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Efficient Analysis of Diffraction Grating with 10000 Random
Grooves by Difference-Field Boundary Element Method

Jun-ichiro SUGISAKA†a), Takashi YASUI†, and Koichi HIRAYAMA†, Members

SUMMARY A numerical investigation revealed the relation between
the groove randomness of actual-size diffraction gratings and the diffrac-
tion efficiencies. The diffraction gratings we treat in this study have around
10000 grooves. When the illumination wavelength is 600 nm, the entire
grating size becomes 16.2 mm. The simulation was performed using the
difference-field boundary element method (DFBEM). The DFBEM treats
the vectorial field with a small amount of memory resources as indepen-
dent of the grating size. We firstly describe the applicability of DFBEM
to a considerably large-sized structure; regularly aligned grooves and a
random shallow-groove structure are calculated by DFBEM and compared
with the results given by standard BEM and scalar-wave approximation, re-
spectively. Finally we show the relation between the degree of randomness
and the diffraction efficiencies for two orthogonal linear polarizations. The
relation provides information for determining the tolerance of fabrication
errors in the groove structure and measuring the structural randomness by
acquiring the irradiance of the diffracted waves.
key words: diffraction grating, random structure, numerical method, inte-
gral equation, boundary element method

1. Introduction

Numerical simulations of diffraction gratings are important
for designing and analyzing the device properties. For ex-
ample, the groove shape affects the diffraction efficiency
and the groove period determines the diffraction angles.
Whereas most diffraction gratings are designed to have peri-
odicity, actual gratings may not have perfect periodicity due
to fabrication errors. Degradation of the groove periodic-
ity affects the diffraction angles, diffraction efficiency, and
directionality of the diffracted waves.

Currently, the simulation methods used for diffraction
gratings are based on either scalar or vector diffraction the-
ory. In the scalar diffraction theory (scalar-wave approxi-
mation), the amplitude of the wave transmitted through the
grating is given by the simple product of the amplitude of
the incident wave and the complex transmittance. The ab-
solute value and argument of the transmittance are given by
the refractive index of the material and the groove depths of
the grating, respectively. In the transmittance just described,
the complicated scattering at the sharp groove edges and
multi-scattering among the grooves are not considered. The
diffracted waves just outside of the grating are given by the
Fresnel-Kirchhoff diffraction integral. The far field is sim-
ply given by the Fourier transform of the transmitted wave
at the grating surface. However, when the depth of a sharp

Manuscript received April 6, 2016.
†The authors are with Kitami Institute of Technology, Kitami-

shi, 090–8507 Japan.
a) E-mail: sugisaka@mail.kitami-it.ac.jp

DOI: 10.1587/transele.E100.C.27

groove is increased (a groove with high aspect) or the groove
edges are dense (the grating period approaches the order
of the wavelength), the contributions from the scattering at
the edges and the multi-scattering effect cannot be ignored.
Thus, the diffracted wave cannot be expressed by a sim-
ple product. Consequently, the computation results become
less accurate. The scalar diffraction theory has been em-
ployed to large-sized structures, e.g., analyses of diffraction
gratings [1], design of hybrid-level binary zone plates [2],
and analysis of gratings with many particulate surface de-
fects [3]. The limits of the scalar diffraction theory have also
been discussed [4]–[6].

On the other hand, in the vector diffraction theory, the
electromagnetic fields are determined such that they satisfy
Maxwell’s equations and the boundary conditions on all di-
electric interfaces. Specifically, the finite-difference time-
domain (FDTD) method is applied widely owing to its ver-
satility. The FDTD method discretizes the entire analytical
region using Yee’s cells to perform numerical differentia-
tion, and provides rigorous vectorial fields in the time do-
main.

The rigorous coupled wave analysis (also called the
Fourier modal method) discretizes the field and dielectric
structure in the wavenumber domain. This is suitable for
analyses of the steady state of a periodic structure.

The fast multipole method (FMM) [7] is another direc-
tion taken for large-sized structures and many-body prob-
lems. This approach has been applied to a variety of
problems, achieving simulations with low computational
costs [8].

