSMy; mode is input into the bend, a portion of its
energy is converted into the LSEy; mode during propagation
through the bend. Furthermore, as this LSE;; mode further
propagates through the bend, the energy is converted back
to the original LSM(; mode.

Therefore, in the design of NRD guide bends, when
using the bend individually, efforts are made to ensure that
only the LSMy; mode is converted at the output port. Al-
ternatively, when using the bend for directional couplers or
similar components, the curvature radius of the bend is de-
signed to ensure that only the LSMg; mode is converted at
the coupling point and the output port of the bend.

2.5 LSEy; Mode Suppressor [19]

The LSE; parasitic mode often occurs not only within the
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Fig.5  Structure of LSEy; mode suppressor.

bend but also when the symmetry of the circuit structure
is compromised. To suppress this, a mode suppressor, as
shown in Fig. 5, has been devised. It is a pattern of copper
foil etched on a thin dielectric substrate. By inserting it on
the vertical symmetry plane of parallel metal plates, it has
no impact on the LSMy; mode but effectively suppresses
only the LSEy; mode. During this process, there may be
propagation of TEM mode between the copper foil and the
parallel metal plates, but this can be eliminated with a 1/4
choke pattern. The mode suppressor with a 5-stage choke
circuit can reduce the impact of the parasitic modes to larger
than 30 dB [20].

3. Passive Circuit Components of NRD Guide
3.1 Band-Pass Filter [21]—[23]

The bandpass filter is utilized for the processing of unneces-
sary image signals in the upconverter, as well as to ensure RF
and LO isolation in the downconverter, as mentioned later.
Figure 6 illustrates the structure of the cutoff guide support-
ing bandpass filter, where circular ceramic resonators with
an unloaded Q of approximately 4000 at 60 GHz is inserted
on the horizontal symmetry plane of the parallel metal plates.
The cutoff guide was made of a 1 mm thick PTFE piece. This
structure securely fixes the ceramic resonator within the cut-
off guide. The diameter of the circular ceramic resonator
was set at 2.5 mm, considering using at 60 GHz frequency
bands.

The resonance modes, EH»1s, TEq2s, and EH3; 5, were
confirmed for this resonator, considering its thickness. How-
ever, for narrowband filter application, the TEys mode,
which is suitable for narrowband filters, was selected [24],
[25]. As mentioned later, to design filters with center fre-
quencies of 59 GHz and 60 GHz, the thickness of the ceramic
resonator was set to 0.404 mm and 0.385 mm, respectively.

Based on the calculated coupling coefficients and load
Q from the filter design, the coupling intervals for each fil-
ter, when specified as shown in Table 1, are illustrated in
Figs.7 (a) (b). Figure 7 (c) shows the calculated scattering
parameters as dotted curves and the measured ones as solid
curves versus frequency. The trend of the calculated and
measured results closely aligns. Notably, the outstanding
performance is in terms of insertion loss, with values within
the passband being remarkably low at 0.3 dB and 0.5 dB for
the 59 GHz and 60 GHz at center frequencies, respectively.
This is largely attributed to the low-loss characteristics of the
NRD guide [26].
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Fig.6  Structure of bandpass filter using ceramic discs embedded in cutoff
guide made by PTFE.

Table 1  Specification of evanescent-coupled bandpass filter using ce-
ramic disk resonators.
Center frequency 59 GHz | 60 GHz
Bandwidth 400 MHz
Filter response 0.5dB ripple Chebychev
Number of resonators 2 stages | 3 stages
Diameter of ceramic resonator 2.5 mm
Thickness of ceramic resonator 0.404 mm | 0.385 mm
Resonant mode TEo2s
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(a) Dimensions of coupling spacings in bandpass filter with bandwidth of
400 MHz at center frequency of 59 GHz.
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(b) Dimensions of coupling spacings in bandpass filter with bandwidth of
400 MHz at center frequency of 60 GHz.
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Fig.7  Two types of bandpass filters.
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Fig.8 Circulator.

3.2 Circulator[19], [27], [28]

The structure of the NRD guide circulator is illustrated in
Fig. 8 (a). In order to maintain symmetry in the circuit struc-
ture with respect to the horizontal symmetry plane, where
the magnetic field of the LSMy; mode is strongest and to
prevent the generation of unnecessary radiation waves, two
ferrite disk resonators are closely adhered to the upper and
lower metal plates. PTFE tubes are inserted between the
ferrite disks for support, and dielectric strips are arranged
in a Y-shape around the resonator center. When a DC mag-
netic field is applied perpendicular to the ferrite disks in this
configuration, circular operation is achieved. NiZn, with a
high saturation magnetic flux density of 5 kGauss and broad
bandwidth characteristics, is used as the ferrite material.

