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Smart Front-Ends, from Vision to Design

Arthur H.M. van ROERMUND†a), Peter BALTUS†, André van BEZOOIJEN††, Johannes A. (Hans) HEGT†,
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SUMMARY An integral multi-disciplinary chain optimization based
on a high-level cascaded Shannon-based channel modeling is proposed. It
is argued that the analog part of the front-end (FE) will become a bottleneck
in the overall chain. This requires a FE-centric design approach, aiming for
maximizing the effective data capacity, and for an optimal exploitation of
this capacity for given power dissipation. At high level, this asks for a new
view on the so-called client-server relations in the chain. To substantiate
this vision, some examples of research projects in our group are addressed.
These include FE-driven transmission schemes, duty-cycled operation with
wake-up radio, programmable FEs, smart antenna-FE combinations, smart
and flexible converters, and smart pre and post correction.
key words: front-end, programmable, smart, Shannon, mixed-signal, data
converters

1. Introduction

Front-ends (FEs) form crucial blocks in any communica-
tion chain. This is especially true for wireless applications.
Front-ends receive an antenna signal and recover the appli-
cation bits from it, and vice versa. Note that in this defi-
nition of Front-end, the data converters are included. With
the emergence of many new applications and standards, and
the user demand to have everything done with just one sin-
gle multi-purpose device, the front-end has to filter out one
out of a bunch of channels, from an ever-more crowded fre-
quency spectrum with an increasing number of interferers,
and for a lot of different standards. The applications at the
same time become more complex, requiring more and more
data to be transmitted in the same time, and thus, higher
data rates. And, to make the challenge even larger, the fron-
tend has to be reliable, under more severe mobility condi-
tions, its form factor has to decrease (smaller devices), and
battery life time has at least not to diminish, meaning a se-
vere reduction on power dissipation. From the transmission
side we see a move upward in frequency, from the crowded
lower bands to new bands around 60 GHz. That solves some
capacity problems in the transmission channel, but it poses
again a lot of extra challenges on the frontend, more specif-
ically, on the analog part of the frontend, the AFE. This all
causes the front-end to become the weakest link in terms of
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performance versus cost (power dissipation, chip area).
From this vision, we draw four conclusions:

1. An integral, multi-disciplinary and Shannon-based view
is needed, on the whole communication chain, and on the
relations in the chain, which we have named client-server
relations [1].

2. A FE-driven system design is required, consequently
with new client-server relations [1].

3. The FE should be conversion-driven: it should primarily
focus on its fundamental ‘IC-channel modulation’ func-
tion, which is data conversion [2].

4. Front-ends need to become smart: comprise intelligence
to adapt and optimize themselves under varying applica-
tion, system, user and environment conditions [2], [3].

The research in our group is driven by this vision. This
invited paper substantiates this vision by addressing some
of our activities. The paper is set up as follows. In Sects. 2–
4 we discuss the high-level concepts, in Sects. 5–9, several
sub issues of our vision will be elucidated with activities,
and, finally, conclusions are given in Sect. 10.

2. Shannon-Based View and Chain Modeling

Shannon and Hartley gave the well-known formula for the
capacity C of a channel, see Fig. 1.

This capacity can be increased by increasing B and/or
SNR; both require power and chip area because of physi-
cal laws. However, having this capacity is not enough; we
should also exploit it by using appropriate modulation and
coding. Finally, part of the capacity is consumed by margins
that are taken into account in the design, to cover system
imperfections (imperfections and constraints in processing,
modeling, PVT, coding, signal processing, etc.), and inter-
fering signals. Uncertainties, limited knowledge, but also
costs are underlying reasons.

Hence, in view of the increase in data rates, we need
to:

Fig. 1 Effective data capacity, as a part of the Shannon capacity.
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Fig. 2 A cascade Shannon model for the chain.

1) increase the capacity C;
2) exploit the effective capacity optimally; and
3) decrease the margins;
and all these issues cost power . . .

Expanding this model for the overall transmission
chain leads to Fig. 2: a cascade of ‘transmission channel,’
analog-IC channel, and digital-IC channel. The analog-IC
part will become the weakest link, in view of the trends ad-
dressed in the introduction, and of the following observa-
tions: any increase of capacity in free space is paid for by
the transceiver in terms of power; with technology scaling,
the capacity of the digital IC will increase whereas that of
the analog IC part will decrease; and the required margins
increase, especially for the analog part (more interferences,
more parasitic effects at higher frequencies, more modeling
uncertainty, etc.) [1]–[3].