So far, many approaches have been employed for a va-
riety of groove structures that require rigorous simulation
result. Lamellar gratings with some defects illuminated by
line light sources near the defect have been solved in the
spectral (wavenumber) domain [9]. Gratings with up to 512
fluctuated grooves have been computed using the boundary
element method (BEM) and FMM [10]. Ergül solved the
scattered wave from a two-dimensional array of a large num-
ber of dielectric cubes by using FMM [11]. Random grat-
ings expressed by super-cells having 24 or 48 grooves have
been computed by the finite element method [12]. Aperi-
odic gratings have been designed by using FDTD simula-
tions [13]–[15]. The FDTD method has also been applied
to the random grating in a super-cell [16]. An arranged
Fourier modal method for aperiodic structures has been pro-
posed [17], [18]. The total integrated scattering formula [19]
and the Monte Carlo method [20] have been used to calcu-
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late a rough grating. Two-dimensional random gratings have
been calculated by using the transfer-matrix method [21].
Scattering and surface plasmon polariton modes on a rough
surface have been solved by using integral equations [22].
BEM has also been applied to the analyses of diffraction
lenses [23] and finite-size gratings [24].

Whereas the methods described above provide rigorous
results, the computational cost to calculate the whole grat-
ing device becomes considerably expensive. Actually, the
electromagnetic fields of the visible light around the grat-
ings must be discretized with intervals of submicron size,
but the incident wave illuminates the grating over areas tens
of millimeters wide. It is very difficult to reserve memory
for this computation with a small-scale environment such as
desktop computers and small-scale workstations.

In this paper, we realize a simulation for large-sized
gratings with 10000 random grooves of wavelength-sized
period with reduced computational costs. The simulation
method is the difference-field boundary element method
(DFBEM) [25], which is based on vector diffraction theory.
DFBEM provides the scattered waves of locally deformed
gratings; the electromagnetic field of the non-deformed grat-
ing or dielectric surface is calculated first and then the field
is updated to that after deformation by solving a set of
boundary-integral equations. The set of equations is at a
small scale, which consists of path integrals on the bound-
aries around the deformed areas only. Thus, the necessary
amount of memory does not depend on the whole structure
size. Approximations such as truncation of the analysis re-
gion and introduction of artificial periodicity (super-cells)
are not necessary. Therefore, there is no undesired scatter-
ing from the truncated edges, variation of the results among
samples with the same degree of randomness, or discrete
far-field effects due to the super-cells. Up to now, DFBEM
has been employed for designing diffraction lenses [26] and
analyzing various type of defective gratings [27], [28].

In Sec. 2, we describe the definition and quantification
of the groove randomness. The condition for illumination is
also presented and will be modeled in the numerical simu-
lation.

In the calculation of random-groove gratings, we start
with the reflected and transmitted wave of the dielectric
plane, and then update the scattered wave by deforming the
plane to add one groove. These groove-addition and field
update processes are continued sequentially until all grooves
are added to the plane. This calculation process is described
in Sec. 3.

Before analyzing the random-groove gratings, the va-
lidity of this calculation process has to be established. For
example, the result is invalid if the calculation error is accu-
mulated in the diffracted wave through the groove-addition
process. In Sec. 4, to validate the calculation process, we
first describe the result of DFBEM for periodically aligned
10001 grooves. The result is then compared with that of
an infinite grating computed by conventional BEM with
Bloch’s boundary condition. Second, we describe the analy-
sis of a random-groove grating with 10000 low-aspect-ratio

grooves. This result is compared with that of a calculation
in the scalar-wave approximation.

In Sec. 5, we describe the result for several random-
groove gratings. Finally, we show the result for the depen-
dence of the diffraction efficiency on the degree of random-
ness.

2. Structure of Random Groove Grating and Illumina-
tion Setup

The diffraction gratings treated in this paper are one-
dimensional surface-relief gratings, which consist of N
grooves on the surface. The grating period T , which is the
distance from the center of one groove to that of the neigh-
boring one, is constant. We fixed T to 2.7λ throughout this
paper, where λ is the wavelength of the incident wave in
vacuum. The groove depths in the grating are considered
constant, h. The groove widths in the diffraction grating are
distributed normally, with an average groove width of 0.5T
and the variance of the distribution σ2 altered depending on
the calculation purpose. Hereafter, we express the grating
randomness by σ. The width of any particular groove is
assumed uniform along its entire length.

The cross section of the groove is located in the x − y
plane, so that the grating surface is in the x− z plane and the
grooves are parallel to the z axis. The grooves on the grating
are labeled gn (1 ≤ n ≤ N). The incident wave illuminates
from the +y direction. In Fig. 1 (a), we depict some cross
sections of the gratings with σ = 0, 0.06T , and 0.12T . The
histograms of the groove width for σ = 0.06T and 0.12T
(N = 10000) are shown in Fig. 1 (b).