Figure 8 (b) shows the insertion loss and isolation of
the prototype 60 GHz circulator. The 20 dB isolation band-
width was measured at 3 GHz, and the insertion loss within
the bandwidth was 0.5 dB or less, demonstrating perfor-
mance comparable to commercially available hollow metal
waveguide circulators.

3.3 Junction [29], [30]

The vertical strip line consists of a metal strip etched on
a dielectric substrate which is inserted vertically into the
parallel metal plate waveguide. The dominant mode is the
TEM wave as shown in the inset figure of Fig.9 (a). The
field distribution of the LSM(; mode in the cross-sectional
plane resembles that of the TEyp; mode in the hollow rect-
angular metal waveguide, while that of the vertical strip line
is similar to the coaxial line mode. A mode transformer be-
tween the NRD guide and vertical strip line can be therefore
constructed by making a right-angle corner. To reduce the
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Fig.9 LSMy-vetical strip line T-junction.

reflection from the mode transformer, a dielectric piece with
a length of L is installed behind the right-angle corner and a
metal strip is inserted between the dielectric strip and dielec-
tric piece at a depth of D. Because a difficulty encountered
in the NRD guide mode transformer and junction circuits is
generation of the parasitic LSEy; mode, the mode suppressor
is installed between the NRD guide and vertical strip line to
overcome such difficulty.

Figure 9 (a) shows the fabricated 3-port junction cir-
cuit. The calculated and measured scattering parameters
are shown in Fig. 9 (b). Well-balanced output levels of 4 +
0.5 dB were obtained in a bandwidth of 2 GHz at a center
frequency of 60 GHz.

4. Active Circuit Components of NRD Guide
4.1 Gunn Oscillator [31]-[36]

Figure 10 (a) illustrates the structure of a self-injection locked
Gunn oscillator with two output ports. The Gunn diode is
horizontally inserted into a metal block with a A/4 choke
structure, and its oscillation power is guided to the NRD
guide through a vertical strip resonator. To stabilize the
oscillation frequency, low-loss ceramic resonators are placed
behind the vertical strip resonator through a gap of spacing
g. Additionally, to output the oscillation power on the Port
2 side, another NRD guide is placed behind the ceramic
resonator through the same gap of spacing g. The measured
oscillation powers at both ports are shown in Fig. 10 (b).
With a gap spacing of 1.5 mm, both output ports achieve
sufficient output level, approximately 10 dBm, suitable for
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Fig.10  Gunn oscillator with two output ports.

radar applications and local oscillation waves of frequency
converters. Furthermore, the measured results of phase noise
are shown in Fig. 10 (c), where at a 100 kHz offset, the value
is below 95 dBc/Hz, indicating sufficiently low phase noise.

4.2 Beam Lead Diode Mount [37]-[39]

Beam-lead mount structure consisting rectangular electrodes
etched on the dielectric substrate in Fig. 11. To suppress
leakage of millimeter waves, a A/4 choke is patterned onto
the dielectric substrate. This structure is then adhered to the
end face of the dielectric strip to serve as the mount. The
beam lead diode is bonded across a 0.1 mm gap between
the electrodes, and base band signals and bias lines are led
externally through a coaxial line.

For diode matching, a high permittivity thin sheet is
adhered just before the electrode, and to achieve complete
matching, a gap is provided in the dielectric strip as a reac-
tance element.

4.3 Frequency Converters [40], [41]

The upconverter is configured with two beam-lead diode
mounts loaded with a circulator, a 3 dB coupler, and Schottky
barrier diodes (SBD) (Agilent GaAs SBD: HSCH-9101), as
shown in Fig. 12 (a). In this setup, a millimeter wave at a
frequency of 59 GHz with a power of 10 dBm is applied
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Fig.12  Frequency converters.

from one port of the circulator, and a 1 GHz intermediate
frequency (IF wave) is applied from the back surface of the
lower metal plate through a microstrip circuit. By inputting
these signals into the SBDs, upper and lower sideband images
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at 60 GHz and 58 GHz are generated. However, by loading
the 60 GHz bandpass filter as shown in Fig.7(b) on the
output side, the lower sideband is blocked, and only the 60
GHz millimeter wave is output. The millimeter wave output
power is approximately 0 dBm when an IF power of about
12 dBm is applied.

The conversion loss at this upconverter is 12 dB, which
is worse than that of the downconverter described below.
This is because the upconverter operates the SBDs in the
region where the output is saturated, i.e., the large signal
operation region.

