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SUMMARY This paper describes the high-precision electromagnetic field 
analysis methods that the author has developed (point matching method 
considering edge condition and Modified Fourier series expansion method) 
and research on their applications. In addition, as a new application of 
periodic structures, it is discuss a new method for solving scattering 
problems involving arbitrarily shaped objects in inhomogeneous media. 
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1. Introduction 

In recent years, optical circuit devices have been developed 
for optical fiber communications, mobile phones, 
underground radars, photonic crystal waveguides, quantum 
cryptography, and other optical devices.In relevant 
computer simulation has become indispensable for device 
design, experiment interpolation, confirmation of 
experimental results, etc. [1]. In such a  simulation 
technology, computational electromagnetics are essential [2]. 
There is a need for the computer simulation technology that 
has a wide range and is easy to evaluate and control errors. 
Computational electromagnetism [3,4] is concerned with 
numerical simulation techniques for numerically solving 
Maxwell's equations, which are the basis of electromagnetic 
phenomena, and the electromagnetic field theory are closely 
related to its basis of the Institute of Electrical Engineers of 
Japan(IEEJ) and the Institute of Electronics, Information 
and Communication Engineers of Japan(IEICE) [5, 6]. 
In this paper, an author describes the high precision 
electromagnetic field analysis method which has developed 
for point matching method considering edge conditions, and  
improved Fourier series expansion method that can be 
applied to inhomogeneous media, metamaterials and related 
applications so on. In this application, it is also discuss a new 
method for analyzing electromagnetic wave scattering 
problems involving arbitrarily shaped objects with 
inhomogeneous media for transvers electric (TE) waves. 

2. High precision analysis method for electromagnetic 
fields 

2.1 Point matching method considering edge condition 

In the 1970s, the importance of numerical analysis methods 
for electromagnetic fields using computers was 
demonstrated [7,8], among which improvements were made 
to the point matching method (PMM) [9] (the method that 
satisfies boundary conditions using sample points). The 
modified point matching method (MPMM) [10] (the method 
for analyzing plane gratings in scattering problems using 
only conductors (or slits) as main points) was developed by 
the late Professor Toshio Hosono (as well as Fast Inversion 
of Laplace Transform FILT[11]) , and when the author 
entered graduate student in 1975, Assistant Professor (later 
Professor) Takashi Hinata was producing excellent research 
results on various problems which were published[12].In 
addition, we confirmed that MPMM[13] provides the same 
range of accuracy as Riemann-Hilbert method( RHM[14]). 

In a conventional PMM[15] for the scattering problem of 
a rectangular cylinder with an edge, the convergence of the 
electromagnetic field for horizontally polarized waves 
(transvers magnetic (TM) waves)[17]is slower than that of 
vertically polarized waves (TE waves)[16]. Therefore, for 
both polarizations, we developed a new Point Matching 
Method (considering the edge points into regions where 
variables can be separated) in which the sample points do 
not include the edge points (determining the sample points 
and edge regions) [18, 19].  

The application of the new PMM consists of the 
following three steps. 

(Step 1): Divide the physical space into a finite number 
of regions such that it can be expanded using regular 
functions with a shape that can be locally variable-separated. 

(Step 2): Approximate the electromagnetic field in each 
region using the finite terms of the complete system (mode 
function) in that region. 

(Step 3): Select sample points on the boundary and 
perform boundary matching such that the coefficient matrix 
of the simultaneous linear equations that determines the 
expansion coefficients is not singular. 

Here, the relationship between the number of expansion 
terms of the electromagnetic field and the sampling points is 
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such that owing to the uniqueness of the solution to the 
boundary value problem, the number of expansion terms in 
the divided area is equal to the number of sampling points 
on the boundary surrounding the area, and the number of 
expansion terms on the boundary. We applied a point 
matching method that takes into account edge conditions to 
the strip conductor [20] and conducting rectangular cylinder 
[21], and obtained highly accurate results. 