3. FE-Centric Design Approach

With the analog-IC link being the bottleneck, we need a FE-
centric design approach that primarily focuses on fighting
this bottleneck. That can be done at system level, by opti-
mizing the overall chain, by proper high-level partitioning
and by defining proper ‘client-server’ relations (Sect. 4).

Following that line, we can define transmission
schemes that are driven by the requirements of the FE,
thus aiming for maximizing the capacity/cost of the AFE′-
channel link, and on maximizing the exploitation of the ca-
pacity. Examples can range from choice of modulation type,
to wake up radio, and cross-layer optimization (Sect. 5).

Complementary, we can tackle the margin problem to
enhance the effective data capacity, and at the same time
optimize the effective use of it. This path goes from pro-
grammable FEs, that can be adapted by the user to changing
conditions (Sect. 6), to, finally, smart FEs, that can eliminate
uncertainties by self-measuring, and that can autonomously
adapt their operation, thus decreasing the margins, and in-
creasing the ratio between effective data capacity and power
dissipation. Examples will be given of smart antenna-FE
combinations (Sect. 7), smart and flexible data converters
(Sect. 8), and smart pre and post processing (Sect. 9).

4. FE-Driven System-Level Chain Design

To optimize the chain in favor of the weakest link, we first
need to split the whole (hardware) chain into three parts, ac-
cording to the previous split in the Shannon model of the

Fig. 3 Chain with client-server relations.

chain. To do so, we need to consider the usually individual
blocks antenna, AFE and AD/DA, as one functional block
AFE′ with its primary focus on converting analog EM-fields
to bits and vice versa. Figure 3 visualizes this view on future
communication chains, with successively free-space trans-
mission, AFE′, and digital processing block. The latter dig-
itally assists the analog block (DAA), and provides digital
IF (DIF), digital baseband (DBB), MAC, network, and ap-
plication processing.

Next in the optimization of the chain, the AFE′ should
be seen as a client that needs to be supported maximally by
the other links of the chain. That brings us to new ‘client-
server’ relations [1], represented by the arrows in the fig-
ure, where the AFE′ focuses on data conversion, which in
fact comprises fundamentally all functionality required to
change the input signals (EM fields) to the IC-optimized
signal representation (the digital one), and vice versa, so
to optimize for the IC-channel. For that purpose, the AFE′
should be optimally supported by the digital DAA block and
the MAC/Network layer, and a front-end efficient transmis-
sion scheme should be defined. Modulation support for the
free-space transmission (‘Transmission-driven support’) is
shifted from the AFE′ to the digital block as far as it is not
in line with the optimal conversion function [2].

5. FE-Driven Transmission Schemes

Defining optimal transmission schemes from a FE point of
view, that minimize the cost for the AFE′, helps consider-
ably in reducing the AFE′ bottleneck. Three examples will
be given here.

5.1 FE-Driven FHSS Modulation

Wireless sensor networks must often work in a very hos-
tile indoor environment. As any other channel medium, the
indoor environment is noisy. The often used Industrial, Sci-
entific and Medical (ISM) bands, like the 2.4 GHz and the
915 MHz bands, present an interference-crowded scenario
which requires the capability to discern a weak transmitted
signal among several stronger unwanted signals. Finally, the
presence of objects creates a multipath interference, which
translates in a spatial degradation of the SNR. This degrada-
tion can be as large as 20 dB or more and is often referred to
as fading. These requirements make FE design quite tough.
However, though the environment parameters are dictated
by the application area required to be covered and they can-
not change, several other parameters can be optimized in
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Fig. 4 Relative complexity of various modulation schemes [4].

order to minimize the impact of those non-idealities on the
transceiver complexity and power consumption. Some of
those parameters are the following:

• modulation format;
• system bandwidth;
• data transmission rate;
• transmitter/receiver architecture.

A FE-driven modulation format should be used to en-
code the information. The relative modulation complex-
ity of various modulation schemes is shown in Fig. 4. In
terms of AFE′ power consumption a robust, simple and
constant-envelope modulation scheme is preferred. Phase-
modulation schemes are constant envelope before filtering
(adjacent channel filtering), but not anymore after it. This
forces the PA to back-off during transmission reducing the
PA efficiency. On-off keying (OOK), though very simple, is
very weak in the presence of strong interferers [4]. There-
fore, an FSK modulation format is the most suitable for this
scenario. Furthermore, though a coherent FSK has a 3 dB
SNR advantage over a non-coherent (NC) FSK, the much
lower complexity of NC-FSK allows for a larger reduction
of the overall power consumption.

