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Scattering of Electromagnetic Waves by Inhomogeneous Dielectric
Gratings Loaded with Conducting Strips —Matrix Formulation of
Point Matching Method—

Tsuneki YAMASAKI†a), Senior Member

SUMMARY We have proposed a new method for the scattering of elec-
tromagnetic waves by inhomogeneous dielectric gratings loaded with par-
allel perfectly conducting strips using the combination of improved Fourier
series expansion method and point matching method. Numerical results are
given for the transmission and scattering characteristics for TE and TM
cases.
key words: inhomogeneous dielectric, conducting strips, point matching
method

1. Introduction

Recently, the refractive index can be easily controlled by de-
sigining periodic structures such as optoelectronic devices,
photonic bandgap crystals, frequency selective devices, and
other applications by the development of manufacturing
technology of optical devices. Thus, the scattering and guid-
ing problems of the inhomogeneous gratings have been of
considerable interest, and many analytical and numerical
methods which are applicable to the dielectric gratings hav-
ing an arbitrarily periodic structures with combination of di-
electric and/or metallic materials [1]–[5]. However, analy-
sis of the dielectric grating [2]–[5] with metallic materials is
only homogeneous type except [1]. Tamia et al. [1] proposed
the modal transmission-line theory of multilayered grating
structure with inhomogeneous region, in which the metallic
region is not perfectly conducting type. For the inhomoge-
neous region, we have also analyzed the scattering and guid-
ing problems by utilizing an improved Fourier series expan-
sion method [6], and multilayer method [7], [8] and, in the
perfectly conducting strip, we also analyzed the scattering
problems by utilizing Point Matching Method [9], [10].

Although the Point Matching Method has wide range
of applicability for the scattering problems with the per-
fectly conducting strips in inhomogeneous media, the order
of the matrix size for the simultaneous equation depends on
the number of strip layers because of the convergence do-
main of Point Matching Method [9].

In this paper, we proposed a new method for the
scattering of electromagnetic waves by inhomogeneous di-
electric gratings with conducting strips [11]–[14] using the
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combination of improved Fourier series expansion method
and Point Matching Method. The order of the matrix size
for the simultaneous equation depends on the modal trun-
cation number, but it does not depend on number of strip
layers using matrix formulations.

Numerical results are given for the transmitted scat-
tered characteristics for the case of periodically loaded with
parallel perfectly conducting strips for TE and TM cases.
The effects of the inhomogeneous dielectric gratings com-
pared with that of the slanted angle of the perfectly con-
ducting strips on the transmitted power are discussed. Our
approach also can treat periodic configurations having arbi-
trary combinations of dielectric, metallic, and perfectly con-
ducting components [19].

2. Method of Analysis

We consider inhomogeneous dielectric gratings loaded with
parallel perfectly conducting strips shown in Fig. 1. The
grating is uniform in the y-direction and the permittivity
ε(x, y) is an arbitrary periodic function of z.

The permeability μ is assumed to be μ0 in the free
space. The time dependence exp(−iωt) is suppressed
throughout.

2.1 TE Wave

When the TE wave (the electric field has only the y-
component)

E(i)
y = eik0(z sin θ0−x cos θ0), k0 � ω

√
ε0μ0, (1)

is assumed to be incident from x < 0 at the angle θ0, the
electric fields in the regions S1 (x ≤ 0), and S3 (x ≥ D) are
expressed [10] as

S1 (x ≤ 0):

E(1)
y = E(i)

y + eik0z sin θ0

N∑
n=−N

anei(−k(1)
n x+2πnz/p) (2)

S3 (x ≥ D):

E(3)
y = eik0z sin θ0

N∑
n=−N

bnei{k(3)
n (x−D)+2πnz/p} (3)

H( j)
z = {iωμ0}−1∂E( j)

y

/
∂x, ( j = 1, 3),
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Fig. 1 Structure of inhomogeneous dielectric gratings loaded with con-
ducting strips.

Fig. 2 Approximated inhomogeneous layers.

where kn
( j) �

√
k0ε j/ε0 − (2πn/p + k0 sin θ0)2 is the propa-

gation constants in the x direction and k0 is the wave num-
ber, and ε0 is the permittivity in the free space.