The structure of a single downconverter is shown in
Fig.12(b). Two types of bandpass filters mentioned in
Fig. 7 (c) are installed on both sides of a single SBD mount.
Here, the LO wave at 60 GHz is input to Port 1, and the RF
wave at 59 GHz is input to Port 2. As shown in Fig. 7 (c) the
isolation between each bandpass filter is above 30 dB, ensur-
ing sufficient isolation between the LO wave and RF wave.
Figure 12 (c) shows the measured conversion loss of the sin-
gle downconverter versus LO wave power. At an LO wave
power of around 0 dBm, the conversion loss is minimized at
7 dB.

4.4 Modulators

In conventional ASK (Amplitude Shift Keying) modulators,
PIN diodes are commonly used as millimeter-wave switching
elements [42]. However, for modulating millimeter waves
with digital signals at data transmission speeds reaching
Gbps, there are limitations with PIN diodes. Instead, SBD,
which have a shorter carrier lifetime, become advantageous.
Figure 13 (a) illustrates the structure of an NRD guide ASK
modulator consisting of an SBD-loaded beam-lead diode
mount and a circulator. In this circuit, by ensuring that the
SBD operates as a detector, the transmitted wave is absorbed
by the diode during forward bias. During reverse bias, the
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wave reflects due to mismatch, resulting in the modulated
wave being output at the output port. The ON/OFF charac-
teristics of the ASK modulator designed at 60 GHz cover a
bandwidth of 1.7 GHz, providing an ON/OFF ratio of 10 dB
or more. Figure 13 (b) shows the modulating and demodu-
lated waveforms at a clock rate of 1 Gb/s. While some jitter
is observed, there is no significant difference between the two
waveforms, indicating that this approach is a powerful ASK
modulator for ultra-high-speed data transmission [43]-[45].

The structure of the NRD guide FM Gunn oscillator at
60 GHz is shown in Fig. 14 (a). The beam-lead type varactor
diode for frequency modulation is implemented on the beam
lead diode mount, similar to the SBD, and inserted into the
dielectric strip section of the NRD guide. Additionally, this
modulator is electromagnetically coupled to the Gunn oscil-
lator through a gap, and the modulation sensitivity is deter-
mined by factors such as the length of the gap. Figure 14 (b)
illustrates the oscillation output and frequency variation of
the FM Gunn oscillator versus the bias voltage applied to the
varactor diode. The output for a bias voltage from 0 V to
15 V is 85 = 5 mW, and the modulation sensitivity is 21.7
MHz/V [46].

4.5 MMIC Amplifier

The electromagnetic field of the NRD guide spreads around
the dielectric strip. On the other hand, the field of the mi-
crostrip line is concentrated between the ground conductor
and the central conductor, making direct connection between
the two lines challenging. To address this, an NRD guide-
microstrip line transformer, as shown in Fig. 15 (a), has been
devised using a vertical strip line and a coaxial line that is
easily connectable to the microstrip line.

The microstrip line has its central conductor supported
by a ground plate, positioned on the horizontal symmetry
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plane of the parallel metal plate. The central conductor of
the microstrip line is connected to the central conductor of
a coaxial line formed within a metal piece with the same
height as the parallel metal plate spacing. This metal piece
is strategically placed to prevent unwanted radiation waves
generated by the microstrip line. To suppress electromag-
netic waves leaking between the metal piece and the parallel
metal plate, a 4/4 step groove choke circuit is loaded onto
this metal piece [47].

Figure 15 (b) shows the characteristics of an amplifier
implemented with a 0.15 pum gate length HEMT MMIC
chip (TRW ALH321C) mounted on the microstrip line. The
amplifier shows a forward gain of 15 dB and an average
reverse isolation of =20 dB over a 1 GHz bandwidth at a
center frequency of 59.5 GHz [48].

5. Applications
5.1 Giga-bit Class Data Transmission [44]

Figure 16 shows an ASK transmitter and receiver created
using the aforementioned ASK modulator and other compo-
nents. This device was developed by Professor Yoneyama’s
startup company, MMEX Corporation. Itis capable of trans-
mitting uncompressed high-definition TV signals at a trans-
mission speed of 1.5 Gbps. This device was put into practi-
cal use along with goal cameras for ice hockey broadcasts in
Sapporo.

