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SUMMARY In this paper, we present the roles played by millimeter-
waves in the realization of an Internet of Things (IoT) society. Millimeter-
waves are becoming essential frequency resources, enabling ultra-high-
speed wireless networks supporting massive data traffic and high-resolution
sensor devices. Multiple antenna technologies such as phased arrays, sec-
tor antennas, and MIMO signal processing are key technologies for putting
these into practical use. In this paper, various examples of integration of
multi-antenna systems are shown, as well as demonstration on 60 GHz-
band millimeter-wave wireless access and 79 GHz-band high-resolution
radar. We also propose applications to ITS for an IoT society, combining
millimeter-wave wireless access and radar sensors, and discuss technical
issues to be solved in the future.

key words: 10T, millimeter-wave, 5G, radar, phased array, MIMO

1. Introduction

With the spread of mobile devices such as smartphones, mo-
bile data traffic has been increasing exponentially from year
to year. Furthermore, with the progress towards an IoT so-
ciety where everything communicates with each other, the
amount of data traffic will increase even further. In view
of this, the realization of 5th generation (5G) mobile net-
works [1], [2], which will be a key communication network
environment supporting the needs of an IoT society, is ea-
gerly anticipated. In order to accommodate huge amount of
data traffic, there have been increasing expectations for the
effective utilization of the millimeter-wave bands [3].
Millimeter-waves are expected to be used for high-
speed wireless communication, and in the beginning of the
year 2000, a small prototype device [4] was actively devel-
oped for that purpose. Ever since, standards for communi-
cation in millimeter-wave bands have been developed and
the momentum for practical use has been picking up. With
the emergence of OFDM and MIMO technologies, which
are technologies for improving frequency utilization effi-
ciency, yet further potentials are made possible for speeding
up data communication in order to fully maximize utiliza-
tion of millimeter-waves. For 5G, the scarcity of the fre-
quency resources is obvious. Therefore, in order to fulfil
the system requirements, utilization of the millimeter-wave
and terahertz is indispensable. Several frequency bands have
been studied in the millimeter-wave band, between 24.5 and
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86 GHz. Among them, 7 to 9 GHz of bandwidth has been
allocated as unlicensed band at frequencies around 60 GHz,
thereby providing an excellent mean to achieve very high
data rate above multi-gigabits. In addition, international
standards targeting indoor short-range communication, such
as IEEE 802.11ad/WiGig, having been developed [5] and
put into practical use, are expected to be an important el-
ement of 5G [6].

On the other hand, research and development of sensor
applications utilizing millimeter-waves has also been pro-
ceeding. A typical example application is a collision avoid-
ance radar for automotive purposes, where a 76 GHz-band
in-vehicle radar is put into practical use for collision avoid-
ance or automatic cruise control (ACC) [7]. In order to fur-
ther improve the sensor resolution, use of the 79 GHz band
was also considered, with frequency allocation for the band
of 77 GHz to 81 GHz subsequently completed in the World
Radio Conference in 2015 (WRC-15) [8]. It is expected that
the 79 GHz-band radar will be popular in the future. Re-
search and development on the use of millimeter-wave ex-
ceeding 100 GHz has also been made to further improve
the sensor resolution[9]. One of the reasons for the ac-
tive utilization of these millimeter-wave bands is that CMOS
technology capable of large-scale integration has been real-
ized [10].

In this paper, in Sect. 2, we first show the roles that fre-
quency bands of millimeter-waves play in the future IoT era.
Section 3 shows the feasibility of millimeter-wave CMOS,
demonstrating that it can be used to enable wireless ac-
cess by introducing beamforming and sector antenna tech-
nologies. In Sect.4, we introduce an example of the re-
alization of a high-resolution, three-dimensional scanning
radar using MIMO technology. In Sect.5, we propose
vehicle-to-everything (V2X) applications for [oT combining
millimeter-wave radio access technology and sensor tech-
nology.

