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Wavelength Tunable Laser with Silica-Waveguide Ring Resonators
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SUMMARY  We have proposed a tunable laser with silica-waveguide
ring resonators. In this tunable laser, a semiconductor optical amplifier was
passively aligned and mounted onto a silica-waveguide substrate. The ring
resonators can be tuned by controlling their temperatures using the thermo
optic heaters formed on them, and there are no mechanically moving parts.
Thus, they are sufficiently stable and reliable for practical use. Our tunable
laser exhibits a high fiber-output power of more than 15dBm and a wide
tunable range of 60 nm (L-band, 50 GHz spacing, 147 channels). Moreover,
a tunable laser with a much wider tunable range of 96 nm using 100-GHz-
FSR ring resonators is also reported.

key words: tunable laser, photonic integrated circuit, silica-waveguide,
ring resonator

1. Introduction

Wavelength tunable lasers have become key devices in op-
tical network systems, such as wavelength division multi-
plexing (WDM) and reconfigurable optical add/drop multi-
plexing (ROADM) systems, where wavelength plays an im-
portant role. Using tunable lasers instead of conventional
fixed wavelength lasers will significantly reduce the inven-
tory cost for the light source. More over, tunable lasers make
the optical network much more efficient and flexible. Sev-
eral different device types have been proposed as tunable
lasers; monolithic type lasers including a DFB-array type
[1] and DBR type [2], [3], and external cavity lasers [4], [5].
In a monolithic type tunable laser, all fundamental functions
are integrated on one chip. This makes the size of the tun-
able laser very compact, which is an advantage of a mono-
lithic type laser. On the other hand, an external cavity laser
is composed of a gain section and a tunable filter section.
As a gain section, a semiconductor optical amplifier (SOA)
is used in most of the cases. Device structure of an SOA
chip is generally very simple and does not require compli-
cated monolithic integration technology. This simplicity is
an advantage of an external cavity laser.

The tunable laser we propose is also classified as an
external cavity laser, composed of silica-waveguide ring res-
onators as a tunable filter section and a semiconductor opti-
cal amplifier (SOA) as a gain section [6]-[11]. The silica-
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waveguide ring resonators and the SOA were automatically
aligned and directly coupled using passive alignment tech-
nology [9]; thus, no complicated assembly procedures are
required. The ring resonators can be tuned by controlling
their temperatures using the thermo optic heaters formed on
them, and there are no mechanically moving parts. Thus,
they are sufficiently stable and reliable for practical use. Our
fabricated tunable laser has exhibited a highly uniform high
fiber output power of more than 15 dBm and a wide tunable
range of 60 nm covering the full L-band. Also, a tunable
laser with an enlarged tunable range up to 96 nm using 100-
GHz-FSR ring resonators has been demonstrated.

2. Structure, Design, and Fabrication
2.1 Device Structure

The proposed tunable laser structure is schematically shown
in Fig. 1. The tunable laser consists of a silica lightwave cir-
cuit and an SOA. As shown in Fig. 2, the SOA was mounted
on the Si substrate of the silica lightwave circuit. The SOA
and the lightwave circuit were directly butt-coupled using
passive alignment technology, which will be described in
detail in Sect.2.4. The SOA was composed of a 1000-um
long gain section and a 280-um long phase control section
with a 220-um long separation region between them. They
had InP-based buried hetero structure waveguides with dif-
ferent compositional wavelength, and they were butt-jointed
using regrowth technology. The phase control section is
used to optimize the optical phase automatically by so-
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Fig.1  Schematic of tunable laser.
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Fig.2  Detailed structures around SOA.

