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Kirchhoff Approximation Analysis of Plane Wave Scattering by
Conducting Thick Slits

Khanh Nam NGUYEN†a), Student Member and Hiroshi SHIRAI†b), Fellow

SUMMARY Kirchhoff approximation (KA) method has been applied
for ray-mode conversion to analyze the plane wave scattering by conduct-
ing thick slits. The scattering fields can be considered as field radiations
from equivalent magnetic current sources assumed by closing the aperture
of the slit. The obtained results are compared with those of other methods
to validate the accuracy of the proposed formulation in different conditions
of slit dimension.
key words: kirchhoff approximation, plane wave scattering, conducting
thick slit

1. Introduction

Developing accurate propagation prediction models for
outdoor-indoor communication environments has been paid
attention in parallel with the increase of wireless applica-
tions. Such models should be analyzed on a practical con-
dition that a particular propagation path may be through a
building window, since the concrete walls block the inter-
communication by weakening the signal, especially as the
frequency increases. Consequently, the study of the elec-
tromagnetic wave scattering by a window aperture on the
building wall becomes an important practical situation. The
plane wave diffraction by a thick slit perforated on a con-
ducting screen can be a canonical problem for this research.

Many authors have approached this aperture scattering
problem by applying various calculation methods. Morse
and Rubinstein utilize an eigenfunction expansion solution
in terms of Mathieu functions [1], while Nomura and Kat-
sura use Kobayashi Potential (KP) method with Weber-
Schafheitlin discontinuous integrals [2] to analyze the scat-
tering characteristic by a slit on an infinitely thin screen.
KP method is also believed to be effective when solving
the thick conducting slits [3], [4] and hole [5]. These cases
are more complicated than the thin cases. Wiener-Hopf
and generalized matrix technique [6], and Fourier transform
technique [7], [8] may also be applied for the thick cases.
Nevertheless, the above results have mainly considered rel-
atively narrow slit apertures.

According to the practical situation of radio wave prop-
agation between the inside and outside of the building
through windows, the scattering analysis should be focused
on the window whose dimension is comparably large with
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respect to the wavelength. That leads to the study of wide
slit rather than narrow one. The high frequency asymp-
totic methods, such as Geometry Theory of Diffraction
(GTD) [9]–[12] and the Kirchhoff approximation (KA) [13],
seem to be more effective, in the large aperture circum-
stance, than eigenfunction expansion methods [2]–[5].

In the previous investigation by GTD [10]–[12], the
formulation can be done by using edge diffracted waves
excited at the aperture edges with the aid of the ray-mode
conversion technique. It has been found that the GTD
method exhibits pretty accurate results even for small aper-
ture cases, when one includes the multiple edge diffraction
effects. However, the GTD formulation meets a difficulty in
derivation of suitable coefficients for the corner or dielectric
wedge diffraction cases. Accordingly, it is not clear yet to
extend the GTD analysis for the three dimensional cases like
a diffraction by a square window aperture. This deficiency
of GTD gives us a good motivation for an application of the
KA which can be easily extended to practical three dimen-
sional cases. It has already been known that the KA method
is effective for high frequency scattering analysis, but the
accuracy of the KA formulation is, in general, inferior to
the one by GTD [14], [15]. Therefore, we shall study on the
accuracy of KA formulation here by applying to the plane
wave scattering from a two dimensional conducting thick
slit to which other reference solutions are available, before
applying to the practical three dimensional problems.

In the following Sect. 2, we first use the KA method
to formulate the scattering field. The equivalent magnetic
currents on the virtually closed apertures are used to derive
the scattering far field at the upper and lower regions of the
screen. Scattering feature is also considered when the slit
becomes infinitely thin for which a simpler solution is pos-
sible. Numerical calculations and discussion are carried out,
and the accuracy of presented method is evaluated by com-
parison with the reference solutions in Sect. 3. Some con-
cluding remarks are made in Sect. 4.

The time-harmonic factor e−iωt is assumed and sup-
pressed throughout the text.