We assume that the illuminated wave is a Gaussian

Fig. 1 (a) Cross section of a random-groove grating for σ = 0, 0.06T ,
and 0.12T . (b) Histograms of the groove width for σ = 0.06T and 0.12T ,
when the number of grooves is 10000.
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Fig. 2 Calculation process for random groove structure with DFBEM. (a) Original structure with no
groove. (b) First step: add the left edge groove g1. (c) Second step: add the groove g2. (d) n-th step:
add the groove gn.

beam. The beam is linearly polarized; we define the
s−polarization as the electric field parallel to the groove ori-
entation and the p−polarization as the magnetic field par-
allel to the groove orientation. The incident wave propa-
gates perpendicular to the grating surface, impinging on the
backside of the grating surface. It is then diffracted by the
grooves on the front side.

3. DFBEM for Large-Sized Random-Groove Grating

This section describes the DFBEM groove addition and field
update process.

First, we compute the field for a flat substrate with no
grooves on it (Fig. 2 (a)). This process is called step 0. For
this calculation, only the z-component of the electric field is
needed for s−polarization or the z-component of the mag-
netic field for p−polarization. This necessary component is
labeled f1 outside the substrate and f2 inside the substrate.
We assume that the beam waist of the incident Gaussian
beam is at the grating surface (y = 0), that the beam width is
sufficiently larger than the wavelength, and that the incident
beam propagates parallel to the y axis. DFBEM requires
the field at the flat substrate in the vicinity of the substrate
surface, 0 ≤ y ≤ h. The field distribution of the incident
Gaussian beam around the surface (labeled fi) is expressed
by the multiplication of a plane wave and a Gaussian win-
dow function as

fi(ρ) = e−ax2
e jk2y, (1)

and thus f1 and f2 in the vicinity of the substrate surface are
written as

f1(ρ) =te−ax2
e jk1y, (2)

f2(ρ) =re−ax2
e− jk2y + e−ax2

e jk2y, (3)

where ρ is a vector that defines a position in the x− y plane.
The position is also expressed by the variables x and y. Here,
k1 and k2 are the wavenumbers outside and inside the sub-
strate, respectively, whereas t and r are the transmittance
and reflectance, respectively, at the substrate surface. We
obtain the t and r values by approximating fi(ρ) = exp( jk2y)
and using Fresnel’s equations. a is determined by the beam
width w (full width at half maximum) as

a =
4 ln 2
w2
. (4)

We set w to 1/5 of the grating size. For example, when the
number of grooves is 10000, w = 2000T . A set of observa-
tion points, i.e., a set of positions where we intend to find the
field, is denoted by P = {ri|i = 1, 2, · · · }, where ri indicates
either a position in the x − y plane or a direction of the far
field. At step 0, the fields at P are given by Eqs. (2) or (3).

For the following process, we label the boundaries; Γ0,L

(infinite boundary) on the substrate at the left side of the left-
edge groove g1, Γ0,R (infinite boundary) on the substrate at
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the right side of the right-edge groove gN , Γ0,n on the sub-
strate between gn and gn+1, and Γ1,n and Γ2,n on the perimeter
of gn (see Fig. 2 (a)).

Next, a groove g1 is added to the flat substrate at the left
edge of the grating (Fig. 2 (b)). This process is called step 1.
Three regions S1, S2, and S3 are defined as the region outside
the substrate, inside the grating, and inside g1, respectively.
The field on the boundaries, after adding the projection, is
given by solving the following integral equations [27]:

1
2
Δ f1(ρ) = IC0

1,2Δ f1 + I′C1
1,3 f3 − IC1

1,2 f1 (ρ ∈ C0), (5)

1
2

f3(ρ) − 1
2

f1(ρ)

= IC0

1,2Δ f1 + I′C1
1,3 f3 − IC1

1,2 f1 (ρ ∈ C1), (6)

1
2
Δ f1(ρ) = −I′C0

2,1Δ f1 − I′C2
2,3 f3 + I′C1

2,1 f1 (ρ ∈ C0), (7)

1
2

f3(ρ) − f2(ρ)

= −I′C0

2,1Δ f1 − I′C2
2,3 f3 + I′C1

2,1 f1 (ρ ∈ C2). (8)

1
2

f3(ρ) = −IC1
3,1 f3 + IC2

3,2 f3 (ρ ∈ C1), (9)

1
2

f3(ρ) = −IC1
3,1 f3 + IC2

3,2 f3 (ρ ∈ C2), (10)

where the integral paths C0, C1, and C2 are the boundaries
defined as

C0 ≡Γ0,L ∪ (
Γ0,1 ∪ Γ0,2 ∪ · · · ∪ Γ0,M+1

)
∪ (
Γ1,2 ∪ Γ1,3 ∪ · · · ∪ Γ1,M+2

)
, (11)

C1 ≡Γ1,1, (12)

C2 ≡Γ2,1. (13)

The infinite path Γ0,L at the left side of g1 is truncated
so that the length is equal to that of the right side of
g1,

(
Γ0,1 ∪ Γ0,2 ∪ · · · ∪ Γ0,M+1

)∪ (
Γ1,2 ∪ Γ1,3 ∪ · · · ∪ Γ1,M+2

)
.