5.2 FM-CW Radar [49]
Figure 17 (a) shows a 59.5 GHz band FM-CW radar front

end with a three-layer structure. The upper layer, Layerl,
consists of an oversized waveguide excited long slot array
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Fig.16  Photograph of ASK transceiver (left) and receiver (right) for
distribution of uncompressed high-definition TV signal with data rate of
1.5 Gbps.
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Fig.17 FM-CW radar.

planar antenna, with a polarization conversion film provided
on the top of the long slot array to convert the linear polar-
ization plane perpendicular to the long slot to a diagonal 45
degree angle. The second layer, Layer2, is composed of an
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NRD guide FM-CW radar front-end and a leaky wave NRD
guide connected through a reflecting plate. The oversized
waveguide of Layer 1 is connected to the oversized wave-
guide of Layer 2, excited by the leaky wave NRD guide,
through a coupling slit and a folding structure. As the leaky
waves from the leaky NRD guide propagate diagonally for-
ward, the guides are arranged diagonally to ensure that the
propagation direction of the leaked waves is orthogonal to
the long slot. The reflecting plate is provided to operate
the leaked wave NRD guide as a single-direction radiating
element, and a coaxial line penetrates this part, connecting
the NRD guide circuit and the leaky wave NRD guide. The
third layer, Layer3 contains the intermediate frequency and
baseband circuits.

The short plate at the coupling slit is mechanically ro-
tated, allowing the main beam radiation angle in the plane
parallel to the slot to be scanned. Figure 17 (b) shows the
measured radiation directional in the plane parallel to the
slot for the rotation angle of the short plate. The main beam
can be scanned from —8 degrees to +8 degrees in the range
of —4 degrees to +4 degrees of the rotation angle of the short
plate.

With a beam scanning frequency of 7 times per second,
actual distance measurements were conducted targeting a
passenger car, as shown in Fig. 17 (c). The distance mea-
surement error in the range of 5m to 120m is below 0.7 m,
and the measurement error for relative velocity is below 1
km/h.

5.3 Pulse Radar [50]

Figure 18 illustrates a millimeter wave pulse radar front-end
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Fig.19  Calculated transmission loss of NRD guide versus frequency.

Table2  Comparison of calculated transmission loss between NRD guide
and coplanar waveguide.

Coplanar Waveguide NRD Guide
Frequency 1.0 THz 1.5 THz
Transmission Loss 8.0 dB/mm 1.0 dB/mm

designed for tank level sensing. The millimeter waves gen-
erated by the Gunn oscillator are split into two directions.
One portion is input to a balanced ASK modulator via an
isolator, and the pulse-modulated millimeter waves are ra-
diated as RF waves by a planar antenna with a gain of 33
dBi. The reflected waves from the target object are received
by the antenna and directed to the receiving circuit through
the circulator as a duplexer. In the receiving circuit, an up-
converter shown in Fig. 12 (a) is connected to the oscillator
to obtain the LO wave for heterodyne reception. This LO
wave and the reflected waves from the target object are mixed
at the down converter as shown in Fig. 12 (b), resulting in a
pulse-modulated 1 GHz IF signal, which is then directed to
the IF/baseband unit. The distance to the tank level is mea-
sured using an FPGA (Altera Stratix: EP1S10F780C7ES).
Figure 18 (b) shows the results of the ranging experiment,
and the error is within +3 centimeters.

6. Challenge to THz Frequency Band

Assuming the dielectric material to be polyethylene with a
relative dielectric constant of 2.3 due to its low loss tangent
of about 1074, the cross-sectional dimensions are “a = 90
um” and “b = 90 um” at a center frequency of 1.5 THz.
The transmission loss, a;, consisting of conduction loss,
a. and dielectric loss a4, was calculated as a function of fre-
quency and the result is shown in Fig. 19. It is obvious that
the main dissipation is due to the conduction loss. Compar-
ison between transmission losses of the NRD guide and the
coplanar waveguide [51] is summarized in Table 2. From
these results, the transmission loss of the NRD guide is re-
markably lower than that of the coplanar waveguide [52].

7. Conclusions

This paper explains the fundamentals of the NRD guide
and discusses representative passive and active circuits, as
well as their applications in an uncompressed high-definition
TV signal transmission system and FM-CW and pulse radar
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systems. It also touches upon the advantages of NRD guides
in the THz wave band.

The advantages of NRD guides include comparable per-
formance to waveguides and the compact size achieved by
integrating all circuit elements into a 2.5-dimensional single
housing.

As a future theme, the establishment of mass production
technology using 3D printers is mentioned. Furthermore, in
the terahertz wave band where the dimensions of NRD guides
are on the order of several tens of microns, manufacturing
methods using etching process may also be attractive.

Expectations are high for the ongoing advancements in
NRD guide technology.
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