2. Formulation

As illustrated in Fig. 1, a plane wave with a unit amplitude:

ϕi
y = e−ik(x cos θ0+z sin θ0) (1)

impinges upon a slit perforated on an infinitely long per-
fectly conducting thick screen with incident angle θ0. The
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Fig. 1 Geometry of the problem.

width and thickness of the slit are a and b, respectively, and
k is the free space wavenumber. ϕi

y represents for Ei
y(H

i
y)

for E(H) polarization. In order to determine the scatter-
ing contributions ϕs

y, the KA method is utilized here. Con-
sequently, the scattering fields are obtained as radiations
from the equivalent magnetic current sources on the virtu-
ally closed apertures. By doing so, there exists a reflected
field ϕr due to the reflection from the screen’s surface at
z = 0 in the upper half-space (z > 0) as

ϕr
y =

(
Er
y

Hr
y

)
= ∓e−ik(x cos θ0−z sin θ0), (2)

for E and H polarizations. This contribution will be omitted
in the following analysis.

2.1 E Polarization

2.1.1 Scattering in the Upper Region (z > 0)

The equivalent magnetic current sources M±1 on the closed
upper aperture as in Fig. 2 may be obtained from the incident
electric field as

M±1 (x, z = 0±) = Ei
yŷ

∣∣∣
z=0
× (± ẑ)

= ±e−ikx cos θ0 x̂,
(
|x| < a

2

)
, (3)

where ‘ ˆ ’ denotes the corresponding unit vector. Then the
scattering E s

1y field from the upper aperture can be expressed
in terms of the equivalent magnetic current M+1 on the upper
side of the upper aperture as [15]

E s
1y =

∫ a/2

−a/2
M+1x(x′)

∂

∂z′
G(x, z; x′, z′ = 0+)dx′, (4)

where G is the two dimensional half space Green’s function
considering the imaging effect of the magnetic current on
the boundary

G(x, z; x′, z′) =
i
2

H(1)
0 (k

√
(x − x′)2 + (z − z′)2)

=
i

2π

∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2 |z−z′ |√
k2 − η2

dη. (5)

Here, H(1)
0 (χ) is the zero-th order Hankel function of the first

Fig. 2 Scattering fields at each region may be considered as radiations
from the equivalent sources at the apertures.

kind. Substituting Eq. (5) into Eq. (4) and evaluating the in-
tegral with respect to x′ variable first. Then one gets

E s
1y =

i
2π

∫ ∞

−∞
ei
√

k2−η2z

·e
−ik(a/2) cos θ0+iη(x−a/2) − eik(a/2) cos θ0+iη(x+a/2)

(k cos θ0 + η)
dη. (6)

Since the above integral can not be evaluated in a closed
form, the saddle point method may be applied to evaluate
the integral for a large k. One can derive the scattering far
field in the upper half space (z > 0) as (see Appendix A)

E s
1y =

−4i sin θ sin
[

ka
2 (cos θ0 + cos θ)

]
cos θ0 + cos θ

C(kρ), (7)

C(kρ) =

√
1

8πkρ
eikρ+iπ/4. (8)

2.1.2 Modal Excitation Inside the Slit

A part of the incident plane wave penetrates through the slit
aperture and this field eventually leads to the scattering field
in the lower half space. In the previous study by GTD [10]–
[12], the field in the slit has been considered to be excited by
the aperture edges (x = ±a/2, z = 0), and the exciting wave-
guide modes have been derived from the ray-mode conver-
sion method. In this investigation, however, a different ray-
mode conversion has been introduced. The modal excitation
is given by equivalent magnetic source M−1 on the closed
aperture. The excited field Ew inside a semi-infinitely long
(b→ ∞) parallel plane waveguide may be expressed as

Ewy =
∫ a/2

−a/2
M−1x(x′)

∂

∂z′
Gw(x, z; x′, z′ = 0−)dx′, (9)

where Gw is the Green’s function for a parallel plane wave-
guide considering the imaging effect for the metal closure at
the aperture, namely

Gw(x, z; x′, z′) =
∞∑

m=1

2i
aζm

sin
mπ
a

(
x +

a
2

)
· sin

mπ
a

(
x′ +

a
2

)
eiζm |z−z′ |, (10)

and ζm denotes the wave number in z-direction as
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ζm =

√
k2 −

(mπ
a

)2
. (11)

The field propagating downward inside the slit may be de-
rived as

Ewy =
∞∑

m=1

Fm sin
mπ
a

(
x +

a
2

)
e−iζmz. (12)