The parameter M means that the integral equations con-
tain the interaction (multi-scattering) between neighboring
M grooves. For example, as M increases, the computation
accuracy is improved, but more computation resources are
necessary, because C0 must be extended to include the far
groove gM+2. The number M must be set in consideration
of the trade-off between the computation accuracy and the
amount of computation resources. Operators I and I′ rep-
resent the boundary integrals defined by

IC
p,q f ≡

∫
C

{
Gp(ρ; ρ′)

∂ f (ρ′)
∂n′

− f (ρ′)
∂Gp(ρ; ρ′)
∂n′

}
dl′, (14)

I′Cp,q f ≡
∫

C

{
Gp(ρ; ρ′)

ηp

ηq

∂ f (ρ′)
∂n′

− f (ρ′)
∂Gp(ρ; ρ′)
∂n′

}
dl′.

(15)

Note that IC
p,q f becomes a function of ρ. Here, (l, n, z) is a

local coordinate system; l is parallel to the direction of the
path integrals, n is a normal direction, and z is same as the
z component of the global (x, y, z) coordinate system. The

material parameter ηi exhibits the magnetic permittivity in
Si for the s-polarized incident wave and electric permittivity
in Si for the p-polarized one. Gi is a free-space Green’s
function for Si;

Gi(ρ; ρ
′) = − j

4
H(2)

0

(
2πni

λ
|ρ′ − ρ|

)
, (16)

where H(2)
0 is a zero-order Hankel function of the second

kind and ni is the refractive index in the region S p (p =
1, 2, 3).

By discretizing C0, C1, and C2 with boundary ele-
ments, the integral equations (5)–(10) are transformed to
a set of simultaneous equations and solved numerically.
This discretization process is the same as for the standard
BEM [29]. The constant terms of the equation consist of f1
and ∂ f1/∂n on C1 and f2 on C2. These values are given by
Eqs. (2) and (3). The solution of Eqs. (5)–(10) contains Δ f1
and ∂Δ f1/∂n on C0, as well as f3 and ∂ f3/∂n on C1 and C2.
From these solutions, we obtain the field after adding g1 as
f1 + Δ f1 for C0, f3 for C1 and C2. The fields at P are given
by adding

Δ f1(ρ) =IC0

1,2Δ f1 + I′C1
1,3 f3 − IC1

1,2 f1 (ρ ∈ S1), (17)

Δ f2(ρ) = − I′C0

2,1Δ f1 − I′C2
2,3 f3 + I′C1

2,1 f1 (ρ ∈ S2), (18)

to f1 and f2 for inside S1 and S2, respectively, and replacing
with

f3(ρ) = − IC1
3,1 f3 + IC2

3,2 f3 (ρ ∈ S3) (19)

for inside S3. When a component of P is a direction of the
far field, we replace I and I′ in Eqs. (17) and (18) by the
integral operators I(far) and I′(far), respectively. They are
defined by

I(far)C
p,q f ≡ j

4

∫
C

{
∂ f (ρ′)
∂n′

− jkp(in′ · io) f (ρ′)
}

e jρ′·io dl′, (20)

I′(far)C
p,q f ≡ j

4

∫
C

{
ηp

ηq

∂ f (ρ′)
∂n′

− jkp(in′ · io) f (ρ′)
}

e jρ′·io dl′.

(21)

Note that I(far)C
p,q f is a function of io, where io is a unit vector

having the direction of the observation angle and in′ a unit
normal vector at ρ′ on the integral path C.