2.2 Scattering and guiding problems of inhomogeneous 
medium with dielectric gratings 

In recent years, with the development of microfabrication 
technology, scattering and propagation problems in optical 
circuit devices such as optical fiber gratings and photonic 
crystal waveguides have attracted attention. Periodic 
structured media are widely applied in optical circuit 
devices, and their basic structures can generally be divided 
into the following types. 

[A]Medium constant changes perpendicular to the wave 
propagation direction. 

[B]Medium constant changes in the wave propagation 
direction. 

[C]Medium constant changes in the direction of the slant 
angle γ. 

Conventionally, the spatial harmonic expansion method 
[22] is widely used to analyze periodically structured media, 
however it has a narrow range of applications, and it is 
difficult to apply to arbitrary inhomogeneous media or 
shapes. Furthermore, even if the range of applications is 
wide, the propagation problem type in [C] requires highly 
accurate analysis of both polarizations using the same 
analytical method as the scattering problem. 

For the problem involving scattering of TE waves due to 
a periodic structured medium type in [A], a wide range of 
dielectric constants can be used [23]. For TM waves, an 
improved Fourier series expansion method (the number of 
truncated modes of the electromagnetic field and the Fourier 
expansion of the medium) can be employed . By setting the 
number of terms, it has been applied to wave analysis of 
anti-reflection walls, absorption layers, chirped gratings 
[24], and plane lenses [25]. 

It can also have a wide range of dielectric constants for 
the scattering problem caused by the periodic structured 
medium types in [B] and use the eigenvalue equation of the 
MCK type [26], making error control easier and more 
applicable than that of conventional spatial harmonic 
expansion methods which developed a wide range and 
highly accurate analysis method . 

On the other hand, the propagation problem required the 
development of an important new solution to the problem of 
optical waveguides (relief type gratings with an arbitrary 
shapes and arbitrary distribution of media).At that time, in 
September 1989, fortunately, I had the opportunity to go on 
sabbatical leave to the Massachusetts Institute of 
Technology (MIT) for Professor J.A. Kong on both 
scattering and guiding problems of relief gratings ,which he. 

had researched [27]. However there are no numerical results 
for type in [C]. I spent many days unable to apply it to the 
guiding problem [28]. Finally I came up with a good method 
on the multilayer inhomogeneous medium. The new method 
is constructed in which the number of dimensions of the 
characteristic equation to be solved is determined by the 
number of truncated modes of the electromagnetic field, 
rather than the total number of divisions, by dividing the 
structure into structures and converting the relational 
expression of the scattering coefficient into a matrix within 
each layer. Waveguide problems can now be analyzed with 
high accuracy using an algorithm with a calculation time 
comparable to that of scattering problems. After returning to 
Japan, the results obtained at MIT were jointly published 
with Professors Hosono and Kong in the English journal 
IEICE [29]. 

By using this new solution method in conjunction with 
the multilayer decomposition method, the shape and 
distribution of a heterogeneous medium that combines type 
in [A] and [B] can be applied to arbitrary problems [30], and 
because it is a high-precision analysis method, type in [C] 
can be easily applied to the problem of tilted gratings (all the 
layers have the same eigenvalue, only the eigenvector of the 
first layer is shifted), whereas the conventional method of 
calculating the eigenvalue is complex and is particularly 
suitable for propagation problems. This is a more practical 
and highly accurate analysis method [34,35] than that 
reported in [31-33] ( which is difficult). 
Additionally , our new method can also be easily applied 
to elliptical gratings [36], making it applicable to photonic 
crystal optical waveguides with various refractive index 
distributions. 
 

2.3 Photonic crystal waveguide 

Photonic crystals with a periodic permittivity distribution 
are known to have a blocking region (photonic bandgap) in 
a specific wavelength band that prevent the propagation of 
light waves (electromagnetic waves), therefor, they can be 
used in microscopic optical devices. Photonic crystal 
structures are attracting increasing attention because they 
are expected to be applied in photonic integrated circuits. In 
addition, because photonic crystal structure has a periodicity 
comparable to the wavelength of light, it is possible to 
reduce the amount of light by introducing a defect layer into 
the periodic structure. Depending on how the defect layers 
are arranged, they can be used in various optical circuit 
devices such as optical filters, optical resonators, and optical 
couplers [37]. Using analytical method, we established 
switching effects in photonic crystal optical waveguides [38-
40] and electromagnetic field confinement techniques in 
defect structures [41-43]. Furthermore, we recently 
developed a new formulation of a point-matching method 
for solving scattering problems in mixed media (metals and 
inhomogeneous dielectrics) [44,45]. 
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2.4 Metamaterials 

In recent years, near-field problems such as 
metamaterials and surface plasmons, where both 
permittivity and permeability are negative, have attracted 
attention. 

