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Surface Emitting Devices Based on a Semiconductor Coupled
Multilayer Cavity for Novel Terahertz Light Sources

Takahiro KITADA, Hiroto OTA", Xiangmeng LU", Naoto KUMAGAI'*, and Toshiro ISUT, Nonmembers

SUMMARY  Compact and room-temperature operable terahertz emit-
ting devices have been proposed using a semiconductor coupled multilayer
cavity that consists of two functional cavity layers and three distributed
Bragg reflector (DBR) multilayers. Two cavity modes with an optical fre-
quency difference in the terahertz region are realized since two cavities are
coupled by the intermediate DBR multilayer. In the proposed device, one
cavity is used as the active layer for two-color lasing in the near-infrared re-
gion by current injection and the other is used as the second-order nonlinear
optical medium for difference-frequency generation of the two-color funda-
mental laser light. The control of the nonlinear polarization by face-to-face
bonding of two epitaxial wafers with different orientations is quite effec-
tive to achieve bright terahertz emission from the coupled cavity. In this
study, two-color emission by optical excitation was measured for the wafer-
bonded GaAs/AlGaAs coupled multilayer cavity containing self-assembled
InAs quantum dots (QDs). We found that optical loss at the bonding inter-
face strongly affects the two-color emission characteristics when the bond-
ing was performed in the middle of the intermediate DBR multilayer. The
effect was almost eliminated when the bonding position was carefully cho-
sen by considering electric field distributions of the two modes. We also
fabricated the current-injection type devices using the wafer-bonded cou-
pled multilayer cavities. An assemble of self-assembled QDs is considered
to be desirable as the optical gain medium because of the discrete nature
of the electronic states and the relatively wide gain spectrum due to the
inhomogeneous size distribution. The gain was, however, insufficient for
two-color lasing even when the nine QD layers were used. Substituting two
types of InGaAs multiple quantum wells (MQWs) for the QDs, we were
able to demonstrate two-color lasing of the device when the gain peaks of
MQWs were tuned to the cavity modes by lowering the operating tempera-
ture.

key words: coupled multilayer cavity, two-color lasing, frequency conver-
sion, terahertz source

1. Introduction

Useful terahertz light sources have been extensively in-
vestigated because of the wide range of possible appli-
cations including wireless communication, spectroscopy,
and imaging [1], [2]. Recent femtosecond laser technolo-
gies have it made possible to generate ultrashort terahertz
pulses covering extremely broad bandwidth [3]-[5]. Sev-
eral types of semiconductor-based devices such as quantum
cascade lasers (QCLs)[6]-[8], resonant tunneling diodes
(RTDs) [9], [10], and photomixers [11], [12] have also been
studied and developed for continuous-wave (cw) terahertz
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emitter. Terahertz sources based on intracavity difference-
frequency generation (DFG) in dual wavelength mid-
infrared QCLs have also been recently reported [13], [14].
However, there are still challenges associated with each of
these devices. For instance, the emission power becomes
insufficient for higher frequency operation of RTDs. In ad-
dition, although significant progress has been made on tera-
hertz QCLs, near-room-temperature operation has not been
demonstrated.

