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SUMMARY This paper presents an extension of the Kelvin
transformation for high-frequency electromagnetic problems.
The Kelvin transformation is a coordinate transformation that
maps infinite space to a finite space, acting as a conformal trans-
formation of Maxwell’s equations. We apply concepts of differen-
tial geometry to derive the material constant’s metric and spatial
dependence in the exterior domain, which was originally proposed
for low-frequency eddy current problems. This paper extends the
conformal transformation concept to high-frequency problems by
introducing a Perfectly Matched Layer (hereafter referred as to
PML) in the exterior domain. This technique makes it easy to
apply a simple Maxwellian PML.
key words: Conformal transformation, finite element analy-
sis, high frequency electromagnetic, Kelvin transformation, open
boundary problems.

1. Introduction

Electromagnetic field analysis, such as the finite el-
ement method (FEM) and the finite difference time
domain method (FDTD), cannot directly handle open
boundary problems. Various techniques have been de-
veloped to emulate them [1–24]. These techniques
are called Asymptotic Boundary Conditions for low-
frequency problems, where the effects of displacement
currents are neglected, and Absorbing Boundary Con-
ditions for high-frequency electromagnetic problems.
This paper focuses on one of these techniques,

namely, the Kelvin transformation [11,12,14–19,25–29],
which functions as an exact open boundary condi-
tion. The analysis domain is terminated by a cir-
cle for a two-dimensional problem or a sphere for a
three-dimensional problem, and the exterior domain is
Kelvin transformed and connected to the interior do-
main with unknown equivalent boundary conditions.
In [29], the Kelvin transformation is reformulated to
derive the conductivity, permittivity, and permeability
in the exterior domain, conserving the conformal sym-
metry of Maxwell’s equations [30]. The derived spatial
functions of the material constants allow for materials
in both the interior and exterior domains or even across
the truncated boundaries.
This paper extends the idea of Extended Kelvin

Transformtion [29] to high-frequency radiation prob-
lems, combined with the PML. The proposed method

†The author is with the Kindai University, Japan
∗This paper was presented at ...

can be easily implemented to the conventional FEM
solvers, withoud modifying the program.
For example, consider an antenna with multipath

from mountains and buildings, as shown in Fig.1. If
the analysis model includes the ground, buildings, and
mountains, it becomes very large and requires a sub-
stantial computational cost. By applying the Extended
Kelvin Transformtion with PML, we can limit the anal-
ysis domain to the region encompassing the antenna
and include other scatterers in the exterior domain, by
connecting the interior domain to the exterior domain
with the unknown equivalent boundary contions. We
validate the proposed method using a numerical com-
putation model based on the FEM.

Exterior domain

Buildings

Earth

Mountain

Antenna

Unknown equivalent

Interior domain

PML

Fig. 1 Concept of the extended Kelvin transformation for
high-frequency problems

2. Formulation

2.1 Deriviation of the Material Parameters in Exterior
Domain

The basic idea of the Kelvin transformation for high-
frequency problems is the similar to that proposed in
reference [29] for low-frequency problems. The spa-
cial coordinates of the Kelvin transformation in three-
dimensions is given as (1) where x′, y′, and z′ are
exterior-domain coordinates and a is the radius of the
interior-domain. The difference between low and high
frequencies is that conversion to dielectric constant ϵ
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and magnetic conductivity σ∗ in PML is required.
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Line elements in spherical coordinate are given by
(2).
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Surface elements in spherical coordinate are given by

(3) where r′ =
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The magnefic field H⃗(A/m), and electric field

E⃗(V/m) are quantities dependent on line elements.

The magnetic flux density B⃗(Wb/m2), electric flux

density D⃗(Wb/m2), current density J⃗(A/m2) are
quantities dependent on surface elements. In order
to conserve the conformal symmetry of the Maxwell’s
equations in the interior and exterior coordinates, per-
meability µ, permittivity ϵ, and conductivity σ are
quantities which are defined by the quantities depen-
dent on surface elements divided by the quantities de-
pendent on line elements. Now, we introduce the metric

defined by gi =
hjhk

hi
in general curvilinear coordinates.