In addition to P, the computation of f1+Δ f1 and ∂( f1+
Δ f1)/∂n on Γ1,n and f2 + Δ f2 on Γ2,n (n = 2, 3, · · · ,M + 1)
are necessary for the sake of the following processes. The
difference field Δ f1 for the former is included in the solution
of the integral equations and Δ f2 for the latter is given by
Eq. (18). Δ f1 on Γ1,m and Γ0,m (m > 1 + M) and Δ f2 on Γ2,m

(m > 1 + M) are approximated by zero. Before adding the
next groove, the fields f1+Δ f1, f2+Δ f2, and f3 are relabeled
as f1, f2, and f1, respectively. We relabel f3 to f1 because
the region S3 (inside g1) at step 1 is redefined as a part of S1

in the following steps.
Second, we add the groove g2 and update the field (step

2). In this step, the paths and regions are redefined as shown
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in Fig. 2 (c), namely the paths C0, C1, and C2 are

C0 ≡Γ0,L ∪ Γ2,1 ∪ Γ0,1 ∪ (
Γ0,2 ∪ Γ0,3 ∪ · · · ∪ Γ0,M+2

)
∪ (
Γ1,3 ∪ Γ1,4 ∪ · · · ∪ Γ1,M+3

)
, (22)

C1 ≡Γ1,2, (23)

C2 ≡Γ2,2. (24)

The integral path Γ0,L is truncated so that the length of
Γ0,L ∪ Γ2,1 ∪ Γ0,1 is equal to that of the left side of C0,(
Γ0,2 ∪ Γ0,3 ∪ · · · ∪ Γ0,M+2

) ∪ (
Γ1,3 ∪ Γ1,4 ∪ · · · ∪ Γ1,M+2

)
. S1

is the sum of the region inside the already added groove g1

and outside of the grating, whereas S3 is inside the groove
g2. The integral equations (5)–(10) are solved with the
paths described above. The constant term consists of f1 and
∂ f1/∂n on C1 and f2 on C2. They have been given in step
1 as the field on Γ1,2 and Γ2,2. The fields at P are updated
by using the integral equations (17)–(19) as well as step 1.
In addition to the update of P, it is necessary to compute
f1 + Δ f1 and ∂( f1 + Δ f1)/∂n on Γ1,m (3 ≤ m ≤ M + 2) and
f2 +Δ f2 on Γ2,m (3 ≤ m ≤ M + 2) for the sake of the follow-
ing processes. After that, the fields f1 + Δ f1, f2 + Δ f2, and
f3 are relabeled f1, f2, and f1, respectively.

Generally, when adding a groove gn, as shown in
Fig. 2 (d), we define the integral paths as

C0 ≡
⎡⎢⎢⎢⎢⎢⎣

M⋃
i=1

(
Γ2,n−i ∪ Γ0,n−i

)⎤⎥⎥⎥⎥⎥⎦ ∪
⎡⎢⎢⎢⎢⎢⎢⎣

M+1⋃
i=1

(
Γ1,n+i ∪ Γ0,n+i−1

)⎤⎥⎥⎥⎥⎥⎥⎦ , (25)

C1 ≡Γ1,n, (26)

C2 ≡Γ2,n. (27)

If n ≤ M, then a part of Γ0,L is included in C0. If n ≥ N −M,
then a part of Γ0,R is included in C0. In either case, Γ0,L or
Γ0,R is truncated so that the lengths of C0 for the left and
right side of gn are equal. The regions S1, S2, and S3 are
defined as outside the grating and inside the already added
grooves (g1, g2, · · · , gn−1), inside the grating substrate, and
inside the groove gn, respectively.

The groove-addition and field-update process is con-
tinued until all N grooves are added. Finally, the field at P
becomes the field for the structure with N grooves.

The DFBEM algorithm is suitable for large N because
the computer memory resources do not depend on N. The
memory resource is consumed when solving the integral
equations, setting the field at P, and the fields on Γ1,n and
Γ2,n. The memory resource for the set of integral equations
is determined by the number of unknowns, which depends
on the lengths of integral paths C0, C1, and C2. The mem-
ory resource for P depends only on the number of its com-
ponents ri. It is not necessary to hold the fields on all Γ1,n

and Γ2,n (n = 1, 2, · · · ,N) in memory at the same time. For
example, the field on gn (Γ1,n and Γ2,n) before step n − M
is equal to that given by Eqs. (2) and (3), because Δ f1 and
Δ f2 on Γ1,n and Γ2,n from step 1 to n − M is approximated
to zero. At step n − M, the memory region for Γ1,n and Γ2,n

is allocated, and we calculate the field by using Eqs. (2) or
(3). This field is updated across step n−M to n−1, and then

used at step n as constant terms of the integral equations.
After the integral equation is solved at step n, the field data
is freed from the computer memory because these data are
never used in step n + 1, n + 2, · · ·N. Thus, the memory for
Γ1,n and Γ2,n is allocated only in step n − M to n. Conse-
quently, the field that we must hold at any given time is only
the perimeter of the M + 1 grooves.