The inhomogeneous layer is approximated by a strat-
ified layers of modulated index profile with dΔ shown in
Fig. 2 and taking each layer as the modulated dielectric grat-
ings ε(l)

2 (z). The electromagnetic fields are expanded appro-
priately by a finite Fourier series as follows:

S2 (0 < x < D):

E(2,l)
y =

2N+1∑
ν=1

[
A(l)
ν eih(l)

ν x + B(1)
ν e−ih(l)

ν (x−dΔ)
]
f (l)
ν (z)

H(2, j)
z = {iωμ0}−1∂E(2, j)

y

/
∂x, (4)

f (l)
ν (z) � eik0 sin θ0z

N∑
m=−N

u(ν,l)
m ei 2πmz/p; l = 1 ∼ M,

where A(1∼M)
ν , B(1∼M)

ν . an and bn are unknown coefficients to
be determined from boundary conditions. h(l)

ν and u(ν,l)
n are

the propagation constant and eigenvectors, respectively.
It is satisfy the following eigenvalue equation in regard

to h(l)
ν [6].

Λ(l)U(l) =
{
h(l)
ν

}2
U(l) (5)

where,

U(l) �
[
u(ν,l)

n

]
=

[
u(ν,l)
−N , · · · u(ν,l)

0 , · · · u(ν,l)
N

]T
, T : transpose,

Λ(l) �
[
α(l)

n,m

]
, a(l)

n,m � k2
0ξn,m − (2πn/p + k0 sin θ0)2,

ξ(l)
n,m �

1
p

∫ p

0

{
ε(l)

2 (z)

ε0

}
ei 2π(n−m)z/pdz,

m, n = (−N, · · · , 0, · · · ,N)

In the inhomogeneous regions, we obtain the relation-
ship between, A(1), B(1) in the first layer and, A(M), B(M)

in the end of layer using boundary condition at x = −ldΔ
(l = 1 ∼ M − 1).[

E(2,l)
y = E(2,l+1)

y

]
x=−ldΔ

,
[
H(2,l)

z = H(2,l+1)
z

]
x=−ldΔ

(6)

In general, the matrixes Λ of in Eq. (5) are not Hermitian
and the orthogonality relations for {u(ν,l)} are not expected.

Therefore substitution of Eq. (4) into Eq. (6) yields, us-
ing the orthogonality properties of {ei 2πnz/p}, the following
matrix equations [8]:

(
A(1)

B(1)

)
=

⎛⎜⎜⎜⎜⎜⎝ S(1)
1 S(1)

2

S(1)
3 S(1)

4

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ S(2)

1 S(2)
2

S(2)
3 S(2)

4

⎞⎟⎟⎟⎟⎟⎠ · · ·

· · ·
⎛⎜⎜⎜⎜⎜⎝ S(M)

1 S(M)
2

S(M)
3 S(M)

4

⎞⎟⎟⎟⎟⎟⎠
(

A(M)

B(M)

)
=

(
S1 S2

S3 S4

) (
A(M)

B(M)

)
, (7)

where S(l)
k �

[
(l)s(k)

n,ν

]
, k = 1 ∼ 4, l = 1 ∼ M

(l)s(1)
n,ν � v(l)

n,ν

[
1 + h(l+1)

n+N+1/h
(l)
ν

]
e−ih(l)

ν dΔ/2,

(l)s(2)
n,ν �

(l)s(3)
n,ν · ei{h(l)

n+N+1−h(l)
ν }dΔ ,

(l)s(3)
n,ν � v(l)

n,ν

[
1 − h(l+1)

n+N+1/h
(l)
ν

]
/2,

(l)s(4)
n,ν � v(l)

n,ν

[
1 + h(l+1)

n+N+1/h
(l)
ν

]
eih(l)

n+N+1dΔ/2,

V �
[
v(l)

n,ν

]
=

[
U(l)

]−1[
U(l+1)

]
,

n = (−N, · · · , 0, · · · ,N), ν = 1 ∼ (2N + 1).

Next we obtain the matrix form for the relations be-
tween the metallic region C and the dielectric region C̄
shown in Fig. 2 using Point Matching Method[9] at the
matching points

Zj = ( j − 1)p/[(2N + 1)]; j = 1 ∼ (2N + 1) (8)

The boundary condition for one period (0 ≤ x < p) on
x = 0 and x = D are as follows:

Zj ∈ C1;
[
E(1)

y = 0, E(2,1)
y = 0

]
x=0

(9)

Zj ∈ C1;
[
E(1)

y = E(2,1)
y

]
x=0
,
[
H(1)

z = H(2,1)
z

]
x=0

(10)

Zj ∈ C2;
[
E(2,M)

y = 0, E(3)
y = 0

]
x=D

(11)

Zj ∈ C2;
[
E(2,M)

y = E(3)
y

]
x=D

,
[
H(2,M)

z = H(3)
z

]
x=D

(12)

Substitution of Eqs. (1)∼(4) into Eqs. (9)∼(12) yields
the following equations.