The metric in spherical coordinate is given by (4). The
schematic of the concept is shown in Fig. 2.
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Fig. 2 Concept of the metric in general curvilinear coordinates

interior domain exterior domain
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The material constants of the Kelvin transformation
can be derived by taking the ratio of the metric in the
interior and exterior domains, and (5) are obtained.
All the material constants are spatially modulated by
(a/r)2. Among various variable transformations, one
of the advantages of using the Kelvin transformation is
that it can treat the spatial modulation of the exterior
domain as an isotropic material.

2.2 Finite Element Formulation

The A-, E-, and H-formulations are used in the high-
frequency FEM. Among them, we employed the E-
formulation, but the proposed method basically works
with other formulations as well. On the boundaries of
the interior and exterior domain, we imposed

n⃗× E⃗in = n⃗× E⃗out (6)

as unknown-equivalent boundary conditions. We have
employed a simple Maxwellian PML. The complex-
relative permittivity ϵPML

r and complex-relative per-
meability of the PML µPML

r must be the same values
in a simple Maxwellian PML. In the extended Kelvin
transformation method, the spherical Maxwellian PML
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is at the center of the exterior domain, thus the ef-
fective thickness of the PML is large. The mate-
rial properties of the PML in the exterior domain
is spacially modulated by (a/r)2, as given 5. They
are the airbitrary functions of the radial component

r′ =
√

x′2 + y′2 + z′2, as far as the imaginary part of
µPML
r and ϵPML

r are sufficiently large for the radiating
wave to decay.
In high-frequency problems, it is necessary to not

only enlarge the analysis domain, but also absorb the
incident waves and suppress the reflected waves. To
achieve the absorbing boundary condition, we employ
the PML [4–7] and place it in the exterior domain. The
conventional PML is placed to surround the analysis
domain, but the proposed method places it as a spher-
ical shape at the center of the exterior domain. The
PML assumes a characteristic impedance of 377 ohms,
which is the impedance of spherical or plane waves, and
therefore needs to be placed far enough from the wave
source. For low-frequency problems, it is known that
the PML must be thick enough to perform as a good
absorber. These two requirements can be met relatively
easily by using the Kelvin transformation. The PML of
the proposed method has some flexibility in its imple-
mentation. With the proposed method, the material
constants are moduled by the Kelvin transformation,
but they can be simple Maxwellian unsplit PML be-
cause they are placed far enough from the electromag-
netic sources.

3. Numerical Examples

Fig. 3 shows the numerical analysis model used for the
verification of the proposed method. A Hertzian dipole
with the frequency f = 100 MHz was placed offset in
the x direction from the orign of the interior domain.
A Perfect Electric Conductor (PEC) ground was placed
at z = −2 m, and a dielectric scatterer was placed at
a position 5 m away from the Hertzian dipole center
in the x direction. The interior domain is truncated
by a sphere of radius a and the ground plane. The
scattering object outside the interior domain is Kelvin-
transformed into the exterior domain. Since the plane
is Kelvin-transformed to the sphere, the PEC ground
becomes a part of the sphere, and the rectangular scat-
tering object becomes a shape with a part of the sphere
as a face. No mesh is generated in the region of radius
0.25 m at the center of the exterior domain to avoid the
singularity, that can be assumed to be far enough from
the electromagnetic source and in-between a PML is
placed, therefore no electromagnetic wave approaches.
The PML was placed at a distance of 8 m from the
origin and Kelvin transformed in the exterior domain.
The position of 8 m is larger than a, so it is Kelvin-
transformed to a sphere of radius a2/8 in the exterior
domain. The complex-relative permittivity ϵPML

r and
complex-relative permeability of the PML µPML

r are

both 1− 0.2j. Since the wavelength of the electromag-
netic wave at 100 MHz is 3 m, this is sufficiently far
away. They are Kelvin transformed to

ϵ′PML
r = µ′PML

r = (1− 0.2j)
a2

r′2
. (7)
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Fig. 3 Numerical analysis model used for the verification of the
extended Kelvin transformation with PML.