4. Validation of 10000-Groove Computation

The first analysis for validation is through the compari-
son between DFBEM and the standard BEM. For DFBEM,
10001 grooves are regularly aligned with intervals of T (=
2.7λ) as shown in Fig. 3 (a). The width and height of each
projection are 0.5T and λ, respectively. The refractive in-
dices inside of the grating (n2) and outside of grating (n1

and n3) were set to 1.5 and 1.0, respectively.
We expect that the field around the center of the grat-

ing surface (near g5001) is close to that of an infinite periodic
grating. The infinitely periodic grating was calculated by
BEM with Bloch’s boundary condition [30]. The geome-
try of the grating is shown in Fig. 3 (b). The field on ΓR is
associated with that on ΓL by Bloch’s boundary condition.
For both DFBEM and BEM, each boundary is discretized
by line segments of length less than λ/10 and the field dis-
tribution on each boundary element is expressed by a linear
function [31]. We obtained the field distribution on the line
−0.5T ≤ x ≤ 0.5T and y = −0.02T for comparison with

Fig. 3 (a) Cross section of the regularly aligned 10001 grooves for cal-
culation of DFBEM. All groove widths and depths were set constant, 0.5T
and λ, respectively. (b) Geometry for the calculation of a periodic grating
with BEM. Bloch’s boundary condition is applied on the left and right side
boundaries ΓL and ΓR. The groove width and depth were also set to 0.5T
and λ, respectively.
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DFBEM. The observation lines for each DFBEM and BEM
simulation are indicated by dashed lines in Figs. 3 (a) and
3(b), respectively. They were regularly discretized into 41
points, which are components of the observation point set P.
The calculated fields for DFBEM and BEM are denoted by
f (DFBEM)
i and f (BEM)

i , respectively. The index i (1 ≤ i ≤ 41)
varies with the x coordinate.

By selecting the groove number as 10001, the grating
center, where the y-axis and the center of the incident Gaus-
sian beam are positioned, is at the center of g5001. Because
of this condition, the grating structure and the incident beam
are both symmetric about the y-axis. In the condition of
BEM, the grating structure and the incident beam (a plane
wave propagating in the −y direction) are also both sym-
metric about the y-axis as shown in Fig. 3 (b). Therefore,
we can expect a good agreement between the DFBEM and
BEM results.

We implemented a DFBEM program that is written in
Fortran 95, and compiled by using the GNU fortran com-
piler (GFortran). The integral equations of DFBEM were
transformed to simultaneous equations, and then solved by
LU decomposition with the LAPACK library. We ran the
program with a desktop computer that has an Intel Core i7-
5930K CPU. No parallel computing such as multicore pro-
cessing, clustering, or graphical processing unit, was used
in the computation.

The results (real part of the complex field) for the s−
and p−polarizations are shown in Fig. 4. As we expected,
the results of DFBEM is close to those of standard BEM for
both polarizations. We also evaluated the average error e
(%), which is defined by

e =
100
41

41∑
i=1

| f (DFBEM)
i − f (BEM)

i |
| f (BEM)

i | , (28)

and listed in Table 1.
The table indicates that the average error (computation

accuracy) can be reduced by increasing M. Moreover, as
described in Sect. 3, we can see the trade-off relation be-
tween the computation accuracy and the computation re-
sources (CPU time and memory). In the following analyses,
we decided to employ the setting M = 3.

In the second analysis, we confirm the reliability of the
far field for the random groove structure. As we described
in Sect. 1, the scalar approximation is valid for sufficiently
shallow groove structures. Thus, the result of DFBEM is
compared with that of the scalar approximation.

The randomness of the groove is fixed to σ = 0.14T ,
and we prepared 16 grating samples whose groove depth
h was varied from 0.03T (0.081λ) to 0.48T (1.296λ). The
observed point set P contains two directions of −90◦ and
−68.2615◦ for the far fields. Those are angles from the +x
axis, corresponding to the zero-order and first-order diffrac-
tion angles of a diffraction grating with a 2.7λ period.

At step 0, it is necessary to compute the far fields that
belong to P. Those far fields f (far)

1 (ip) consist of waves trans-
mitted through the flat substrate, which is algebraically cal-

Fig. 4 Field distribution computed by DFBEM (M =1, 3, and 5) on the
grating surface y = −0.02T and −T/2 ≤ x ≤ T/2. As M increases, the
field distributions for both the s− and p−polarization become close to that
calculated by BEM with Bloch’s boundary condition (see also Table 1).