called dither control system. In the dither control system,
the phase current is modulated at a small amplitude. By
monitoring the tapped optical output power, the DC compo-
nent of the phase current is controlled so that the amplitude
of the optical output power fluctuation caused by the mod-
ulation becomes smallest. Thus, the phase current is opti-
mized to give the maximum optical output power. For this
purpose, phase control section integrated in the SOA chip
is suitable because of its sufficient response speed, while
silica-waveguide based phase control section would be in-
sufficient for 20-kHz modulation in our dither control sys-
tem. The phase current modulation broaden the line width
of the laser output, however, to suppress the stimulated
Brillouin scattering, the adequately broadened line width is
rather desirable. The lightwave circuit consists of three ring
resonators which work as tunable filters by using the thermo
optic heaters formed on the ring resonators. A waveguide
reflector is also employed in the lightwave circuit as an ex-
ternal cavity mirror. Nitride-doped-silica (SiON) was used
as the core material of the waveguides. The core was 2-
um wide and 1.4-um thick, and it was embedded with silica.
The refractive index contrast was 6%, which is large enough
to suppress the excess loss at the bend waveguides of the
lightwave circuit. Spot-size-converters were introduced in
both the SOA and the lightwave circuit at the butt-coupling
interface to enlarge the spot sizes on both sides and, conse-
quently, to enlarge the coupling tolerance. The size of the
tunable laser chip including both the SOA and the lightwave
circuit was 6.5 mm long and 4.5 mm wide.

2.2 Wavelength Tuning Using Triple-Ring Resonators

Figure 3 shows the configuration of the silica lightwave cir-
cuit, and Fig.4 shows the principle of wavelength tuning
using the ring resonators. Three ring resonators, rings 1,
2, and 3, are cascaded in the lightwave circuit. Ring 1 has
a free spectral range (FSR) of 50 GHz, which corresponds
to the ITU-T grid spacing, and works as a wavelength ref-
erence ring. For the precise wavelength adjustment to the
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Fig.4  Principle of wavelength tuning using three ring resonators.

ITU-T grid, the temperature of the ring 1 is controlled by the
thermo optic heater. The FSRs of rings 2 and 3 (FSR 2, and
FSR, respectively) are slightly larger than 50 GHz (50 GHz
< FSR 2 < FSR 3), as shown in Fig.4. The total trans-
mittance of the three rings, also shown in Fig. 4, has a maxi-
mum value at the wavelength of A, where all the three rings
have the maximum peak transmittance. The lasing occurs
at this wavelength A;.. We can select the lasing wavelength
among the ITU-T channels by tuning the peak-transmittance
wavelength of rings 2 and 3, which can be controlled with
the thermo optic heaters. Although the tuning range of
the peak-transmittance wavelength of each ring is not large
enough, approximately 0.4 nm for the 200-mW power in-
put to the thermo optic heater, the Verneir effect magnifies
the tuning range of the lasing wavelength. The tuning range
magnification factor M is determined by the equation M =
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FSR 2/(FSR 2 — FSR 1), which means a smaller (FSR 2 —
FSR 1) value gives a larger M. However, there is a design
trade off, namely, a smaller (FSR 2 — FSR 1) value gives a
smaller transmittance difference (threshold gain difference)
between different channels (Fig. 4), and causes instability in
lasing operations. The reason we have introduced the triple-
ring structure is to relax this design trade off. The triple-
ring structure gives a larger threshold gain difference com-
pared with the double-ring structure which was previously
reported [6], and provides a more stable lasing over a larger
wavelength range.

2.3  Waveguide Reflector

As shown in Fig. 3, the waveguide reflector is a simple struc-
ture composed with a 3-dB directional coupler and a loop
waveguide, which can be fabricated at the same process as
the ring resonators. Thus, the fabrication cost is reduced us-
ing a waveguide reflector instead of a high reflection (HR)
mirror used in previous works. Figure 5 shows calculated
and measured reflectance of the waveguide reflector. A very
flat and high reflectance of more than 95% has been con-
firmed over the L-band, which is in good agreement with
the calculation. Here, the broadening of the measured re-
flectance value is due to Fabry-Perot interference caused by
undesirable reflections inside the measurement system.