2. Evolution of IoT

Here we consider the role of millimeter-wave in IoT. Fig-
ure 1 shows a conceptual diagram of IoT. In Fig. 1 (a), the
data output from the sensor device is gathered in the cloud
through the access network, gateway, and core network. The
cloud analyzes data and gains an insight by artificial intel-
ligence (AI) technology. Subsequently, it returns a control
signal to the node terminal. The principle of 10T is to gener-
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Fig.1 Internet of Things (IoT) architectures (a) conventional IoT struc-
ture and (b) evolved IoT structure with edge computing

ate added value in the flow of these data. As IoT evolves, the
number of sensor devices increases tremendously, resulting
in vast explosion of data traffic that the existing networks
can no longer accommodate. For applications that analyze
and collect data gathered from sensor devices without la-
tency, such as automatic driving assistance system (ADAS),
it is necessary to analyze the data and gain an insight with
a processor located physically close to the sensor devices.
The area close to the sensor device is commonly called the
“edge”, giving rise to the term “edge computing” [11] to re-
fer to data processing close to the sensor device, as shown
in Fig. 1 (b). Since the “edge” exists in front of the cloud,
it is also called “fog computing” [12]. In the evolved IoT,
as shown in Fig. 1 (b), multiple local IoTs analyze data and
gain insights at the edge close to the sensor devices. In addi-
tion, the hierarchical structure connects data from the edge
to the cloud through the core network.

By employing millimeter-wave band for the access net-
work, it is possible to aggregate huge amount of sensor data
at the edge and realize advanced processing with low la-
tency. Furthermore, since the amount of data flowing in the
core network can be filtered at the edge, the load on the core
network can also be reduced.

Wireless transmission using millimeter-wave is weak
against non-line-of-sight (NLOS). Nevertheless, high-speed
transmission is still possible if the line-of-sight (LOS) en-
vironment can be secured, allowing it to achieve real-time
capability. In the following sections, millimeter-wave wire-
less local area network (WLAN) as access network, and
millimeter-wave radar as sensor devices will be described.

3. 60 GHz-band WLAN for Network Access

In the 60 GHz band, research and development has been ac-
tively conducted for short-range wireless access, and the re-
sulting IEEE 802.11ad/WiGig standard holds the status of
“de facto”. IEEE 802.11ad, also known as WiGig, was pub-
lished in December 2012, and an interoperability certifica-
tion program based on the standard was launched by Wi-Fi
Alliance in October 2016 [13]. IEEE 802.11ay is currently
being developed as the next generation 60 GHz technology
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Fig.2  Analog beamforming architecture

which extends the IEEE 802.11ad standard in order to real-
ize high speed of above 20 Gbps, high density support, and
other features which are required in 5G [14].

3.1 Analog Beamforming for Phased Array Antenna

The authors have already developed a compact, low power
consumption CMOS chipset targeted at mobile terminals
such as smartphones [15]. The fabricated CMOS chipset
employed various technologies, such as 1) Direct conversion
architecture, 2) Frequency domain equalizer that compen-
sates circuit frequency deviation and multipath fading, 3)
Reduction of Fast Fourier Transform (FFT) size. Although
it showed excellent performance as a chip set for mobile ter-
minal from the viewpoint of low power consumption, per-
formance as an access point (AP) was insufficient in view
of the coverage area. Practical applications of 60 GHz-band
millimeter-wave originally focused on point-to-point (P-P)
link communication due to the narrow coverage of direc-
tional antennas. For IoT applications, in order to communi-
cate with multiple sensors, it is necessary to realize point-to-
multi-point (P-MP) connection. Therefore, integration of a
beamforming circuit for electronically controlling the direc-
tivity of millimeter-waves has been realized. For beamform-
ing, analog beamforming, which essentially uses a phased
array antenna approach, was adopted. In addition, as a real-
ization method of the phase shifter in the phased array an-
tenna, a vector synthesis in the RF path[9] was adopted.
The reason for selecting the RF path is that the power con-
sumption can be minimized. Figure 2 shows the architecture
and Fig. 3 shows the chip micrograph. Figure 4 shows the
measured phase shifter characteristics. As shown in Fig. 2,
in order to realize beamforming, a phase shifter (PS) is in-
serted in the receiver after the low nose amplifier (LNA) and
in the transmitter before the power amplifier (PA). It adopts
a vector phase shift synthesis circuit in the 60 GHz band.
The chip size is 3.2 mm X 5.1 mm and is implemented
with 40nm CMOS. The antenna module size is 11 mm X
12 mm. 4-elements patch antennas in both transmission and
reception realize a phased array antenna. Figure 4 shows the
results of evaluating the characteristics of the vector phase
shifter, which has 6 bits resolution both in I and Q channels.
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64 x 64 ways of amplitude and phase control were made
possible as shown in the left figure of Fig.4. Result of se-
lecting a point which becomes a unit circle is shown in the
right figure of Fig. 4.