3.1 Model without a scatterer

In this subsection, the relative permittivity ϵr and rel-
ative permeability µr are both ϵr = 1 and µr = 1, so
that the model can be assumed to have no conductors
and we can compare with the analytical solution. The
analytical solution of the Herzian dipole is given by

Er =
Ile−jkr

j2πωε0

(
1

r3
+

jk

r2

)
cos θ (8)

Eθ =
Ile−jkr

j4πωε0

(
1

r3
+

jk

r2
− k2

r

)
sin θ (9)

where k is the wave number, r is the distance form the
dipole, ω is the angular frequency, and ϵ0 is the vac-
uum permittivity. We employed mirror image theory
to consider the ground effect.
Fig. 4 and 5 show the contour plots the real and imag-

inary parts of the electric field Eθ, respectively. Fig. 6
shows the amplitude of the electric field Eθ along x-
axis. The right figures are inside the interior domain
and the left ones are in the exterior domain. The ra-
dius of the interior domain is set to a = 4.0 m and a
Hertzian dipole is placed at x0 = 0 m, x0 = 1 m, and
x0 = 2 m. In order to compare them directly, the plots
are shifted with the offsets. In every case, we could
observe a good agreement with the analytical solution
and consistent results with various offsets.



4
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

Fig. 4 Contour plots of the real part of the electric field in xz-
plane without a scatterer. Left: interior domain, right: exteior
domain.

Fig. 5 Contour plots of the imaginary part of the electric field
in xz-plane without a scatterer. Left: interior domain, right:
exteior domain.

3.2 Model with a scatterer

In this example, the relative permittivity ϵr and relative
permeability µr of the scatterer of 1 m× 6 m× 5 m are
ϵr = 100− 1000j and µr = 1, respectively, to verify the
proposed method even with a scattering object in the
exterior domain. Because the model does not have an
analytical solution, we used a commercial MoM solver
”FEKO”, as a reference solution.
Fig. 7 and 8 show the contour plots and line plots

of the real and imaginary parts of the electric field Ez,
respectively. Fig. 9 shows the amplitude of the elec-
tric field Eθ along x-axis. The right figures are inside
the interior domain and the left ones are in the exte-
rior domain. The radius of the interior domain is set
to a = 2.5 m, and a = 4.0 m, and a Hertzian dipole
is placed at x0 = 0 m with no offset. With our com-
puter that has 128 GB of memory, we could not even
calculate a model with a ≥ 5 m. In every case, we
could observe a good agreement with the reference solu-
tion and consisted results with various interior-domain
size. However, there is no systematic discussion of ac-
curacy with respect to the size of the analysis domain



SUGAHARA: EXTENDED KELVIN TRANSFORMATION FOR SOLVING RADIATING ELECTROMAGNETIC FIELDS
5

and the external domain, which is highly dependent on
the problem.
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Fig. 6 Comparisons of the electric field along x-axis without a
scatterer. Left: interior domain, right: exteior domain.

Fig. 7 Contour plots of the absolute values of the electric field
in xz-plane with a scatterer. Left: interior domain, right: exteior
domain.

Fig. 8 Contour plots of the absolute values of the electric field
in xy-plane with a scatterer. Left: interior domain, right: exteior
domain.
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Fig. 9 Comparisons of the electric field along x-axis with a
scatterer. Left: interior domain, right: exteior domain.

4. Conclusion

The idea of the Kelvin transformation has been ex-
tended to high-frequency radiation problems. The pro-
posed method is effective in the following two cases: 1)
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when surrounding scattering objects are present; and
2) when the radiating object is small compared to the
wavelength and the thick PML is required. The numer-
ical verification of the proposed method is performed
with three-dimensional examples.
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