Conventionally, in the scattering problem of a singular 
point problem with a positive and negative permittivity 
distributions, it is difficult to analyze the case of a 
horizontally polarized incident (TM wave) and an oblique 
incident wave. In particular, the problem of an inflection 
point when the refractive index is positive or negative has 
not yet been solved [46]. 

However, the problems with this singularity cannot be 
solved using the improved Fourier series expansion method. 
Problems in which the permittivity is mixed between 
positive and negative are those for which difference 
equations such as the FDTD method cannot be applied, and 
energy absorption at the singularity is important. I 
considered extracting the energy absorption term from the 
wave equation as a logarithm (log term), and I was thinking 
of a wave equation that includes the logarithm, but I could 
not find a new solution, thus I added a loss term to the 
medium.While reducing the loss term, I calculated the 
eigenvalue to find the correct eigenvalue and, then 
substituted it into the wave equation to numerically find the 
eigenvector (mode function). 
I tried it, but without success. It was later found that the 
solution to the wave equation in an inhomogeneous medium 
(excluding step distribution) consisting of positive and 
negative polarities is originally an equation that does not 
involve an energy absorption term. For the first time, we 
developed a numerical method to extrapolate both to a 
solution containing singularities while minimizing the loss 
[47]. 
 

2.5 Pulse response of dispersive media 

In recent years, ground penetrating radar (GPR) has been 
used in a wide range of the exploration areas, including 
exploration of reinforced structures, metal detectors, buried 
object detection, mine detection, underground cavity 
exploration, and ruins/geological surveys. It has been used 
in engineering even in relatively shallow media of 
underground structures. This is an important research topic 
because accurate modeling of underground structures 
requires consideration of heterogeneity in addition to a 
single dispersive medium. The authors have previously 
solved the transient scattering problem of a structure with a 
dispersive medium [48] and a periodic arrangement of 
cavity regions considering underground heterogeneity using 
a combination of Fourier series expansion method and fast 
inverse Laplace transform [49]. The influence effects of the 
cavity width, thickness, and arbitrary cavity shape 
composed of multilayer media were investigated using the 
pulse response waveform [50]. We also analyzed the 

transient scattering problem of a strip conductor [51] or a 
structure in which an inclined cavity and a dispersive 
medium were arranged periodically and investigated the 
effects of the tilt angle and medium width [52,53]. 
 

3. Scattering analysis of arbitrarily shaped objects with 
inhomogeneous media 

We analyze the scattering problem caused by a dielectric 
scattering cylinder in inhomogeneous media by  an 
arbitrary shape as shown in Figure 1.The scattering problem 
caused by an arbitrarily shaped cylinder has also been 
analyzed using the atom method [54,55], but here we will use 
Figure 2(a) (For example, the analysis area of the scattering 
cylinder is uniform in the y direction, as in the case where 
the cylinders is composed of eight layers, and a solution 
within a periodic structure with period p is used in the z 
direction (r=p/2)  .The permittivity and permeability in the 

outside region are assumed to be 0 and 0 .The time factor 

exp( )j t is suppressed throughout. 
In the PMM, the mode expansion region, the number of 

truncation modes and the boundary conditions are important, 
so we will be described below. 

 
/ 2( )r p Outside region  

In the formulation, when the TE wave (the electric field is 
only the y component in Figure 1) is assumed to be incident 
at 0x   with the angle 0 , 

( )( )
0( , ) x zj k x k zi

yE x z E e  , (1) 

where, 0 0 0 0cos , sinx zk k k k   . 