The choice between narrowband and wideband FSK is
also FE-driven. For the receiver, in order to save power and
area, a zero-IF topology is preferred. Unfortunately this suf-
fers from some non-idealities producing a DC offset. In or-
der to easily reject it, it is preferable that the signal has no
information around DC. Therefore, a wideband FSK is an
optimal choice for a zero-IF receiver.

System bandwidth (bandwidth used on the average for
the data transmission) and data rate can also be FE-driven.
First, we divide between narrowband and wideband sys-
tems. The so called spread-spectrum (SS) systems form
a specific class of wideband systems. They allow to trade
bandwidth for robustness, assuming low data-rate transmis-
sion, generally ranging between 1 kbps and 50 kbps. More-
over, as a narrowband filter can be used, the amount of noise
is very low. Therefore, for a given SNR required by the
modulation format, the transmitted power can be drastically
reduced. Two main SS techniques are generally used: Direct
Sequence SS and Frequency Hopping SS. A DSSS system
is intrinsically a wideband system. Therefore, for a given
processing gain (PG), the filter will have a bandwidth equal
to PG times the modulated bandwidth. An FHSS system,
though wideband on the average, is narrowband when a sin-
gle time slot is considered. Therefore, robustness to interfer-

Fig. 5 Diagram and IC photograph of a direct FHSS transmitter [5].

ers and fading is guaranteed by its on-the-average wideband
behavior, while selectivity and low noise is assured by its
instantaneous narrow-band behavior, allowing narrowband
channel filtering. Furthermore, an FHSS system can trade-
off transmitted power for hopping speed, which gives an-
other degree of freedom on reducing the overall power con-
sumption.

The transmitter architecture is also very important in
order to optimize the overall system. The chosen modula-
tion scheme allows a very simple way to transmit the wanted
data, viz. by direct modulation of a high-frequency VCO.
In this way no up-conversion stage is required. Moreover
if we combine the oscillator with the PA it is possible to
have a system which nearly uses all its power to transmit
the data and only very little power for data processing. The
schematic diagram and IC photo of such a system is shown
in Fig. 5. More details can be found in [5], [6].

5.2 FE-Driven Cross-Layer Design

Transmission need not always be done in a continuous way.
If done duty cycled, we have the option to power down
the transceiver, which helps to reduce the averaged power
dissipated per bit transferred, especially for the receiver.
We can use transmission schemes that allow transmission-
signal-level duty cycling, like impulse radio, where a re-
ceiver can be powered down when no impulse is sent, or
data-level duty cycling, where the transceiver is powered
down when no data is sent. With data-level duty cycling we
further can reduce power by increasing the data rate, so as to
decrease the data-burst transfer time and thus the power-on
time. Of course, for the receiver blocks where power dissi-
pation is proportional to the data rate, this will not help, but
for many receiver blocks it does (like e.g. PLLs), making
this option very valuable from an AFE′-centric approach.
A further improvement might be obtained by letting the
transceiver be wakened up by a separate ‘wake up radio’
that is optimized for this function only, instead of leaving
this to the transceiver. However, that also entangles the PHY
layer design with the MAC/Network layer (Fig. 3), as the
power dissipation is strongly dependent on protocol issues
like preambles, and pilot tones. By using all these options,
energies/bits in the order of 10 nJ/bit can be achieved. In [7]
this is further elaborated. Figure 6 shows a wake-up radio in
parallel to a 60 GHz (beamsteering) receiver.
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Fig. 6 60 GHz beamsteering receiver with wake-up radio.

5.3 Electronic Beamsteering FE

Electronic beamsteering is another option to combat the
AFE′ bottleneck. Spatial selectivity, provided by the beam-
steering, provides higher SNR and decreased interferer
level, thus alleviating the problem for the AFE′ consider-
ably, but at the same time it requires extra hardware in the
AFE′: parallel paths, phase shifters, and control [24]. As
this option requires an optimal antenna-FE design and a
smart FE that can autonomously perform self-steering, it
will be further addressed in Sect. 7.2.

6. Programmable FEs

Besides trying to optimize the capacity and to exploit this
maximally, we can tackle the margin problem to enhance
the effective data capacity, and at the same time optimize the
effective use of it. As a first step we discuss in this section
programmable FEs that can be adapted by the user to chang-
ing conditions. In further sections we will address smart
FEs.