Optical microcavities are good candidates for nonlin-
ear optical devices because an extremely strong electric field
is realized in the cavity layer sandwiched between two dis-
tributed Bragg reflector (DBR) multilayers. Efficient wave-
length conversion is possible in the GaAs-based multilayer
cavity when the structure is grown on a non-(001) substrate
to allow the second-order nonlinearity of zincblende-type
semiconductors [15]. In fact, blue vertical-cavity surface
emitting lasers (VCSELs) have been demonstrated utilizing
second-harmonic generation (SHG) on (113)B and (114)A
GaAs substrates [16]. Recently, we have proposed a GaAs/
AlAs coupled multilayer cavity structure for novel terahertz
emitting devices [17]. An example of the structure is shown
in Fig. 1 (a). The structure consists of two equivalent cavity
layers and three DBR multilayers. As shown in the sim-
ulated optical reflection spectrum of Fig. 1 (b), two cavity
modes appear in the center of the high reflection band. This
is because a degenerate cavity mode is split into two dif-
ferent modes as a result of coupling of the cavity layers.
Note that the mode frequency difference can be precisely
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Fig.1 (a) An example of GaAs-based coupled multilayer cavity
structure and (b) its reflection spectrum.
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defined within the terahertz region according to the number
(N.) of pairs of the intermediate DBR. The electric field of
each mode is greatly enhanced in both cavity layer, allow-
ing strong frequency-mixed signal to be generated. Since
the effective second-order nonlinear coefficient is zero on a
(001)-oriented GaAs substrate due to crystal symmetry [15],
a non-(001) substrate is essential for crystal growth. We
have obtained a strong sum-frequency generation (SFG) sig-
nal from a GaAs/AlAs coupled multilayer cavity grown
on a (113)B GaAs substrate when the two modes were si-
multaneously excited by 100 fs laser pulses [18]-[20]. The
peak intensity of the SFG signal was more than 400 times
greater than that of the SHG from the (113)B GaAs bulk
substrate. DFG signals from the (113)B coupled cavity sam-
ples were also demonstrated at room temperature by time-
resolved waveform measurements using 100 fs laser pulses
and a photoconductive antenna [21]-[23]. In addition, we
found that polarization control is necessary to obtain a large
terahertz DFG signal from two modes [24], [25].

From the view point of practical device applications,
the two modes should be generated inside the structure
by current injection, since this enables terahertz emission
through DFG without external light sources. We have al-
ready demonstrated the two mode emission by optical exci-
tation using self-assembled InAs quantum dots (QDs) that
were inserted only in the one cavity layer to realize opti-
cal gain in the near-infrared region [26]-[28]. In this pa-
per, we report recent progress on design and fabrication
technologies of the GaAs-based coupled multilayer cav-
ity toward compact and room-temperature operable tera-
hertz light emitting devices. We also fabricated the current-
injection type devices using the coupled cavity wafers and
demonstrated two-color lasing of the device in the near-
infrared region.

2. Polarization Control for Efficient DFG

Let us consider nonlinear polarization P for DFG of two
modes in the terahertz frequency region. According to
the second-order nonlinear process, the polarization is ex-
pressed by the relation P = y@ETE,, where xy'? is the
second-order nonlinear susceptibility, and E; and E; are the
electric fields of the two modes inside the structure. Fig-
ure 2 shows a spatial distribution of E}E, simulated for the
GaAs/AlAs coupled multilayer cavity at a given time. Ef-
ficient DFG of the two modes might be expected since the
amplitude of EJE; is greatly enhanced in the cavity layer
regions. Note that the sign of E7E, changes from positive
to negative moving from one side of the cavity to the other.
As the time proceeds, the intensity oscillates with a period
of the mode frequency difference while keeping the oppo-
site signs of E7E,. The distance L between the two cav-
ity layers is much smaller than half the DFG wavelength
A/2n1H,, Where nty, is the refractive index of GaAs at the
corresponding terahertz frequency. For the structure shown
in Fig.2, L ~ 2.54 ym and A/2nty, ~ 12.6 um. The radiated
terahertz fields from the two cavity layers, therefore, largely
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Fig.2  Spatial distribution of £} E> simulated for the GaAs/AlAs
coupled multilayer cavity.

cancel each other out due to the phase mismatch when both
cavity layers have the same y®. The cancellation could be
significantly eliminated using the different y® for each cav-
ity layer. In the normal incidence configuration, an effec-
tive y® is nonzero on a high-index substrate and strongly
depends on the substrate orientation [15]. Note that a 180°
rotation of the crystal around the appropriate axis inverts
the sign of y® on the (11n)-oriented substrate. Thus, the
different y® for each cavity is enabled by the face-to-face
connection of the two halves of the coupled cavity struc-
ture grown on substrates with the same or different crystal
orientations. We have already demonstrated significant en-
hancement of the DFG signal by the y® inversion. The in-
verted coupled cavity sample was fabricated by direct wafer
bonding of two (113)B epitaxial wafers and the enhance-
ment was confirmed through the comparison of inverted and
normal coupled cavity samples in both simulated and exper-
imentally observed terahertz waveforms produced by fem-
tosecond laser pulses [25].