PS with an angular resolution of 5° was made possible.
Since 360° can be divided into 128 points, ideally a resolu-
tion of less than 2.8° can be realized. However, degradation
due to circuit imperfection resulted in resolution of about
5°. By designing the 3-dB beamwidth of the patch antenna
to 120°, a coverage area of 120° can be realized using a sin-
gle phased array.

3.2 'W-LAN System with 3-Sector Antennas

By having a WiGig module covering 120° and defining that
as one sector, a 360° area coverage can be realized using
three such sectors. Figure 5 shows a block diagram of a
WiGig AP that is based on multiple WiGig modules. A fab-

811

Fig.6  Fabricated IEEE 802.11ad/WiGig AP
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ricated WiGig AP is shown in Fig. 6. A high-speed content
delivering system using the WiGig AP has been developed
as shown in Fig. 7[16]. It consists of multiple WiGig APs,
an AP controller (APC) and a legacy 2.4 or 5GHz WLAN
AP. All devices are centralized by a network switch and
contents server. The APC manages frequency resources of
WiGig APs, such as frequency channels and sector ID, to
enable seamless handover. The 2.4 or 5 GHz AP can sup-
port the WiGig APs’ coverage. It enables heterogeneous
network (HetNet) to support mobility. In order to enable
downloading of large size contents instantly from a cloud,
contents server plays a significant role to shorten the system
latency. It can be considered as an “edge” cloud. The above-
mentioned system showed that the 60 GHz millimeter-wave
band is sufficient to provide radio access networks with
multi-gigabits capability.

4. 79 GHz Radars for Mobility Sensors

Millimeter-wave can also be applied as high-resolution
radars because of their broadband frequency resources. Due
to the nature of radio waves, they are excellent for object de-
tection even in environments that are difficult to detect with
visible light cameras, such as darkness, fog and dust. IoT
applications based on such radars are expected in the mobil-
ity field such as for automobiles.
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4.1 79 GHz Radar System Integration in CMOS

Collision avoidance radar in the 76 GHz band has already
been put to practical use for automotive applications. Prac-
tical applications of the 79 GHz band for a higher-resolution
radar capable of utilizing broad frequency band, is under de-
velopment. In the conventional millimeter-wave radar, the
viewing area is narrow due to the narrow range of the direc-
tional antenna. To address this, the use of the phased array
antenna introduced in Sect. 3 can be applied here as an ef-
fective mean to realize a wide viewing angle.

In order to realize a CMOS front-end for 79 GHz-band
radar, an optimum phase shift circuit was researched [17].
In Sect. 3, a phase shifter is inserted in the RF path, but for
radar, it is necessary to suppress the side lobe of the antenna.
This is because unwanted signals from the side lobe direc-
tion can cause detection errors. In order to suppress the side
lobe, a phase shifter was inserted into the baseband instead
of the RF because accuracy in angular resolution is neces-
sary.

Figure 8 shows a block diagram, and Fig.9 shows a
photo of the module with a CMOS chip mounted. The base-
band phase shifter (BB-PS) is inserted after dividing the
baseband radar pulse signal into 8 branches. Each signal
is up-converted to the 79 GHz band by a mixer and then
fed to each antenna. A power detector at power amplifier
(PA) output for correcting the amplitude error between the 8
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Fig.10  Measured baseband phase shifter (BB-PS) characteristics

Fig.11  Usage scenario of 79 GHz-band infrastructure Radar

branches is inserted in each branch. The fabricated module
with 8 branch transmitters (TX) and 4 branch receivers (RX)
is 40 mm X 60 mm.