2.4 Passive Alignment Technology

As briefly described in Sect. 2.1, the SOA and the lightwave
circuit were directly coupled using passive alignment tech-
nology [12], [13]. As shown in Fig. 2, a SOA-mounting area
was formed on the silicon substrate of the lightwave circuit,
where silica pedestals, alignment marks and electrodes were
formed. The SOA chip was mounted with the junction-side
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Fig.6  Horizontal misalignment between SOA and lightwave circuit.

down. The vertical position of the SOA chip was precisely
adjusted by the thickness of the silica pedestals. The vertical
misalignment was less than 0.2 ym, which was determined
by the controllability of the silica-deposition thickness. Hor-
izontal alignment was performed using the alignment marks,
which were also formed on the SOA chip and can be ob-
served with infrared light. Figure 6 shows a histogram of
the horizontal misalignment between the SOA chip and the
lightwave circuit. The average misalignment was 0.044 ym,
and the standard deviation was 0.21 um. The displacement
of the SOA during the soldering process was successfully
suppressed by optimizing the soldering conditions such as
the thickness of the solder film and soldering temperature
profiles. These values of vertical and horizontal misalign-
ment are sufficiently small compared with coupling toler-
ance between the SOA and the silica waveguide. The 1-dB-
down coupling tolerances (full width) were approximately
2 um and 3 um for vertical and horizontal direction, respec-
tively. The average coupling loss between the SOA and the
lightwave circuit was less than 1 dB.

3. Device Performance

Figure 7 shows the I-L characteristics of the fabricated tun-
able laser. No saturation was observed up to an injection
current of more than 400 mA. A high fiber-coupled-output
power of 15.5 dBm was obtained at a 300-mA injection cur-
rent. The periodical power drops observed in the I-L curve
were due to the optical phase mismatch in the laser cavity.
As mentioned in Sect. 2.1, the optical phase will be always
automatically controlled by the phase control section in the
fully controlled operations, thus, no power drop will occur
in practical use. A histogram of fiber-coupled optical output
power is shown in Fig.8. The average fiber-coupled out-
put power was 15.5dBm, and the standard deviation was
0.76dBm. A high output power with high uniformity was
achieved using passive alignment technology.

Figure 9 shows superimposed spectra of the tunable
laser. The tunable range was 60 nm over the L-band, which
contains 147 ITU-T channels with a channel-spacing of
50GHz. Here, the longitudinal Fabry-Perot mode spacing
was around 3 GHz. Only one longitudinal mode was chosen
for lasing of each channel by adjusting the optical phase.
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The fiber-coupled output power was more than 15dBm at
every channel. A lasing wavelength tuning map is shown in
Fig. 10. A lattice like map suitable for wavelength control
was obtained.

A butterfly module of the tunable laser is shown in
Fig.11. A tunable laser chip, which consisted of a silica
lightwave circuit and an SOA mounted on it, was packaged
with a thermo-electric cooler, a voltage-controlled optical
attenuator, a monitor detector and an optical isolator. Here,
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Fig.7  I-L characteristics of tunable laser.
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the optical attenuator was used to keep the SOA gain cur-
rent constant and not to disturb the optical phase during
the optical output power control. The package is compat-
ible with conventional 14-pin packages with dimensions of
30 x 12.7 x 8.4mm>. A summary of the optical character-
istics of the tunable laser module is shown in Fig. 12. The
wavelength deviation was less than 6 pm from the ITU-T
grid, the side-mode-suppression ratio was more than 51 dB,
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Fig.10  Lasing wavelength tuning map.
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the relative intensity noise (RIN) was less than —143 dB/Hz.
Spectral line widths at most of the channels were between
0.5MHz and 1 MHz. Only one channel exhibited a rela-
tively large line width value of 1.6 MHz, which is thought to
be affected by some electric noise introduced into the SOA
gain current. Still, obtained characteristics are sufficient for
practical use.