1 +
N∑

n=−N

aneinZ j = 0 (13)
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2N+1∑
ν=1

[
A(1)
ν + B(1)

ν eih(1)
ν dΔ

] N∑
n=−N

u(ν,1)
n einZ j = 0 (14)

for Zj ∈ C1.

1 +
N∑

n=−N

aneinZ j =

2N+1∑
ν=1

[
A(1)
ν + B(1)

ν eih(1)
ν dΔ

] N∑
n=−N

u(ν,1)
n einZ j

(15)

k(1)
0 −

N∑
n=−N

k(1)
n aneinZ j

=

2N+1∑
ν=1

h(M)
ν

[
A(1)
ν − B(1)

ν eih(1)
ν dΔ

] N∑
n=−N

u(ν,1)
n einZ j (16)

for Zj ∈ C1.

N∑
n=−N

bneinZ j = 0 (17)

2N+1∑
ν=1

[
A(M)
ν eih(M)

ν dΔ + B(M)
ν

] N∑
m=−N

(M)u(ν)
m eimZ j = 0 (18)

for Zj ∈ C2.

N∑
n=−N

bneinZ j =

2N+1∑
ν=1

[
A(M)
ν eih(M)

ν dΔ + B(M)
ν

] N∑
m=−N

(M)u(ν)
m eimZ j

(19)
N∑

m=−N

k(3)
n bneinZ j

=

2N+1∑
ν=1

h(M)
ν

[
A(M)
ν eih(M)

ν dΔ − B(M)
ν

] N∑
m=−N

(M)u(ν)
m eimZ j (20)

for Zj ∈ C2.
In the Eq. (15) and Eq. (19) in an electric field satisfied

in all matching points around one period. Therefore using
the orthogonality properties of {ei 2πnz/p} we obtained an in
Eq. (2) and bn in Eq. (3) are obtained as follows:

an =

2N+1∑
ν=1

[
A(1)
ν + B(1)

ν eih(1)
ν dΔ

]
u(ν,1)

n − δ0,n, (21)

bn =

2N+1∑
ν=1

[
A(M)
ν eih(1)

ν dΔ + B(M)
ν

]
u(ν,1)

n (22)

Substitution of Eq. (21) and Eq. (22) into Eq. (15) and
Eq. (19) yields, including metallic region C in Eq. (14) and
Eq. (18), following equations with A(l)

ν and B(l)
ν (l = 1, M).

Zj ∈ C1:
2N+1∑
ν=1

A(1)
ν

⎡⎢⎢⎢⎢⎢⎣
N∑

m=−N

u(1,ν)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦

+

2N+1∑
ν=1

B(1)
ν

⎡⎢⎢⎢⎢⎢⎣eih(1)
ν dΔ

N∑
m=−N

u(ν,l)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦ = 0

Zj ∈ C1:
2N+1∑
ν=1

A(1)
ν

⎡⎢⎢⎢⎢⎢⎣
N∑

m=−N

(k(1)
m + h(1)

ν )u(ν,l)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦

+

2N+1∑
ν=1

B(M)
ν

⎡⎢⎢⎢⎢⎢⎣eih(1)
ν dΔ

N∑
m=−N

(k(1)
m − h(1)

ν )u(ν,l)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦ = 2k(1)
0

(23)

Zj ∈ C2:
2N+1∑
ν=1

A(M)
ν

⎡⎢⎢⎢⎢⎢⎣eih(M)
ν dΔ

N∑
m=−N

u(ν,M)
m eimzZ j

⎤⎥⎥⎥⎥⎥⎦

+

2N+1∑
ν=1

B(1)
ν

⎡⎢⎢⎢⎢⎢⎣
N∑

m=−N

u(ν,M)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦ = 0

Zj ∈ C2:
2N+1∑
ν=1

A(M)
ν

⎡⎢⎢⎢⎢⎢⎣eih(M)
ν dΔ

N∑
m=−N

(k(3)
m − h(M)

ν )u(ν,M)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦

+

2N+1∑
ν=1

B(M)
ν

⎡⎢⎢⎢⎢⎢⎣
N∑

m=−N

(k(3)
m + h(M)

ν )u(ν,M)
m eimZ j

⎤⎥⎥⎥⎥⎥⎦ = 0 (24)

To combine with the matrix by the boundary region C
and C̄, we defined following matrixes:

XC �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
e−iNZ j · · · ein(=0)Z j · · · eiNZ j

...
...