The incident and scattered waves were expanded using 
cylindrical coordinates, with the number of sample points on 
the circumference equally spaced at 2N+1 (N represents the 
number of truncated modes of the electromagnetic field). 

2
, 1 ~ (2 1)

2 1k k k N
N

   


 

0( )( )
0 0( , ) ( ) k

N
jni

y k n
n N

E r E J k r e   



  , (2)

( ) (1)
0( , ) ( ) k

N
jns

y k n n
n N

E r C H k r e 


  . (3) 

Here, nJ  and (1)
nH   are Bessel and Hankel functions, 

respectively. nC  is unknown coefficients to be determined 

by boundary condition. 
Using equation 0( ) ( )j H E , the magnetic fields are 

as follows. 

0( )( ) '0
0 0

0

( , ) ( ) k

N
jni

k n
n N

k
H r E J k r e

j
 

 






  , (4) 

( ) (1)0
0

0

( , ) ( ) k

N
jni

k n n
n N

k
H r C H k r e

j


 
 

  , (5) 

/ 2( )r p Inside region
 

In a periodic structure (Coordinate system of x z ), the 
inhomogeneous region is divided into multiple layers ( Eight 
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layers in the case of Figure 2(a)) and using the modified 
Fourier series expansion method in each layer of modulated 
index profile (Figure 2(b)) with width

 
( 2iW i  ～７） of 

medium[24], the electric field for each layer is given by the 
following equation. N is the same number of truncation 
modes in outside region. 

1, 8l  :( Vacuum layer) 

( ) ( ) ( ) ( ) ( )( , ) ( )
N

l l l l l
y k k n n n n

n N

E x z a f b g


  , (6) 

where,   
2

[ ( ) ]
( ) n k z k

n
j k x k z

l p
nf e


 

 ,
2

[ ( ) ]
( ) n k z k

n
j k x k z

l p
ng e


  

 , 

2 2 2
0

2
( )n z

n
k k k

p


   ,   sin , cosk k k kx r z r   . 

〇 2 7l  ～ （Inhomogeneous layer） 
2 1

( ) ( ) ( ) ( ) ( )

1

( , ) ( )
N

l l l l l
y k kE x z A s B q   







  , (7) 

where,  
( )

2
( )( ) ( ) ( ) kl

z k k

nN z
j k z h xl l j p

n
n N

s e u e









  , 

( )
2

( )( ) ( ) ( ) kl
z k k

nN z
j k z h xl l j p

n
n N

q e u e









  , sin , cosk k k kx r z r   , 

and ( ) ( ) ( ),l l
nh u 

   are eigen-value (Propagation constants) and 

eigen-mode (Modal functions) at inhomogeneous layers, 
respectively. 
The magnetic field components are expressed as follows: 
 At  
〇 1, 8l   (Vacuum layer) 

( ) ( ) ( ) ( ) ( )

0

1 2
( , ) ( )

N
l l l l l

x k k z n n n n
n N

n
H x z k a f b g

p


 

 
    

 
 , (8) 

( ) ( ) ( ) ( ) ( )

0

1
( , ) ( )

N
l l l l l

z k k n n n n n
n N

H x z k a f b g
 

  , (9) 

2 7l  ～ （Inhomogeneous layer） 
2 1

( ) ( ) ( ) ( ) ( )

10

1
( , ) [ ' ' ]

N
l l l l l

x k kH x z A s B q   






   , (10) 

2 1
( ) ( ) ( ) ( ) ( ) ( )

10

1
( , ) [ ( ) ]

N
l l l l l l

z k kH x z h A s B q    






  , (11) 

where, 
 ( )

2

( ) ( ) ( ) 2
'

l k
z k k

nN j zj k z h xl l p
n z

n N

n
s e u k e

p










 
  

 
 , 

 ( )
2

( ) ( ) ( ) 2
'

l k
z k k

nN j zj k z h xl l p
n z

n N

n
q e u k e

p










 
  

 
 . 