4. Widely Tunable Laser with 100-GHz-FSR Ring Res-
onators

As described in Sect. 2.2, there is a design trade off between
a tunable wavelength range and a threshold gain difference.
A threshold gain difference is an important factor which
determines the stability of single-mode lasing without grid
hopping. One solution for the trade off is to use the triple
ring structure instead of the double ring structure, as pre-
viously mentioned in Sect.2.2. Here, we report on another
solution for the trade off, namely, the use of ring resonators
with 100-GHz FSR instead of 50-GHz FSR. In Sect.2.2,
an equation is described for the tunable range magnifica-
tion factor, M = FSR 2/(FSR 2 — FSR 1). This equation
also gives a rough explanation of why the use of 100-GHz-
rings solves the design trade off. From this equation, we
can derive the second equation, (M X FSR 1) = (FSR 1 x
FSR 2)/(FSR 1 — FSR 2). Here, (M x FSR 1) is the tun-
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able wavelength range, and the (FSR 2 — FSR 1) value de-
termines the transmittance difference (threshold gain differ-
ence). Namely, the second equation is a trade-off equation
between the tunable wavelength range and the gain differ-
ence. Using the ring resonators with large FSR values gives
a large (FSR 1 x FSR 2) value. According to the trade off
equation, a larger (FSR1 x FSR 2) value gives a larger (M
X FSR 1) value for the same (FSR 1 — FSR 2) value (which
means a larger tunable range for the same gain difference),
or gives a larger (FSR 1 — FSR 2) value for the same (M
x FSR 1) value (which means a larger gain difference for
the same tunable range). Thus, the trade off between the
tunable range and the gain difference can be relaxed using
larger FSR rings such as 100-GHz rings.

The radius of a 100-GHz-FSR ring is 280 ym, which is
half the radius of a 50-GHz-FSR ring. In general, a bend
waveguide with a smaller curvature radius has a higher ex-
cess loss. However, because of the large refractive index
contrast of 6% in our SiON-core waveguide, the excess loss
was sufficiently suppressed even in the 100-GHz-FSR rings.
Figure 13 shows transmittance spectra of single ring res-
onators with 50-GHz FSR and 100-GHz FSR. The transmit-
tance losses for the 50-GHz and 100-GHz rings were almost
the same and small enough for the device application. The
compactness of the 100-GHz ring is also an advantage from
the viewpoint of mass production. The area of the 100-GHz
ring is only 25% that of the 50-GHz ring, thus, the device
yield of the silica lightwave circuit chips per wafer becomes
much higher when 100-GHz rings are used.

We fabricated a tunable laser with 100-GHz-FSR triple
ring resonators. The basic structure of the laser is the same
as described in Sect. 2.1. The first ring resonator has a FSR
of 100 GHz, which works as a wavelength reference ring.
By switching the m-shift power ON and OFF at the thermo
optic heater, the 100-GHz reference ring provides the ITU-T
grid with a 50-GHz spacing. The second and the third ring
resonators have FSRs that are slightly smaller than 100 GHz.
They work as tuning rings using the Vernier effect. The
FSRs of the tuning rings determine the theoretical value of
the tunable wavelength range of the ring resonators, which
was designed to be 95 nm in the fabricated device. The ring-
resonator chip size was 2.5 x 3.0 mm?.

Figure 14 shows superimposed spectra of the fabricated
tunable laser. The lasing wavelength range was from 1540 to
1636 nm. The measured tunable range of 96 nm was in good
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agreement with the designed tunable range of 95 nm. In this
measurement, the channel spacing was 100 GHz; however, a
50-GHz spacing could be obtained with a m-shift power be-
ing applied to the thermo optic heater of the reference ring.
The fiber output power was more than 13 dBm, and the side-
mode-suppression ratio was more than 50 dB throughout the
whole tuning range. Stable single-mode lasing over a large
wavelength region was obtained, which proves the high po-
tential of the widely tunable laser with 100-GHz-FSR ring
resonators for practical use.

5. Conclusion

We have proposed a tunable laser with silica-waveguide ring
resonators. The proposed laser has a simple structure, which
is suitable for mass production. The tunable laser exhibits
a high fiber-output power of more than 15 dBm and a wide
tunable range of 60 nm (L-band, 50-GHz spacing, 147ch).
Moreover, a tunable laser with a much wider tunable range
of 96 nm with 100-GHz-FSR ring resonators has also been
reported.
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