3. Coupled Multilayer Cavity
3.1 Design and Fabrication

An ensemble of self-assembled InAs QDs is a good can-
didate for the optical gain medium because the gain spec-
trum is broadened sufficiently such that it covers both cavity
modes due to the size inhomogeneity, whereas the individ-
ual QDs have discrete electronic states. Bright emission is
typically observed from the InAs QDs on the (001) GaAs
substrates. However, DFG through a second-order nonlin-
ear process is forbidden on the (001) substrate due to crys-
tal symmetry, that is, ¥® = 0. The (113)B GaAs substrate
gives relatively large y® among high-index substrates while
keeping good crystalline quality of the epitaxially grown
GaAs/AlGaAs multilayer structure. In our study, two epi-
wafers were prepared by molecular beam epitaxy (MBE)
on 3-inch diameter (001)- and (113)B-oriented GaAs sub-
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strates.

Each epiwafer had a single cavity structure consisting
of a GaAs-based double-wavelength-thick (21) cavity and
GaAs/Alyy9GagAs DBR multilayers. Three or nine QD
layers emitting in the 1.3 ym wavelength region were em-
bedded in the 24 cavity of the (001) epiwafer while a single
GaAs layer containing no QD was used as the 24 cavity of
the (113)B epiwafer. Each QD layer in the (001) side cav-
ity was placed in the position where a strong electric field
was realized for both modes. The thickness of each layer
was set to a specific value so that the cavity modes would
appear in the QD emission peak around 1.3 ym. Note that
a slight lateral thickness variation was intentionally intro-
duced only for the (001) epiwafer to understand the coupling
behavior of two cavities. Si and Be were used for n-type and
p-type dopants, respectively, to form a p-i-n junction of the
current-injection type device. In order to reduce the electri-
cal series resistance, compositionally graded interfaces were
used in each GaAs/Aly9Gap | As DBR multilayer. The dop-
ing concentration was approximately 2 x 10'® cm= for both
the n- and p-type DBR multilayers, and a heavily Be-doped
(~3 x 10" cm™®) GaAs layer was used as the p-type con-
tact layer. The two epiwafers were directly bonded at room
temperature using the conventional surface-activated bond-
ing method [30], [31], which is commonly used for the inte-
gration of two dissimilar semiconductor materials. After the
bonding, the (001) GaAs substrate was completely removed
by mechanical polishing and selective wet etching using a
citric acid-based etchant [32] for the optical measurements
and device fabrication.

Figure 3 shows a cross-sectional image of the wafer-
bonded coupled multilayer cavity observed by scanning
electron microscopy (SEM). Smooth GaAs/AlGaAs inter-
faces were formed over the entire region. In the structure
shown in Fig. 3, two 21 cavities were coupled by the 12.5-
pair DBR to obtain the mode frequency difference of ~ 2
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Fig.3  Cross-sectional view of the wafer-bonded coupled multilayer
cavity observed by SEM.
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THz while the 24- and 28-pair DBRs were formed at top
and bottom sides, respectively. Note that the bonding inter-
face located in the middle of the intermediate DBR could not
be recognized clearly in SEM image, indicating that the de-
signed coupled cavity structure was successfully fabricated.

3.2 Optical Characterization

Two mode emission from the coupled cavity was studied
by optical excitation at room temperature. The excitation
source was a multimode semiconductor laser with a nominal
wavelength of 920 nm, which was operated in a cw mode.
The laser beam was focused on the sample surface with a
diameter of about 250 ym and the emitting light from the
sample surface was detected using a spectrometer equipped
with a cooled InGaAs photodiode array.