...
...

...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Zj ∈ Ck

}
Zj ∈ Ck,

(25)

XC �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
0 0 0
...

...
...

...
...

e−iNZ j ei0Z j eiNZ j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Zj ∈ Ck

}
Zj ∈ Ck,

(26)

By using new matrix relationship between Eq. (25) and
Eq. (26), we get following equation in the boundary condi-
tion at Eq. (14), Eq. (16), Eq. (18) and Eq. (20) in regard to
Aν

(1), Bν(1), Aν
(M), and Bν(M).

Q1A(1) +Q2B(1) = F, (27)

Q3A(M) +Q4B(M) = 0, (28)

where F �
[
0 (Zk ∈ C1), 2k(1)

0 (Zk ∈ C1)
]T

,

A(k) �
[
A(k)

1 , A(k)
2 , · · · , A(k)

2N+1

]T
, k = 1, M,

B(k) �
[
B(k)

1 , B(k)
2 , · · · , B(k)

2N+1

]T
, k = 1, M,

Q1 � XCU(1) +K(1)XCU(1) + XCU(l)H(1),

Q2 �
(
XCU(1) +K(1)XCU(1) − XCU(l)H(1))D,

Q3 � XCU(M)H(M) +K(3)XCU(M) − XCU(M)H(M)),

Q4 � −XCU(M)H(M)D +K(3)XCU(M) + XCU(M)H(M),

K(l) �
[
k(l)

n · δn,m

]
, H(l) �

[
h(l)
γ · δγ,ν

]
, D(l) �

[
eih(l)

γ dΔ • δγ,ν
]

l = 1, M, γ = 1 ∼ (2N + 1), n = −N ∼ N.

By using matrix relationship Eq. (7),
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(
A(1)

B(1)

)
=

(
S1 S2

S3 S4

) (
A(M)

B(M)

)
(7)

we get the following homogeneous matrix equation in re-
gard to A(M)

ν (ν = 1 ∼ 2N + 1).

W • A(M) = F, (29)

where W � Q1S1 +Q2S3 − (Q1S2 +Q2S4).Q−1
4 Q3.

An advantage of our method, the order of the matrix
size for the simultaneous equation depends on the modal
truncation number, but it does not depend on number of strip
layers using matrix formulations.

The mode power transmission coefficients ρ(T E)
t and re-

flection coefficients ρ(T E)
r are given by

ρ(T E)
t �

N∑
n=−N

Re
[
k(3)

n

]
|bn|2/k(1)

0 , (30)

ρ(T E)
r �

N∑
n=−N

Re
[
k(1)

n

]
|an|2/k(1)

0 . (31)

The energy error ε(T E)
e for TE case is

ε(T E)
e � 1 − (

ρ(T E)
t + ρ(T E)

r
)
. (32)

2.2 TM Wave

When the TM wave (the magnetic field has only the y-
component)

H(i)
y = eik0(z sin θ0−x cos θ0), k0 � ω

√
ε10μ0, (33)

is assumed to be incident from x < 0 at the angle θ0, the
electric fields in the regions S1 (x ≤ 0), and S3 (x ≥ D) are
expressed [10] as

S1 (x ≤ 0):

H(1)
y = H(i)

y + eik0z sin θ0

N∑
n=−N

anei(−k(1)
n x+2πnz/p) (34)

S3 (x ≥ D):

H(3)
y = eik0z sin θ0

N∑
n=−N

bnei{k(3)
n (x−D)+2πnz/p} (35)

E( j)
z = {iωε j}−1∂H( j)

y

/
∂x, ( j = 1, 3),

where kn
( j) �

√
k0ε j/ε0 − (2πn/p + k0 sin θ0)2.

The electromagnetic fields are expanded appropriately
by a finite Fourier series as follows:

S2 (0 < x < D):

H(2,l)
y =

2N+1∑
ν=1

[
A(l)
ν eih(l)

ν x + B(1)
ν e−ih(l)

ν (x−dΔ)
]
f (l)
ν (z)

E(2, j)
z = −{iωε(l)

2 (z)}−1∂H(2, j)
y

/
∂x, (l = 1 ∼ M) (36)

f (l)
ν (z) � eik0 sin θ0z

N∑
m=−N

u(ν,l)
m ei 2πmz/p, l = 1 ∼ M

where A(1∼M)
ν , B(1∼M)

ν . an and bn are unknown coefficients to
be determined from boundary conditions. h(l)

ν and u(ν,l)
n are

the propagation constant and eigenvectors, respectively.
In the same way for TE case, we have obtained the fol-

lowing eigenvalue equation in regard to h(l)
ν [8].