Table 1 Average relative error e between BEM (periodic structure) and
DFBEM for M =1, 3, and 5. Whereas the error reduces as M increases,
the necessary calculation resources (CPU time and memory consumption)
increase.

s−polarization p−polarization CPU time Memory
M e(%) e(%) (h) (Mbyte)
1 8.09 5.13 1.721 13.66
3 1.54 2.15 10.48 50.16
5 0.664 0.808 30.96 110.8

culated by

f (far)
1 (ip) = I(far)C

1,1 f1, (29)

where f1 is given by Eq. (2), and C is an infinite path along
the grating surface y = 0.

In the calculation under the scalar approximation, the
far field is given by

f (far)(ip) = I(far)C
1,1 f , (30)

where C is an integral path on y = 0. The directions of the
far fields (ip) are same as the components of P for DFBEM,
namely, −90◦ (zero-order) and −68.2615◦ (first-order). f is
the field on y = 0 (S1 side), which is given by

f (x) =

⎧⎪⎪⎨⎪⎪⎩
te−ax2

(x ∈ Γ0,n, n = 1, 2, · · ·N − 1) (31)

te−ax2
e− j(k1−k2)h (x ∈ Γ1,n, n = 1, 2, · · ·N). (32)
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t is the transmittance through the boundary from the inside
to the outside of the grating, which is given by the Fresnel’s
equation as

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2k2

k1 + k2
(s−polarization) (33)

2k2/n2
2

k1/n2
1 + k2/n2

2

(p−polarization). (34)

The calculation results (irradiance) for DFBEM and the

Fig. 5 Irradiance for the zeroth and first order diffracted wave computed
by DFBEM and the scalar-wave approximation. The randomness of the
groove σ is 0.14T . As the groove depth decreases, the results for DFBEM
and the scalar-wave approximation are in good agreement.

scalar approximation are shown in Fig. 5. For small h, the
results of DFBEM are very close to those of the scalar ap-
proximation. This result shows the validity of DFBEM for
the calculation of the random groove structure and the far
fields. In the scalar approximation, as we can see from
Eqs. (31) and (32), the wavefronts are discontinuous at the
groove edges, in violation of Maxwell’s equations, because
the boundary condition on the wall surface of the grooves is
not considered. This discontinuity increases as the groove
depths h increases. Therefore, the precision of the scalar
approximation decreases as h becomes larger.

5. Diffraction Efficiency of Random Grooves

In this section, we describe the relation between the ran-
domness of the grooves and the diffraction efficiency. The
groove depth h was set to λ. The randomness of the groove
width σ was varied from zero to 0.13T . We computed the
diffraction efficiency, defined by the ratio of the irradiances
of the two far fields: the first-order diffracted wave toward
−68.2615◦ and that of the incident wave toward −90◦. The
far field of the incident wave f (far)

i (i0) is given by

f (far)
i (i0) = I(far)C

2,2 fi, (35)

where i0 is a unit vector oriented along −90◦. C is an infinite
integral path on y = 0, and fi is the incident wave on C
given by Eq. (1). Note that this far field is calculated with
the incident wave in the grating substrate after changing its
amplitude by passing through the dielectric interface on the
backside of the grating. Hence, the diffraction efficiency is
not comparable to the experimentally acquired one, unless

Fig. 6 Relation between the groove randomness and the diffraction ef-
ficiency of the first order. The diffraction efficiencies for both s- and p-
polarization decrease as the groove randomness increases.
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Table 2 Variation of diffraction efficiency of 12 samples having a fixed randomness σ = 0.08T .

s−polarization p−polarization
sample index diffraction efficiency variation (%) diffraction efficiency variation (%)

1 0.3101889 0.00103 0.4687677 0.0108
2 0.3101289 0.0204 0.4688499 0.0283
3 0.3105448 0.114 0.4694407 0.154
4 0.3098147 0.122 0.4677728 0.201
5 0.3104708 0.0899 0.4695449 0.177
6 0.3106178 0.137 0.4698991 0.252
7 0.3103766 0.0595 0.4691750 0.0977
8 0.3100388 0.0494 0.4683618 0.0758
9 0.3103165 0.0401 0.4688713 0.0329
10 0.3100175 0.0563 0.4682840 0.0924
11 0.3098675 0.105 0.4677389 0.209
12 0.3099223 0.0870 0.4679009 0.174

average 0.3101921 – 0.4687173 –

the incident far field was calculated from the incident wave
before entering the grating substrate.