Here, Fm is the excitation coefficient of the TEm waveguide
modal field. Fm can be calculated by integrating the equiv-
alent source M−1 over the aperture (|x| ≤ a/2, z = 0−), one
gets

Fm = −
2mπ

[(mπ)2 − (ka cos θ0)2]

·
[
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

]
. (13)

The internal waveguide field Ew propagates down to the
lower aperture (z = −b) and excites there scattering field Es

2
to the lower half space (z < −b), and the modal reflection
(z > −b). These scattering fields are again calculated from
the equivalent magnetic currents M±2 on the closed aperture
at z = −b, as in Fig. 2. The equivalent magnetic current M±2
can be found from

M±2 (x, z = −b±) = Ewy ŷ
∣∣∣
z=−b
× (± ẑ)

= ±
∞∑

m=1

Fm sin
mπ
a

(
x +

a
2

)
eiζmb x̂,

(
|x| < a

2

)
. (14)

For modal reflection, one may use the similar formula in
Eq. (9) with M+2x in Eq. (14). After some calculations, one
finds that the modal coefficients obtained from the equiva-
lent magnetic current M+2x become unit values which can-
cel the reflection coefficients (−1) of the waveguide modes
by closing the lower aperture. Consequently, there is no
reflection at all from the lower aperture by the Kirchhoff
approximation. In our previous formulation by GTD [10]–
[12] where more rigorous ray-mode conversion method us-
ing Poisson summation formula is used, and there are some
modal reflections and coupling even at the lower aperture,
while these effects are weak. However in our present in-
vestigation, a different ray-mode conversion is introduced
through the equivalent currents on the aperture. Accord-
ingly, in this formulation, the scattering field in the upper
half region (z > 0) E s

y is approximately given by Er
y in

Eq. (2) plus E s
1y in Eq. (7), and no further modal re-radiation

fields.

2.1.3 Scattering in the Lower Region (z < −b)

The radiation field Es
2 in the lower half-space can be derived

from the equivalent source M−2 in Eq. (14) like the primary
scattering field Es

1 in Sect. 2.1.1. Es
2 becomes

E s
2y =

∫ a/2

−a/2
M−2x(x′)

∂

∂z′
G(x, z; x′, z′ = −b−)dx′. (15)

Once again, the integral in Eq. (15) can be evaluated using

the saddle point method. One gets the scattering field E s
2y

for θ > π as

E s
2y = 2ka sin θ C(kρ)

∞∑
m=1

Fm
mπ

(mπ)2 − (ka cos θ)2

·
[
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

]
eiζmb. (16)

It may be interesting to derive a special circumstance
of an infinitely thin slit, one can take the limit b → 0 in
Eq. (16). On the other hand, the lower scattering field in this
case Ess

2 can be derived directly from M−1 in Eq. (3) in the
similar way of deriving Es

1. One gets for θ > π

E ss
2y = −E s

1y

=
4i sin θ sin

[
ka
2 (cos θ0 + cos θ)

]
cos θ0 + cos θ

C(kρ). (17)

One observes that E ss
2y is symmetric with respect to the con-

ducting surface (z = 0). The comparison of results from
these two calculations will be shown in Sect. 3.

2.2 H Polarization

Similar derivation can be made for H polarization. We shall
show here the main results only without detail derivation.

2.2.1 Scattering in the Upper Region (z > 0)

The equivalent magnetic current sources M±1 on the closed
upper aperture may be obtained from the incident electric
field as

M±1 (x, z = 0±) = (Ei
x x̂ + Ei

z ẑ)
∣∣∣
z=0
× (± ẑ)

= ±
√
µ0

ε0
sin θ0e−ikx cos θ0 ŷ,

(
|x| < a

2

)
, (18)

where µ0 and ε0 denote the free space permeability and per-
mittivity, respectively. Then scattering field Hs

1y from the
upper aperture can be expressed in terms of the equivalent
magnetic current M+1 on the upper side of the upper aperture
as [15]

Hs
1y = iωε0

∫ a/2

−a/2
M+1y(x′)G(x, z; x′, z′ = 0+)dx′. (19)

Substituting Eq. (5) into Eq. (19) and evaluating the integral
by the saddle point method asymptotically, one can derive
the scattering far field in the upper half space (z > 0) as

Hs
1y =

4i sin θ0 sin
[

ka
2 (cos θ0 + cos θ)