Λ(l)U(l) =
{
h(l)
ν

}2
U(l) (37)

where,

U(l) �
[
u(ν,l)

n

]
=

[
u(ν,l)
−N , · · · u(ν,l)

0 , · · · u(ν,l)
N

]T
,T : transpose

Λ(l) �
[
α(l)

n,m

]−1[
β(l)

n,m

]
, gn � (2πn/p + k0 sin θ0)

α(l)
n,m �

1
p

∫ p

0

{
ε(l)

2 (z)

ε0

}
ei 2π(n−m)z/pdz,

m, n = (−N, · · · , 0, · · · ,N),

β(l)
n,m � k2

0ξ
(l)
n,m − gn[gn + 2π(n − m)/p]α(l)

n,m (38)

ξ(l)
n,m �

1
p

∫ p

0

{
ε(l)

2 (z)

ε0

}
ei 2π(n−m)z/pdz,

m, n = (−N, · · · , 0, · · · ,N),

For the TM case, if ε(l)
2 (z) contains discontinuity, such

as the step function, matrix elements α(l)
n,m[2π(n − m)/p] do

not converge. Therefore this method cannot be directly ap-
plied to the step distribution.

To solve this difficulty, the function containing the dis-
continuity is approximated by finite Fourier series of Nf

terms as follows:

ε(l)
2 (z) �

N f∑
n=−N f

τnei 2πnz/p (39)

The Gibb’s phenomenon occurs at the discontinuities
of permittivity, but it does not affect the solution as long as a
sufficiently large number of modes are used for the electro-
magnetic fields [15]. So we have experienced that the rela-
tion N = 1.5Nf is sufficient to get the proper solution when
N and Nf are increased [7].

In the boundary conditions at x = −ldΔ (l = 1 ∼ M−1),
[
H(2,l)

y = H(2,l+1)
y

]
x=−ldΔ

,
[
E(2,l)

z = E(2,l+1)
z

]
x=−ldΔ

, (40)

we can obtain the relationship between A(1), B(1) in the first
layer and, A(M), B(M) in the end of unit layer using the or-
thogonality properties of {ei 2πnz/p}, and for the electric com-
ponents of Eq. (40) by multiplying by ε(l)

2 (z){e−i 2πmz/p}/ε0

and integrating with respect to over the interval 0 ≤ z < p.
(

A(1)

B(1)

)
=

⎛⎜⎜⎜⎜⎜⎝ S(1)
1 S(1)

2

S(1)
3 S(1)

4

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ S(2)

1 S(2)
2

S(2)
3 S(2)

4

⎞⎟⎟⎟⎟⎟⎠ · · ·

· · ·
⎛⎜⎜⎜⎜⎜⎝ S(M)

1 S(M)
2

S(M)
3 S(M)

4

⎞⎟⎟⎟⎟⎟⎠
(

A(M)

B(M)

)
=

(
S1 S2

S3 S4

) (
A(M)

B(M)

)
, (41)
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where S(l)
k �

[
(l)s(k)

n,ν

]
, k = 1 ∼ 4, l = 1 ∼ M

(l)s(1)
n,ν �

[
v(l)

n,ν + η
(l)
ν,nh(l+1)

n+N+1/h
(l)
ν

]
e−ih(l)

ν dΔ/2,

(l)s(2)
n,ν �

(l)s(3)
n,ν · ei{h(l)

n+N+1−h(l)
ν }dΔ ,

(l)s(3)
n,ν �

[
v(l)

n,ν − η(l)
ν,nh(l+1)

n+N+1/h
(l)
ν

]/
2,

(l)s(4)
n,ν �

[
v(l)

n,ν + η
(l)
ν,nh(l+1)

n+N+1/h
(l)
ν

]
eih(l)

n+N+1dΔ/2,

V �
[
v(l)

n,ν

]
=

[
U(l)

]−1[
U(l+1)

]
,

η �
[
η(l)
ν,n

]
=

[
Ψ(l)

]−1[
Φ(l+1)

]
=

[
ψ(l)
ν,n

]−1[
φ(l)
ν,n

]
,

ψ(l)
ν,n �

N∑
m=−N

u(l)
ν,mα

(l+1)
m,n , φ(l)

ν,n �
N∑

m=−N

u(l+1)
ν,m α(l)

m,n,

n = (−N, · · · , 0, · · · ,N), ν = 1 ∼ (2N + 1).