The computation results are plotted in Fig. 6. For both
s− and p−polarizations, the diffraction efficiency monoton-
ically decreases as the randomness σ increases. The rela-
tion between the groove randomness and the diffraction effi-
ciency is known qualitatively; for random grooves spacings,
the scattered wave radiated from the grooves cannot be in
phase in the direction of the theoretical diffraction angle.
The results of Fig. 6 agree with the qualitative discussion.

The parameter σ is a statistical number and the diffrac-
tion efficiency may vary among the samples for the same σ.
To investigate the range of variation, we prepared 12 groove
patterns that have the same randomness σ = 0.08T , but cre-
ated by using different random numbers. Each diffraction
efficiency and the variation from the average diffraction ef-
ficiency for both s− and p−polarization is listed in Table 2.

The table shows that the variation for the s− and
p−polarization are less than 0.137% and 0.252%, respec-
tively. For smaller σ the variation range would be reduced,
because for small σ, the structural variation becomes small,
and at σ = 0 the variation must be zero.

6. Conclusion

In this paper, we have presented the numerical analysis of
the diffraction efficiencies of diffraction gratings with ran-
dom grooves. The numerical method is based on DFBEM,
which makes it possible to solve the scattering problem with
small amount of computation resources. In the analysis of
10001 grooves, the necessary CPU time was 10.48 h, and
the memory consumption was 50.16 Mbyte. Because the
requisite memory size is very small, DFBEM is suitable
for concurrent computation of various grating parameters.
Combining this with parallel computing such as multicore
CPU and graphical processing unit, the computation can be
made even more efficient.

We have also validated the application of DFBEM to
an extremely large-sized diffraction gratings. The field dis-
tribution of regularly aligned 10001 grooves calculated by
DFBEM agreed with that calculated by BEM with Bloch’s
boundary condition. DFBEM was also applied to 10000

random groove structures; the results agree with that of the
scalar-wave approximation for a shallow groove structure.
From those analyses, we conclude that DFBEM provides re-
liable results for both large-sized random groove structures.

In the numerical simulation of the random diffraction
gratings, the structures and the illumination setup were di-
rectly modeled after the actual case. We noticed the ran-
domness of the groove width, and obtained a relation be-
tween the randomness and the diffraction efficiency. There
is little variation among the samples with the same random-
ness. For this reason, the computed diffraction efficiency is
a global characteristic of the grating, not determined by the
local groove structure in the grating.

If we assume the wavelength 600 nm, the grating size
we treated in this work is 16.2 mm, and the incident beam
width is 3.24 mm. This configuration is easy to set up exper-
imentally. Although the task to consider the reflectance and
transmittance at the backside of the grating surface remains,
we expect the result to become quantitatively comparable to
the experimental one.

In the future, this work would be applied to the design
of diffraction gratings and quality examination of produced
gratings. For example, the relation between the groove ran-
domness and the wavelength resolution can be used to es-
timate the tolerance for the fabrication error of products.
By computing the far field distribution for several wave-
lengths, we can also find the wavelength resolution of the
grating and its dependence on the groove randomness. As
another application, by referring to the simulation result of
the relation between the groove randomness and the diffrac-
tion efficiency, we can determine the groove randomness of
products from a simple examination, where one illuminates
the product and measures the irradiance of the first-order
diffracted wave. However, actual diffraction gratings could
have many kind of randomness other than in the groove
width, such as randomness in period, groove depth, groove
shape, and grating-surface roughness. Each randomness can
be analyzed by DFBEM only if the cross sectional geome-
try of the grating is available. Our future work is to analyze
such other types of randomness and to characterize the effect
on the diffracted wave.
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[11] Ö. Ergül, “Solutions of large-scale electromagnetics problems in-
volving dielectric objects with the parallel multilevel fast multipole
algorithm,” J. Opt. Soc. Am. A, vol.28, no.11, pp.2261–2268, Nov.
2011.

[12] H. Gross, M.-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär,
“Modeling of line roughness and its impact on the diffraction in-
tensities and the reconstructed critical dimensions in scatterometry,”
Appl. Opt., vol.51, no.30, pp.7384–7394, Oct. 2012.

[13] T. Oonishi, T. Konishi, and K. Itoh, “Fabrication of phase only bi-
nary blazed grating with subwavelength structures designed by de-
terministic method based on electromagnetic analysis,” Jpn. J. Appl.
Phys., vol.46, no.8B pp.5435–5440, Aug. 2007.

[14] J. Ala-Laurinaho, T. Hirvonen, J. Tuovinen, and A.V. Räisänen,
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