Figure 10 shows the measured BB-PS characteristics.
The BB-PS has resolution of 6 bits for each of the I and Q
channels. As shown in Fig. 10 (a), it can be set to 64 X 64
points of phase and amplitude. Figure 10 (b) is the result of
setting the bit condition to become a circle with amplitude
1.

The BB-PS achieved a performance of less than 2° an-
gle resolution, which is 2.5 times higher than a 60 GHz-band
phased array with an RF PS.

4.2 Infrastructure Radar System for Pedestrian Safety

The 79 GHz-band radar with high resolution and wide view-
ing angle is expected to be utilized as infrastructure radar for
preventing pedestrian accidents at intersections with poor
visibility [18]. Figure 11 shows the usage scenario at the in-
tersection. There are still many cases where pedestrians are
injured in traffic accidents at intersections with poor visibil-
ity. Since the developed 79 GHz radar, shown in Sect. 4.1,
has a higher angular resolution, it can detect a pedestrian
and a vehicle as separate objects even in an environment,
such as at an intersection, where they both coexist. As it is
possible to separate and detect pedestrians at intersections,
the “Infrastructure Radar System” aims to prevent accidents
by notifying this data to the driver.

Figure 12 shows a photograph of a radar prototype in-
stalled close to the traffic signal. Figure 13 shows a cross
section of the installation conditions. It was designed such
that the radar device is tilted downward by 8° from the
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Table1  Measured detected range for various types of vehicles
Category Detected Range [m] Sample Number
Track 13.7-87.1m Overall Frames:
Wagon 12.8-83.9m 1005 (100.5sec)
Minivan 123 -753m Undetected Frame:1
Sedan 14.9-754m (0.1sec)
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height of installation at 4 m and to detect vehicles in the
range of 15 to 75 m. Pedestrians can be detected in the range
of 20 to 40 m.

Table 1 shows the results of evaluation on the test
course. Among the four models used in the experiment,
since the sedan car has the lowest reflectance, the detectable
distance is the narrowest. Nevertheless, the target distance
of 15 to 75m could still be achieved. Next, as shown in
Fig. 13, the detection rate of pedestrians on the crosswalk di-
agonally opposite to the radar was evaluated. For the pedes-
trian on the pedestrian crossing, the detection rate was high,
between 99.8 to 99.9%.

4.3 3D-MIMO Radar System [19]

The infrastructure radar shown in Sect.4.2 has resolution
in the distance direction and angle resolution in the hori-
zontal direction, thus, can be termed as a radar with two
dimensional (2D) scanning. If the angle resolution in the
vertical direction is added, information on the height of the
target can be obtained, thereby enabling more accurate de-
tections. In order to obtain angular resolution in the vertical

000 O Virtual Array
(b)

Fig.15  Virtual antenna array, of (a) conventional and (b) proposed un-
equal spacing array

[ONONG)

direction, it is necessary to arrange a plurality of antennas
in the vertical direction in addition to the horizontal direc-
tion. This means that a very large antenna array is required.
For this reason, techniques for virtually increasing the num-
ber of antennas, without increasing the number of physical
antennas, by MIMO signal processing have been studied.
Figure 15 (a) shows a virtual array antenna using conven-
tional MIMO radar. Virtually 4 X 4, equal to 16 arrays, can
be realized by 4 transmit and 4 receive arrays. As shown in
Fig. 15 (b), by allocating antenna elements at unequal inter-
vals, it is possible to enlarge the virtual array by interpola-
tion techniques. Virtually, the realized performance is close
to a 36 elements array of 6 X 6.

Figure 16 shows the block diagram of the MIMO radar,
and Fig. 17 shows the fabricated MIMO radar module and
prototype. The fabricated MIMO radar consists of the TX 4
branches (Nt = 4) and the RX 4 branches (Nr = 4). In order
to perform MIMO processing in time division, switch (SW)
is inserted for both TX and RX, and each TX branch and
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each coherent integration in the reception (RX) are selected
at each timing.