Figure 4 shows the emission spectra measured at var-
ious wafer positions. In this sample, three layers of the
QDs were embedded only in the topside cavity grown on
the (001) substrate and the pairs of the top, middle, and bot-
tom DBRs were 24, 12.5, and 28, respectively. The (001)
epiwafer was prepared to have a few percent thickness vari-
ation across the wafer, whereas the lateral thickness varia-
tion of the (113)B epiwafer was as small as ~0.2%. Due
to the intentional thickness variation, the two mode emis-
sion peaks were systematically shifted and the typical anti-
crossing behavior could be observed by plotting the peak
wavelengths of the two modes as a function of the measure-
ment position (Fig. 5). Note that two cavities with identical
optical thicknesses were coupled at the position where the
minimum frequency difference was observed.

Let us consider emission intensity relation between the
two modes when the two identical cavities are coupled. Ac-
cording to the simulation by the conventional transfer ma-
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Fig.4 Emission spectra measured by optical excitation at various wafer
positions.
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Fig.5  (a) Peak wavelengths of the two mode emission plotted as a func-
tion of the measurement position. Estimated mode wavelengths before and
after the bonding were indicated by broken and solid lines, respectively.
(b) The frequency difference of the two mode emission peaks.

trix method, both modes show almost the same electric field
distributions in the cavity region containing QDs. Thus, the
emission intensity relation should be characterized by emis-
sion properties of the bare QDs. Although the emission
spectrum of the bare QDs showed nearly the same inten-
sity at these two wavelengths, the measured emission inten-
sity of the short-wavelength mode was much weaker than
that of the long-wavelength mode as shown in Fig. 6 (c).
This result was quite different from that previously observed
when the entire structure was fabricated by MBE on the
(001) substrate without using the wafer bonding [28]. In
the case, emission intensity of each mode was almost iden-
tical as expected. To understand the effect of the bonding
interface, the simulated electric field distributions near the
interface are shown in Fig.6(b). In the structure used in
the initial attempt, the position of the bonding interface,
which was located in the middle of the intermediate DBR
as shown in Fig. 6 (a), corresponded to the anti-node of the
short-wavelength mode, while it corresponded to the node
of the long-wavelength mode. Consequently, optical loss
caused by the bonding interface for the short-wavelength
mode should be more significant compared with the long-
wavelength mode. This might lead to the observed relation
of the emission intensity between the two modes.

The coupled cavity structure shown in Fig.7 (a) was
designed to avoid optical loss at the bonding interface. In the
intermediate DBR, a 1/4 GaAs layer nearest to the (113)B
side cavity was replaced by a 34/4 GaAs layer. As indicated
in the electric field distributions of Fig. 7 (b), one can find a
position being very close to the nodes of both modes in the
31/4 GaAs. This position was used as the bonding interface
in the next attempt. On the basis of the designed structure,

IEICE TRANS. ELECTRON., VOL.E100-C, NO.2 FEBRUARY 2017

(a) Bonding

2 cavity with interface

3-layer QDs

24 pairs

35 loxe: 398 mW

10°

5004 ——1296.8 ; J \
NE k T ot e 4 w W
od CW@RT

T T T T
1260 1280 1300 1320
Wavelength (nm)

-
o
£

2
|E]
o
I§
Emission intensity (counts)
3
—

-
o
™

63 66 69 72 75

Position (um)
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the bonding interface. (c) The emission spectrum measured at the wafer
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Fig.7  (a) The structure designed to avoid optical loss at the bonding in-
terface. (b) The corresponding refractive index profile and electric field
distributions near the bonding interface. (c) The emission spectrum mea-
sured at the wafer position where the two identical cavities were coupled.

the coupled cavity sample was fabricated in a similar man-
ner as discussed above. Note that the structure contained
nine QD layers in the (001) side cavity and the pairs of the
top and bottom DBRs were increased to 28 and 32, respec-
tively, to obtain better performance of the current-injection
type devices. Figure 7(c) shows the emission spectrum
measured at the wafer position where two identical cavi-
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ties were coupled. Two mode emission with identical inten-
sity was clearly observed in the measured spectrum. This
indicates that the optical loss at the bonding interface was
greatly reduced by choosing the bonding position where the
electric field had nearly zero amplitude for both modes.