 

/ 2( )k at r p Boundary condition   

The equation of the boundary condition for electric field  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with 

component of y  and magnetic field with component of   
at the / 2 kr p and   are (N=6 in the case of Figure 3) as 

follows:    

      
2

, 1 ~ (2 1)
2 1k k k N

N

   


 

〇 1, 8l  ( Vacuum layer) 
( ) ( ) ( )( 2, ) ( 2, ) ( , )i s l
y k y k y k kE r p E r p E x z     , (12) 

 
( ) ( )

( ) ( )

( 2, ) ( 2, )

( , )sin ( , )cos

i s
k k

l l
x k k k z l l k

H r p H r p

H x z H x z

  

 

  

 　　　　　
, (13) 

Using the orthogonality relation [10]  

 
Figure 1 Coordinate system of scattering object 
 

 
 

(a) (b) 
Figure 2 (a) periodic structure (b) modulated step index of layers 

 
Figure 3 Matching points of the boundary at / 2 kr p and   
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p
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p

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1( )zH 
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2 1
( )

1

2 1 ;

0 ;
k

N
j n m

k

N n m
e

n m







 
  

 , (14) 

The formulation of mC is as follows from Eqs. (12). 
0 (1)

0 0

( ) ( ) ( ) ( )
, ,

(2 1)[ ( / 2) ( / 2)

( )

jm
m m m

N
l l l l

n n m n n m
n N

N J k p e C H k p

a F b G





  


, (15) 

where, 
2 1

( )
,

1

k

N
j ml

n m n
k

F f e 






  ,
2 1

( )
,

1

k

N
j ml

n m n
k

G g e 






  , 

0 0( / 2)sin , ( / 2)cosk k k kx k p z k p   , and m=-N～N 

 
From Eqs.(15), mC is expressed as follows. 

0( ) ( ) ( ) ( )
, , 0

(1)
0

( ) (2 1) ( / 2)

(2 1) ( / 2)

N
jml l l l

n n m n n m m
n N

m
m

a F b G N J k p e
C

N H k p





  





,   (16) 

 
For the magnetic field of the component of   at Eqs.(13) 

is expressed as follows: 
0( ) (1)' '

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( / 2) ( / 2) ]

2
( )sin ( )cos

l l

N N
jn jn

n n n
n N n N

N N
l l l l l l l l

z n n n n n n n n nl l
n N n N

jk J k p e C H k p e

n
k a f b g k a f b g

p

  

  



 

 

  
      

  

   

 

 
 (17) 

Substituting Eqs.(17) into Eqs.(16), and rearranging it into 

equations for ( )l
na and ( )l

nb ,we yields 
〇 1, 8l  ( Vacuum layer) 

( ) ( ) ( ) ( ) ( )
( )

N N
l l l l i

n n n n l
n N n N

a F b G R
 

   , (18) 

where, 
( )

0

'(1)
( )' 0

( ) 0 (1)

( ) (1) '

,( ) ( )

(1)

( ) ( )

( / 2) ( / 2)
[ ( / 2) ]

( / 2)

( / 2)2
{ sin cos }

(2 1) ( / 2)

2
{ sin

i
l

l

N
jnn n o

l o n
n N n o

jmlN
n m m ol l

n n z l n l o
m N m o

l l

n n z l n

J k p H k p
R jk J k p e

H k p

F H k p en
F f k k jk

p N H k p

n
G g k k

p

 


 










  

   


  

 
 
 

 
 
 




( ) (1) '

,

(1)

( / 2)
cos }

(2 1) ( / 2)

ljmlN
n m m o

l o
m N m o

G H k p e
jk

N H k p











 

Similarly, for the in the case of an inhomogeneous 

layer( 2 7l  ～  ), the equations for ( )lA   and ( )lB  can be 

obtained as follows. 
〇 2 7l  ～ （Inhomogeneous layer） 
2 1 2 1

( ) ( ) ( ) ( ) ( )
( )

1 1

N N
l l l l i

l
n

A K B L T   


 

 

   ,           (19) 

where, 

( )
0

'(1)
( )' 0

( ) 0 (1)

'( ) (1)'
,( ) ( ) ( )

(1)

'
( ) ( ) ( )

( / 2) ( / 2)
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
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For the unknown coefficients at Eqs.(18) and Eqs(19) in 

the inhomogeneous region, we can obtain the matrix 
relations between ( ) ( ) ( ) ( )( , ) , ( , )l l l landa b A B  in the boundary 

condition at (1 8)x ld  ～ as follows [29]. 