]
cos θ0 + cos θ

C(kρ). (20)

2.2.2 Modal Excitation Inside the Slit

The field Hw inside a semi-infinitely long (b → ∞) parallel
plane waveguide may be derived from the equivalent mag-
netic source M−1 in Eq. (18) on the closed aperture as
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Hwy = iωε0

∫ a/2

−a/2
M−1y(x′)Ḡw(x, z; x′, z′ = 0−)dx′, (21)

where Ḡw is, again, the Green’s function for parallel plane
waveguide considering the imaging effect for the metal clo-
sure at the aperture. For this polarization, the Green’s func-
tion has a different boundary condition at x = ±a/2, and is
given by

Ḡw(x, z; x′, z′) =
∞∑

m=0

iϵm
aζm

cos
mπ
a

(
x +

a
2

)
· cos

mπ
a

(
x′ +

a
2

)
eiζm |z−z′ |, (22)

where ϵm =
{
1, m=0
2, m>0

}
. The field propagating downward inside

the slit may be derived as

Hwy =
∞∑

m=0

F̄m cos
mπ
a

(
x +

a
2

)
e−iζmz. (23)

Here, the excitation coefficient of the TMm waveguide
modal field F̄m becomes

F̄m = −
iϵmk2a sin θ0 cos θ0

ζm[(mπ)2 − (ka cos θ0)2]

·
[
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

]
. (24)

The equivalent magnetic currents M±2 on the closed
aperture at z = −b are found from

M±2 (x, z = −b±) = (Ewx x̂ + Ewz ẑ)
∣∣∣
z=−b
× (± ẑ)

= ∓
∞∑

m=0

F̄m cos
mπ
a

(
x +

a
2

)
eiζmbŷ,

(
|x| < a

2

)
. (25)

Again, equivalent current M+2 yields the radiation field
which cancels the reflected modal field due to the postulated
metal closure at the aperture z = −b. Accordingly, there are
no net reflected modes propagating upward for our approxi-
mation.

2.2.3 Scattering in the Lower Region (z < −b)

The radiation field Hs
2 in the lower half-space can be derived

from the equivalent source M−2 in Eq. (25). One gets the
scattering far field Hs

2 as

Hs
2y = 2ka cos θ C(kρ)

∞∑
m=0

F̄m
−ζma

(mπ)2 − (ka cos θ)2

·
[
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

]
eiζmb. (26)

For an infinitely thin slit, the lower scattering far field Hss
2

can be derived from M−1 in Eq. (18) in the similar way of
deriving Hs

1. One gets

Hss
2y = −Hs

1y

=
−4i sin θ0 sin

[
ka
2 (cos θ0 + cos θ)

]
cos θ0 + cos θ

C(kρ). (27)

3. Numerical Results and Discussion

The formulas derived in the previous section are now used to
obtain some numerical results for the scattering far fields. In
the following calculations, a common factor C(kρ) is omit-
ted, as well as the reflected wave ϕr

y.
Figures 3 and 4 show the scattering far field for E and H

polarizations, respectively. The aperture widths are set to be
ka = 30, 7, the screen thickness is kb = 2, and the incident
angle θ0 = 50◦ is chosen. As can be seen from the figures,
the wider the aperture is, the stronger the scattering fields
become, especially at the main lobe. More diffraction lobes
are constructed due to the interference between the radiation
fields excited at the edges at x = ±a/2. For comparison, the
figures include the results obtained by the GTD [10], [11]
and by the KP method [3]. The GTD is known to be an
effective method for high frequency regime for large aper-
tures, while the KP is the eigenfunction expansion method
which is effective for small apertures. One observes that the
main lobes direct the corresponding reflected and incident
shadow boundary directions near θ = 130◦ and 230◦. While
our results denoted by KA match well with other results at
these main lobe directions, one finds some differences in the
figures at some side lobes near boundaries. This is due to
the fact that KA solution does not satisfy the boundary con-

Fig. 3 Comparison of the far-field patterns in dB (width variation) of
KA, KP and GTD methods. E polarization θ0 = 50◦, kb = 2. (a) ka = 30.
(b) ka = 7.
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Fig. 4 Comparison of the far-field patterns in dB (width variation) of
KA, KP and GTD methods. H polarization θ0 = 50◦, kb = 2. (a) ka = 30.
(b) ka = 7.

dition [15], and the multiple edge diffraction terms cannot
be considered.