4. Current-Injection Type Devices
4.1 QD Coupled Cavity

Using the coupled multilayer cavity structure shown in
Fig.7 (a), we fabricated the current-injection type devices
(Fig. 8) by the following procedure. After a ring-shaped Ti/
Au (5 nm/100 nm) electrode was deposited onto the p-type
DBR surface, a circular mesa with a diameter of 100 um
was formed via a following three-step wet etching process:
(1) etching of the p-type DBR using a phosphoric acid solu-
tion, (2) selective etching of the topside cavity using a citric
acid solution, and (3) selective etching of the topmost n-
AlGaAs layer of the intermediate DBR using a more diluted
phosphoric acid solution. In order to realize the current con-
finement structure, a thin AIAs layer inserted just above the
topside cavity was selectively oxidized from the sidewall.
The lateral oxidation of AlAs was accomplished by anneal-
ing at 480°C under a stem environment, which was supplied
by bubbling a nitrogen gas through deionized water main-
tained at 80°C. Then, an n-type electrode was formed by
depositing AuGe/Ni/Au (50 nm/12.5 nm/50 nm) onto the
exposed n-type DBR surface, followed by rapid thermal an-
nealing at 430°C in nitrogen atmosphere. Finally, a poly-
imide film was coated as a passivation layer. Figure 9 shows
a picture of the fabricated device under room-temperature
cw operation at an injection current of 10 mA. The inside di-
ameter of the ring-shaped p-type electrode was 40 um, while
the emission area was well restricted to a small spot with a
dimeter of ~20 um owing to the current confinement struc-
ture.

Figure 10 (a) shows the emission spectrum of the de-
vice under room-temperature cw operation at 1 mA. Two

Selective
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Fig.8 A schematic of the current-injection type device.

175

sharp emission peaks due to the cavity modes were clearly
observed at 1274.3 and 1289.3 nm. The additional small
peak at 1258.4 nm was attributed to the emission from the
area where the AlAs layer just above the topside cavity was
selectively oxidized. The simulated optical reflection spec-
trum revealed that the observed peak position corresponded
to the short-wavelength mode in the region where the AlAs
layer was replaced by Al,O3;. Note that emission wave-
lengths of two modes from the current-injection type de-
vices were almost the same as those observed in the optical
excitation measurements at the corresponding wafer posi-
tions. Figure 10 (b) shows the current versus light output
(I-L) curve measured at room temperature using a pulsed
current source with a pulse duration of 1 us and a duty cy-
cle of 0.1%. Unfortunately, the measured /-L curve never
showed the threshold behavior. Since the light output was
almost saturated in the high current region, optical gain in
the topside cavity sandwiched between the p-type and n-
type DBRs seemed to be insufficient for lasing even though

p-contact

Fig.9  Top view of the fabricated device under room-temperature cw
operation at 10 mA.
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Fig.10  (a) Emission spectrum of the device under room-temperature cw
operation at 1 mA. (b) I-L curve measured under room-temperature pulsed
operation.
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Fig.11  (a) I-L curve and (b) lasing spectrum at 40 mA of the device that
contains InGaAs MQWs as optical gain media. (c) Edge emitting spectrum
from the stripe-shaped mesa structure. The measurements were performed
at room temperature under pulsed conditions with a pulse duration of 1 us
and a duty cycle of 0.1%.

nine QD layers were introduced. An increased number of
QDs by a specific stacking method would be required to en-
large the optical gain enough for lasing at room temperature.

4.2 MQW Coupled Cavity

In order to realize two-color lasing from the coupled cav-
ity by current injection, InGaAs multiple quantum wells
(MQWs) were examined as optical gain media instead of
InAs QDs. In the MQW device, an optical thickness of
each cavity was set to 31/2 and two types of three-pair
Ing 15Gag gsAs/GaAs MQWs with different well widths of
3.6 and 4.4 nm were introduced only in the (001) side cav-
ity. The layer structures on the (001) and (113)B wafers
were designed so that two cavity modes would appear in
two emission peaks of the MQWs after the bonding. Pairs
of the top, middle, and bottom DBRs were 28, 12.5, and 34,
respectively. The fabrication procedure was almost the same
as that used for the QD devices but slightly modified. The
details will be published elsewhere.