   ( ) ( 1) ( ) ( 1),l l l l
y y x ld z z x ldE E H H

 

 
  

 (1) (2)(1) (1)
1 2
(1) (1)(1) (2)
3 4

(2) (7)(2) (2) (7) (7)
1 2 1 2
(2) (2) (7) (7)(2) (7)
3 4 3 4

(8) (7)(8) (8)
1 2
(8) (8)(8)
3 4

    
            

      
                  

   
        

a AS S

S Sb B

A AS S S S

S S S SB B

a AS S

S Sb



(7)








     

  B

, (20) 

where, 
〇 1, 8l  ( vacuum layer) 

( ) ( ) ( )
,[ ] ; 1 ~ 4,l l k
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( 1)
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1
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2
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1
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2
1
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2

l
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n N

l
n N

ih dl l l
n n n N n
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n n

l l l
n n n N n
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n n n N n
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s s e
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
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 




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
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


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
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
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, (21) 

( )
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


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
 
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 




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
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

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
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, (22） 

( ) ( ) 1 ( 1) ( )
, ,[ ] [ ] [ ], [ ]

, ,0, , . , 1~ (2 1).

l l l l
n nv u

n N N N
 



 

   

V U U U 
 

 

Using the Eqs.(20), the equations of (8)
na and (8)

nb ,can be 

obtained from Eqs. (18) and Eqs.(19),however because there 
are 2(2N+1) unknown equations for the sample point 
(2N+1), it is necessary to construct auxiliary equations for
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( ) ( ) ( ) ( )( , ) , ( , )l l l landa b A B   in each layers. Because  is 

same relation of each layers. 
To do this, we apply Eqs.(16) to l=1 layer and l=8 layers, 

and create an auxiliary equation in which both sides are 
equal to mC . 

( 1) ( 1) ( 1) ( 1) ( 8) ( 8 ( 8) ( 8)
, , , ,( ) ( )

N N
l l l l l l l l

n n m n n m n n m n n m
n N n N

a F b G a F b G       

 

    (23) 

 By converting Eqs. (23) into a relational expression 
between (1) (1) (8) (8)( , ) ( , ) ,anda b a b we obtain 

(1) (1) (1) (2) (2)
1 2 1 2
(1) (1) (2) (2)(1)
3 4 3 4

1 (8)(7) (7) (8) (8)
1 2 1 2
(7) (7) (8) (8) (8)
3 4 3 4

.



    
           

   
           

a S S S S

S S S Sb

aS S S S

S S S S b





    (24) 

By combining Eqs. (18),(19), and (23), (8) (8)( , )a b can be 

obtained . 
Using the obtained (8) (8)( , )a b  , the scattering coefficients 

mC can be determined Eqs.(16) [56,57]. 

 

4.Conclusion 

This paper, in ``Construction of a high precision 

electromagnetic field analysis method and its application'',  

describes a point matching method that takes into account 

edge conditions, and the progress of analyzing 

electromagnetic wave scattering and guiding problems for 

inhomogeneous media. In particular, it was the new method 

to solve the problem of electromagnetic wave scattering 

from an inhomogeneous object using periodically solutions, 

and utilizes solutions in a homogeneous medium by 

combining the point matching method, multilayer division 

method, and improved Fourier series expansion method.  

As a numerical analysis technique, it is desirable to use a 

simulation algorithm that allows for easy error evaluation 

and error control, which  can be analyzed using existing 

computer libraries. Visualizing the simulation results will 

deepen the understanding of physical phenomena and have 

a great educational effect.  
To achieve this, it is necessary to use not only information 
mathematics (algorithm) technology but also 
electromagnetism. I believe that learning basic skills such as 
network theory, function theory, and linear algebra is 
essential for creativity. 
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