When the current KA formulation is compared with
those by GTD [10],[11], main difference maybe found in the
modal re-radiation field. Since the KA approximation yields
no waveguide modal reflections and couplings at the open
end, modal re-radiation occurs only once at the lower aper-
ture. Accordingly, one does not need to solve the matrix
equation for the successive modal re-radiation fields [10].
Then one can expect fast calculation. By comparing the
CPU time for numerical evaluation, the present method is
1.5 times faster than the previous GTD formulation [10].
This is effective for wide aperture cases, since many wave-
guide modes will be excited in the slit, and the coupling
between them become involved to compute.

For transmitted region (θ > π), one sees from the pre-
vious section that the scattering fields are given by a sum-
mation of the modal re-radiation fields as in Eqs. (16) and
(26). The main transmitted lobe is made by the signifi-
cant modes whose propagation angles are in the vicinity
of the incident angle θ0, and these modal excitation coef-
ficients become large [13] for rather thin slit cases. In or-
der to see the effect of the evanescent modal re-radiation,
our KA results are obtained by including first three evanes-
cent modal re-radiations, whereas results denoted as KA0 by
cross symbols are calculated without the evanescent modal

Fig. 5 Comparison of E and H polarizations of far-field patterns in dB.
θ0 = 50◦, ka = 30, kb = 2.

Fig. 6 Comparison of the far-field patterns of KA, KP and GTD methods
in dB. kb = 2 and θ0 = 90◦. E polarization (a) ka = 30. (b) ka = 7.

contribution. One observes a small difference between them
at 250◦ < θ < 360◦ especially for a small aperture case
(ka = 7). Of course, there are no differences in the upper
region (z > 0), since no modal re-radiation appears in our
KA formulation as mentioned before.

Figure 5 shows the scattering pattern difference be-
tween E and H polarizations. The main feature of the scat-
tering pattern is almost the same between E and H polariza-
tions. However, the difference occurs at the boundary direc-
tion at θ = 0◦, 180◦, 360◦ due to the boundary conditions.

The scattering pattern for the normal incidence case
(θ0 = 90◦) are shown in Fig. 6 for E polarization and Fig. 7
for H polarization, respectively. Symmetric pattern with re-
spect to the normal (z) axis is observed for all plots. The
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Fig. 7 Comparison of the far-field patterns of KA and KP methods in
dB. kb = 2 and θ0 = 90◦. H polarization (a) ka = 30. (b) ka = 7.

error of KA formulation at the side-lobe direction is some-
what bigger for E polarization than that for H polarization.

Let us now discuss the thin slit case. In our formula-
tion, the thickness was assumed on the premise and the field
ϕwy inside the slit has been represented by the parallel plane
waveguide modes, as in Eqs. (12) and (23). It is found that
our formulation for the lower region has a limit value for
taking a limit of an infinitely thin case (b→ 0), while the di-
rect formulation for this case is possible by considering the
equivalent current M±1 only. Figure 8 shows the difference
between the limit cases in Eqs. (16) and (26) and the direct
formulation cases in Eqs. (17) and (27). Both results are in-
distinguishable. The scattering patterns in this circumstance
calculated by KA method are compared with those of KP
method. One observes that the scattering patterns become
symmetric with respect to the boundary (x) direction.

Figure 9 shows the case for ka = 50 of different
slit thickness. Again, KA solution predicts well for main
diffraction beam directions. When the aperture becomes
wider, the side lobe levels get lower. Accordingly, one does
not need to worry about the KA accuracy if one estimates
the main feature of the diffraction pattern. Figures 10 and 11
show the normalized scattering pattern changes by the thick-
ness of the slit. All figures are calculated for ka = 50 by our
KA method for both E and H polarizations. Figure 10 shows
the pattern changes from an infinitely thin case to the finite
thin case. In the upper region (z > 0), the patterns do not
change, since the primary scattering fields excited by M+1
contain no information on the slit’s thickness. On the other

Fig. 8 Comparison of the far-field patterns in thin slit case. θ0 = 30◦,
ka = 30, kb→ 0. (a) E polarization. (b) H polarization

Fig. 9 Comparison of the far-field patterns of KA and GTD methods.
θ0 = 30◦, ka = 50. (a) kb = 1 (thin case). (b) kb = 50/

√
3 (thick case).

hand, the symmetric patterns with respect to the boundary
(x) direction for an infinitely thin case (kb = 0) deteriorate
as the thickness becomes a finite value. This effect occurs
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Fig. 10 Change of normalized far-field patterns from thin slits in dB.
θ0 = 30◦, ka = 50. (a) kb = 0. (b) kb = 1.0. (c) kb = 2.5.

even for relatively thin case in Fig. 10(b) for b/a = 0.02,
and this thickness effect seems to be more influential for E
polarization.