We also obtain the matrix form combination of metallic
region C and the dielectric region C̄ using boundary condi-
tion Zj = ( j − 1)p/[(2N + 1)]; j = 1 ∼ (2N + 1) at the
matching points on x = 0, and D for TM case.

Boundary condition using Point Matching are as fol-
lows:

Zj ∈ C1;
[
E(1)

z = 0, E(2,1)
z = 0

]
x=0

,

k0
(1) −

N∑
n=−N

kn
(1)aneinZ j = 0, (42)

2N+1∑
ν=1

h(1)
ν

[
A(1)
ν − B(1)

ν eih(1)
ν dΔ

] N∑
n=−N

u(1,ν)
n einZ j = 0, (43)

Zj ∈ C1;
[
H(1)

y = H(2,1)
y

]
x=0

,
[
E(1)

z = E(2,1)
z

]
x=0

1 +
N∑

n=−N

aneinZ j =

2N+1∑
ν=1

[
A(1)
ν +B(2)

ν eih(1)
ν dΔ

] N∑
n=−N

u(1,ν)
n einZ j ,

(44)

1
ε0

⎛⎜⎜⎜⎜⎜⎝k0
(1) −

N∑
n=−N

kn
(1)aneinZ j

⎞⎟⎟⎟⎟⎟⎠ =
1

ε(1)
2 (z)

2N+1∑
ν=1

h(1)
ν

[
A(1)
ν − B(1)

ν eih(1)
ν dΔ

] N∑
n=−N

u(1,ν)
n einZ j , (45)

Zj ∈ C2;
[
E(2,M)

z = 0, E(3)
z = 0

]
x=D

,

N∑
n=−N

kn
(3)bneinz j = 0, (46)

2N+1∑
ν=1

h(M)
ν

[
A(M)
ν eihν (M)dΔ − B(M)

ν

] N∑
n=−N

u(M,ν)
m einZ j = 0 (47)

Zj ∈ C2;
[
H(2,M)

y = H(3)
y

]
x=D

,
[
E(2,M)

z = E(3)
z

]
x=D

N∑
n=−N

bneinZ j =

2N+1∑
ν=1

[
A(M)
ν eihν (M)dΔ + B(M)

ν

] N∑
n=−N

u(M,ν)
n einZ j

(48)

1
ε0

N∑
n=−N

kn
(3)bneinZ j

=
1

ε(M)
2 (z)

2N+1∑
ν=1

h(M)
ν

[
A(M)
ν eihν (M)dΔ − B(M)

ν

] N∑
n=−N

u(M,ν)
n einZ j

(49)

Using the orthogonality properties of {ei 2πnz/p} by a bound-
ary conditional around one period in an electric field of the
Eq. (45) and Eq. (49) by multiplying by ε(l)

2 (z){e−i 2πmz/p}/ε0

are as follows

k(1)
0 α(1)

0,m −
N∑

n=−N

k(1)
n α(1)

n,man =

2N+1∑
ν=1

[
A(1)
ν − B(1)

ν eihν (1)dΔ
]
u(ν,1)

m

(50)
N∑

n=−N

k(3)
n α(M)

n,m bn =

2N+1∑
ν=1

h(M)
ν

[
A(M)
ν eihν (M)dΔ − B(M)

ν

]
u(ν,M)

m

(51)

n, m = −N ∼ N.

In the same way for TE wave, substitution of Eq. (50) and
Eq. (51) into Eq. (44) and Eq. (48) yields, including metallic
region in Eq. (43) and Eq. (47), following equations with.

K(1)α(1)a = K(1)
0 α

(1)
0 −U(1)A(1)+U(1)D(1)B(1), (52)

K(M)α(M)b = U(M)H(M)D(M)A(M)−U(M)H(M)B(M), (53)

where,

a � [an] �
[
a−N , · · · , a0, · · · , aN

]T
, T : transpose

b � [bn] �
[
b−N , · · · , b0, · · · , bN

]T
,

A(k) �
[
A(k)

1 , A(k)
2 , · · · , A(k)

2N+1

]T
, k = 1, M,

B(k) �
[
B(k)

1 , B(k)
2 , · · · , B(k)

2N+1

]T
, k = 1, M,

K(k) �
[
k(k)

n · δn,m

]
, K(1)

0 �
[
k(1)

0 · δ0,,m

]
, H(l) �

[
h(l)
γ · δγ,ν

]
,

α(l) �
[
α(l)

n,m

]
, α(l)

0 �
[
α(l)

0,m · δ0,m

]
, D(l) � h(l)

γ

[
eih(1)

ν dΔ · δγ,ν
]

k = 1, 3, l = 1, M, ν = 1 ∼ (2N+1), n, m = −N∼N.