Figure 11 (a) shows the I-L curve measured under the
same pulsed condition as mentioned. The threshold behav-
ior was clearly observed even at room temperature. How-
ever, the measured spectrum shown in Fig. 11 (b) indicated
the single-color lasing due to the long-wavelength mode.
In order to clarify emission peaks of the InGaAs MQWs
with two different well widths, the edge-emitting spectrum
shown in Fig. 11(c) was measured for the stripe-shaped
mesa structure. Comparing Figs. 11 (b) and 11 (c), we found
that the wavelength mismatch between the cavity modes and
gain peaks of the MQWs might cause the single-color lasing
of the MQW device. The gain peaks were tuned to the cav-
ity modes by lowering the operating temperature. Figure 12
shows the lasing spectra measured at 200, 191, and 180 K
under a pulsed current of 70 mA. As shown in Figs. 12 (a)
and 12 (c), the spectra measured at 200 and 180 K indicated

IEICE TRANS. ELECTRON., VOL.E100-C, NO.2 FEBRUARY 2017

10°

% 10° (a) 200 K

\8; 10* Pulsed

2 70 mA

it 110 L L VAT
% 126 (b) 191K

§ 10* Pulsed

> 70 mA

S qedb \

I T TN
g 12: (c) 180 K

o

AT Pulsed

> 70 mA

g 10°

E 10

[T
w 860 f\3/{;3/(;velegr:)g;)th (nm)

10

LT

60

Fig.12  Lasing spectra of the MQW device measured at (a) 200, (b) 191,
and (c) 180 K under a pulse current of 70 mA.

single-color lasing due to the long- and short-wavelength
modes, respectively. In contrast with this, two-color las-
ing with identical intensities were successfully observed at
the intermediate temperature of 191 K [Fig. 12(b)]. The
peak wavelengths were 904.4 and 911.6 nm, and the fre-
quency difference was 2.6 THz. The results indicate that
the intensity relation between two-color lasing in the pro-
posed device can be well tuned by the operating tempera-
ture. The current device is expected to emit terahertz light
when the device is operated under a condition that two-color
lasing is enabled. Terahertz emission would be further en-
hanced by introducing nanostructured materials with excel-
lent second-order nonlinearity in the (113)B side cavity. In
addition, two-color laser lights should be strongly polarized
in the [332] direction of the (113)B epiwafer for efficient
DFG. Since both the [110] and [332] polarization compo-
nents were observed for both modes, the additional improve-
ment of the device would be required for the specific polar-
ization.

5. Conclusions

A semiconductor coupled multilayer cavity that consists
of two cavity layers and three DBRs have been developed
and studied toward novel terahertz emitting devices utiliz-
ing DFG of two cavity modes. We have shown that the
second-order nonlinear susceptibility have to be controlled
by direct bonding of two epiwafers to achieve bright tera-
hertz emission from the coupled cavity. The wafer-bonded
GaAs/AlGaAs coupled multilayer cavity was fabricated us-
ing the (001) and (113)B epiwafers and two-color emission
due to InAs QDs only inserted in the (001) side cavity was
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studied by optical excitation. We found that emission in-
tensity of each mode was strongly dependent on the electric
field amplitude at the bonding interface which might cause
the optical loss. The optical loss could be greatly reduced by
choosing the bonding position where the electric field had
nearly zero amplitude for both modes. The current-injection
type devices were fabricated using the wafer-bonded cou-
pled multilayer cavity with nine QD layers. Unfortunately,
the lasing action was never observed because of the insuffi-
cient gain of the QDs. We also fabricated the MQW devices,
in which two types of InGaAs MQWs were used instead of
QDs. The threshold behavior was clearly observed in the
I-L curve even at room temperature. Two-color lasing was
successfully demonstrated when the gain peaks of MQWs
were tuned to the cavity modes by lowering the operating
temperature. This kind of device is a highly promising tera-
hertz emitter because efficient DFG of the two-color laser
light can be realized in the (113)B side cavity.
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