Figure 11 shows the pattern changes for pretty thick
cases. Three thickness cases are chosen here to show the
incident beam splitting. Because of the slit’s thickness, inci-
dent plane wave experiences the reflection at the internal slit
wall. Accordingly, the geometrical optic (GO) beam yields
a splitting. A half splitting can be seen in Fig. 11(a) for

Fig. 11 Change of normalized far-field patterns from thick slits in dB.
θ0 = 30◦, ka = 50. (a) kb = 25/

√
3. (b) kb = 50/

√
3. (c) kb = 100/

√
3.

kb = 25/
√

3, and the scattering pattern in the lower region
becomes roughly symmetric with respect to the normal (z)
axis. The total GO beam reflection occurs in Fig. 11(b) for
kb = 50/

√
3, and the GO beam propagation due to the dou-

ble bouncing can be observed Fig. 11(c) for kb = 100/
√

3.
While the incident plane wave in the slit’s aperture is con-
verted into the waveguide modes, the original GO beam
feature of reflection is kept by modal re-radiation field cor-
rectly.
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Fig. 12 Integration contour C and CSDP for I1 in the complex angular w
plane

4. Conclusion

In this study, plane wave scattering by conducting thick slits
has been formulated by KA method. The scattering field can
be obtained by the radiation from the equivalent magnetic
currents on the closed aperture of the slit. For the transmit-
ted field in the lower region (z < 0), the penetrating fields
in the slit region are expressed first by parallel plane wave-
guide modes, then these fields are again converted into the
equivalent currents to excite the modal re-radiation fields.
The comparison with GTD and KP methods shows the va-
lidity of our formulation, especially for the large aperture
cases in both thin and thick cases. Especially the KA for-
mulation can predict well for main diffraction beam direc-
tions by a shorter calculation time than the previous GTD
formulation. Since our KA method can straightforwardly be
extended for the three dimensional cases, one could expect
that more realistic problems such as the scattering by a large
square window can be analyzed efficiently within a minimal
error. These aspects are now under the investigation.
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Appendix A: Derivation of Eq. (7)

Equation (6) may be separated into I1 and I2 as

I1,2 = ±
i

2π

∫ ∞

−∞

e∓ik(a/2) cos θ0+iη(x∓a/2)+i
√

k2−η2z

(k cos θ0 + η)
dη. (A· 1)

Introducing the cylindrical coordinates x ∓ a/2 = ρ± cos θ±,
z = ρ± sin θ± and the transformation η = k sinw, the integral
I1,2 can be written as

I1,2 = ±
i

2π

∫
C

e∓ik(a/2) cos θ0+ikρ± sin(w+θ±)

cos θ0 + sinw
cosw dw, (A· 2)

where the integration contour C is shown in Fig. 12 in the
complex angular w plane. There is a pole singularity wp at
wp = − arcsin(cos θ0) and a saddle point ws at ws = π/2−θ±.
When one deforms the integration contour C to the steepest
descent path CSDP, the integral can be evaluated asymptoti-
cally by [15]

I1,2 = ±
2 sin θ±

cos θ0 + cos θ±
e∓ik(a/2) cos θ0C(kρ±)

±e−ik(x cos θ0−z sin θ0)U(θ± + θ0 − π), (A· 3)

where U(χ) =
{
1, χ>0
0, χ<0

}
is a unit step function. The second

term in Eq. (A· 3) represents the residue contribution due to
the pole wp. If the observation point is far from the origin,
one may approximate as ρ± ∼ ρ ∓ (a/2) cos θ and θ± ∼ θ,
then summing up the first (the saddle point contribution)
terms of I1 and I2 yields Eq. (7). The second (the pole con-
tribution) terms of I1 and I2 cancel each other to yield null
contribution.
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