We get also the following matrix form in regard to a and b.

a =
[
K(1)α(1)

]−1[
K(1)

0 α
(1)
0 − U(1)A(1) + U(1)D(1)B(1))

]

=
[
K(1)α(1)

]−1[
K(1)

0 α
(1)
0

]
−

[
K(1)α(1)

]−1
U(1)A(1)

+
[
K(1)α(1)

]−1
U(1)D(1)B(1))]

= P(1)A(1) + P(2)B(1) + R, (54)

b =
[
K(M)α(M)

]−1[
U(M)H(M)D(M)A(M)−U(M)H(M)B(M)

]
= P(3)A(M) + P(4)B(M), (55)

where P(1) � −
[
K(1)α(1)

]−1
U(1),

P(2) �
[
K(1)α(1)

]−1[
U(1)D(1)

]
,

P(3) �
[
K(3)α(M)

]−1[
U(M)H(M)D(M)

]
,
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P(4) � −
[
K(3)α(M)

]−1
U(M)H(M),

R �
[
K(1)α(1)

]−1[
K(1)

0 α
(1)
0

]
By using new matrix relationship between Eq. (54) and

Eq. (55) using the same equations XC in Eq. (25) and XC

in Eq. (26) for the TE case, we get following equation in
the boundary condition at Eq. (43), Eq. (44), Eq. (47) and
Eq. (48) in regard to Aν

(1), Bν(1), Aν
(M), and Bν(M).

Q1A(1) +Q2B(1) = F, (56)

Q3A(M) +Q4B(M) = 0, (57)

where, F �
[
0 (Zk ∈ C1), 1 + XCR (Zk ∈ C1)

]T
,

Q1 � XCU(1)H(1) + XC(U(1) − P(1)),

Q2 � −XCU(1)H(1)D(1) + XC(U(1)D(1) − P(2)),

Q3 � XCU(M)H(M)D(M) + XC(U(M)D(M) − P(3)),

Q4 � −XCU(M) + XC(U(M) − P(4)),

H(l) �
[
h(l)
γ · δγ,ν

]
, D(l) �

[
eih(l)

γ dΔ • δγ,ν
]

l = 1, M, γ = 1 ∼ (2N + 1), n = −N ∼ N.

By using matrix relationship between Eq. (56), and
Eq. (57), we get the following homogeneous matrix equa-
tion in regard to A(M)

ν (ν = 1 ∼ 2N + 1).

W • A(M) = F, (58)

where W � Q1S1 +Q2S3 − (Q1S2 +Q2S4).Q−1
4 Q3.

For the TM wave, an advantage of our method, the or-
der of the matrix size for the simultaneous equation depends
on the modal truncation number, but it does not depend on
number of strip layers using matrix formulations.

The mode power transmission coefficients ρ(T E)
t and re-

flection coefficients ρ(T E)
r are given by

ρ(T M)
t �

N∑
n=−N

Re
[
k(3)

n

]
|bn|2/k(1)

0 , (59)

ρ(T M)
r �

N∑
n=−N

Re
[
k(1)

n

]
|an|2/k(1)

0 . (60)

The energy error ε(T M)
e for TM case is

ε(T M)
e � 1 − (

ρ(T M)
t + ρ(T M)

r
)
. (61)

3. Numerical Analysis

We consider the three cases of strip profiles with inhomoge-
neous dielectric gratings as follows in Fig. 1:

ε2(x, z)/ε0 �
{

1.0 : (0 ≤ φ ≤ α and β)
1.5 : (α and β < φ ≤ π/2)

(62)

ε1 = ε3 = εo, b/p = 0.5 and D/p = 0.3.

The cases of parameters chosen are as follows in Fig. 3:

Fig. 3 Three cases of strip gratings.

Fig. 4 Convergence of ρt vs. 1/M [(a) TE Wave and (b) TM Wave].