Using this MIMO radar, separation performance in the
horizontal direction and vertical direction was realized. Fig-
ure 18 (a) shows the evaluation result for the case that two
standard corner reflectors (CRs) are placed in the vertical
direction, and Fig. 18 (b) shows a similar case for the hori-
zontal direction. “Setup” shows initial setting. Figure 18 (a)
right figure shows measured results at —10° offset in the az-
imuth, and +5° and —5° offset in the elevation, respectively.
Similarly, Fig. 18 (b) shows the measured results at 0° off-
set in the elevation, and 15° and —5° offset in the azimuth,
respectively.

It was confirmed that each of two objects can be sep-
arated and detected. However, an error of 2 to 3° occurs
in both the azimuth and the elevation direction, which is a
future research topic.

5. V2X Applications Using mmW in Future IoT

In order to realize ADAS and autonomous driving, it is nec-
essary to utilize various data. Moreover, if autonomous
driving is realized, the in-vehicle comfort level must be en-
hanced. In the future, the data collected by in-vehicle de-
vices is expected to become huge. The data collected by a
roadside unit (RSU) also becomes more advanced, and so
the high speed performance provided by the 60 GHz band,
as described in Sect. 3, is very attractive.

In Fig.19, we propose example applications for
60 GHz-band wireless access in the ITS field. Figure 19 (a)
is an example illustrating content download from a RSU.
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Fig.19  V2X Applications by mmW as future ITS; (a) instant 3D-map
delivery, (b) driving recorder data uploading and (c) multi-hop video data
sharing in platooning

It is effective for delivery of 3D-maps necessary for au-
tonomous driving. Figure 19 (b) is an example illustrating
contents uploading from an in-vehicle device. It is conceiv-
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able to collect accumulated data from driving recorder and
use it for operation management. Figure 19 (c) shows an ex-
ample of sharing data between vehicles during platooning.
Because of the narrow beam nature of millimeter-waves, it
is possible to communicate while suppressing interference
from surroundings.

Figure 20 shows a basic cell design example based on
a IEEE 802.11ad/WiGig AP. When the AP with a coverage
beam angle of 120 degrees is installed at a height of 4 m, the
area diameter becomes 13.8 m. Assuming that the antenna
beam angle is 20 degrees, the area diameter covered by one
antenna beam is 1.4m. Assuming a travelling velocity of
100 km/h, it takes 49 ms to move 1.4m. In other words,
by scheduling the beamforming at least once every 49 ms, a
vehicle moving at 100 km/h can be tracked continuously.

According to the IEEE 802.11ad/WiGig standard, it
is possible to control the beam in every beacon interval.
The standard does not define the beacon interval time, al-
though it is typically implemented to about 100 ms. In other
words, by designing the implementation of the beacon inter-
val, it can be said that even with the IEEE 802.11ad/WiGig
standard, it is possible to upload and download mass data
content in the context of high-speed mobility. In order to
cope with high-speed mobility exceeding 100 km/h, it may
be necessary to consider further design for existing pro-
tocol. Furthermore, HetNet, which integrates millimeter-
waves and microwaves, can be employed to realize excellent
V2X that achieves both high speed and high reliability.

6. Conclusion

We have discussed the role of millimeter-waves in the fu-
ture evolving IoT society. In IoT, edge processing which
performs data processing near the sensor becomes impor-
tant in applications requiring high speed and low latency
such as ITS. Millimeter-waves will play a major role as a
transmission path connecting sensors and edge processing.
In addition, as the edge processing environment becomes vi-
able, sensors are becoming more sophisticated, and the roles
of millimeter-waves as high resolution sensors will also
become more prominent. In employing these millimeter-
waves, multi-antenna technologies such as phased arrays,
utilization of sector antennas, MIMO signal processing and
the like are very important. In 5G, it is also important to
utilize microwave technology to compensate for the nature
of millimeter-waves, such as to enhance the coverage area
of WLAN AP, and to support high-speed mobility for V2X
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applications. In addition, the technology of HetNet will be-
come increasingly important in the future IoT era.
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