Case circle 1©:

a = b and α = β = 0 (δ/p = 0),

Case circle 2©:

a = b and β = −α (δ/p � 0),

Case circle 3©:

a < b and α = β (δ/p � 0).
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Fig. 5 Mode power transmission coefficients ρt vs. normalized frequency p/λ.

Fig. 6 Mode power transmission coefficients ρt vs. normalized frequency p/λ.

The accuracy of our method in inhomogeneous al-
ready given by reference [16] compared with the exact so-
lution [17] in the circular cylinder.

Figures 4 (a) and 4 (b) show the convergence of ρt ver-
sus 1/M for the case of circle 2© with the fixed N and Nf:
(a) TE Wave and (b) TM Wave, respectively.

From Fig. 3, for the TE Wave we take N = 15 and
M = 20 and for the TM Wave we take N = 9 (Nf = 6)
and M = 20.

The relative errors (� [extrapolated true value − com-
puted value]/[extrapolated true value] [9] of ρt both TE and
TM Wave is less than 0.1 % for M > 20 in Fig. 4. The
energy errors (ε(T E)

e and ε(T M)
e ) are less than about 10−7 for

TE Wave and 10−3 for TM Wave, respectively. For the case
of circle 3©, the order of relative error and energy error are
about same, but for the case of circle 1©, the energy error
is about 10−7 for both Waves, because of the homogeneous
layer.

Figures 5 shows ρt for various values of normalized fre-
quency λ/p at θ0 = 0◦. Figure 5 (a) is TE wave and Fig. 5 (b)

is TM wave. From Fig. 5 we can see following features:

(1) Characteristic tendencies of coupling resonance cases
of circle 1©, circle 2© and circle 3© are approximately
same for the TE and TM wave at 1.4 < p/λ < 1.5.

(2) For the TE wave, the peak of ρ(TE)
t in p/λ < 1.0 is

suppressed and the resonant peaks of frequency moves
toward smaller in the case of circle 3©.

(3) For the TM wave in p/λ < 1.0 the resonant peaks of
frequency moves toward larger circle 3©.

Figures 6 shows for the various values of normalized fre-
quency with the case of for the same parameters Fig. 5.

We can see following features:
(1) The characteristic tendencies for the effect of equivalent
permittivity are approximately same.
(2) For the TE wave, as the incidence angle θ0 is equal to α =
18.43◦, the p/λ is around 1.4 and resonant peaks appears,
and p/λ is 0.7 < λ/p < 1.4 in case of the trapezoid type
of circle 3©, and it is interesting that ρ(TE)

t becomes nearly
constant.
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Fig. 7 Mode power transmission coefficients ρt vs. normalized frequency p/λ.

(3) For the TM wave, it doesn’t change into resonant peaks
around p/λ = 0.75 and p/λ = 1.4 in case of circle 3©. But it
peaks moves toward smaller p/λ.

Figures 7 shows ρt when only the strip is upper part
(the lower part of strip is removed) for the same parameters
Fig. 5 at θ0 = 0◦. Figure 7 (a) are TE wave and Fig. 7 (b) are
TM wave.

We can see following features:
(4) For the TE wave, characteristic tendency of ρ(T E)

t is sim-
ilar in case of a dielectric strip type and influences of p/λ
around Wood’s anomaly by a frequency response of a TE
wave becomes larger in case of the trapezoid type circle 3©
because a/p is small.
(5) For the TM wave, characteristic tendency of ρ(T M)

t is sim-
ilar in case of a dielectric strip type, but the resonant peaks
ρ(TM)

t of p/λ around 1.0 indicates the double switching ef-
fects [18] (two resonance peaks appear for both low and high
frequency region) in case of the trapezoid type circle 3© as
it also indicates in an enlarged drawing in the Fig. 7 (b) for
0.985 < λ/p < 0.995.

4. Conclusion

In this paper, we have proposed a new method for the
scattering of electromagnetic waves by inhomogeneous di-
electric gratings loaded with perfectly conducting strips us-
ing the combination of improved Fourier series expansion
method and point matching method. An advantage of our
method, the order of the matrix size for the simultaneous
equation depends on the modal truncation number, but it
does not depend on number of strip layers using matrix
formulations.

Numerical results are given for the transmitted
scattered characteristics for the case of frequency loaded
with the parallel perfectly conducting strips for TE and TM
cases. The effects of the inhomogeneous dielectric gratings
compared with that of the slant angle on the transmitted
power are discussed.

This method also can be applied to the inhomogeneous

dielectric gratings having an arbitrarily periodic structures
combination of dielectric and metallic materials [19].
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