In the research addressed in this section, the channel
is made programmable to make it suitable for a lot of stan-
dards. The main problem is the wide frequency band (with
its associated problems like power, linearity and interfer-
ence) covered in total by the various standards, see Fig. 7.
A straightforward option is to convert the whole frequency
band and also the full signal range covered by the standards
and do all transmission functionality in the digital baseband;
this leads to a lot of noise (so decreased capacity in the ana-
log part), to non-optimal use of the capacity (non-optimal
signal conditioning), and to large margins (to cover all lin-
earity and interference problems that come along with such
a wideband approach); it is thus in all aspects very ineffi-
cient in power dissipation and area. Alternatively, we can

Fig. 7 Standards and frequency bands covered.

Fig. 8 A three sub-wide band channel solution.

split into parallel channels, each optimized, and switch on
only the one used (or multiple channels, in case of concur-
rent operation). This costs a lot of area. Making the analog
functions programmable, as a function of the actual situa-
tion, seems a more reasonable solution. Adjusting the ana-
log building blocks can be done in design, performance, and
parameter space [8], [9]. Especially for high speed analog
circuits, this is difficult without introducing extra impair-
ments and extra costs.

Here we have chosen to combine these options, and to
do the programming gradually at the various parts of the
AFE, in such a way that the channel adaptation is optimally
distributed over the chain inside the AFE, see Fig. 8 [10],
[11]. First, the frequency selectivity is distributed over three
stages: we split the full wideband that covers all the stan-
dards to be received in sub bands, each still wide, but never-
theless narrower then the original band, see Fig. 7.

The three paths respectively treat the GSM and
DCS/PCS bands; the WLAN-b/g and Bluetooth bands; and
the WLAN-a bands and the IEEE 802.16 bands. The as-
sumption made here is the presence of RF selective filters in
front of the LNA for relaxing the linearity requirements of
the front-end.

The LNA circuit is shown in Fig. 9; the bond induc-
tance is used to compensate parasitics and to match the sub-
wideband. As no narrow-band selectivity is chosen, we can
do without the area-consuming inductors. Next, we provide
some further selectivity with the discrete time signal pro-
cessing block (Fig. 8) that provides a tunable bandpass fil-
ter with poly-phase filters and mixers, for multi-mode and
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Fig. 9 LNA for ‘sub wide band’ with programmable gain.

multi-band receiver IF selectivity [11]. A PLL suppressed
the noise of the RC oscillator, to fulfil the required timing
selectivity requirement. The selectivity steps are meant to
optimize in terms of Shannon capacity: to decrease the mar-
gins, by suppressing the interferers, and to optimize the ca-
pacity by reducing the noise. Next, we do the conversion.
Final channel selectivity is left for the digital baseband pro-
cessor. Besides selectivity programming, we need signal
range programming. This is done in only two steps: first
in the LNA, see Fig. 9; next in the digital baseband proces-
sor.

7. Smart Antenna-FE Combinations

A further optimization of the effective data capacity is
achieved by making the FEs smart. Two examples of smart
antenna-frontend combinations will be given in this section.
One addresses smart autonomous adaptation of a FE to fluc-
tuating antenna-FE mismatch. The other example addresses
the use of smart beamforming.

7.1 Smart Antenna-FE Matching

Link quality of cellular phones suffers from antenna mis-
match caused by the narrow bandwidth of miniaturized
high-Q antennas and by detuning of the antenna resonance
frequency [12] due to fluctuating antenna-user interaction
and changes in phone form-factor. Mismatch of the antenna
impedance results in reduced maximum field strength and
deteriorates modulation quality [13], receiver sensitivity and
power amplifier efficiency. Adaptive antenna matching tech-
niques [14]–[18] are being explored that automatically com-
pensate mismatch. Such smart RF front-ends are attractive
because they dynamically optimize the signal conditions at
the interface between transmission channel and analogue
front-end [1], by minimizing reflection losses. Capacitive
RF-MEMS switches [19]–[22] are used as tunable match-
ing elements to meet the very demanding requirements on
linearity, insertion loss, and tuning range.

Antenna-user interaction causes mainly a down shift
in the series resonance frequency of planar inverted-F an-
tennas (PIFA) that are often used in mobile phones. We
apply a tunable series-LC network, depicted in Fig. 10, for

Fig. 10 Block diagram of an adaptively controlled series-LC matching
network. It compensates the reactive part of the load impedance by con-
trolling the detected phase ϕZ DET of the matched impedance to zero.

Fig. 11 Photograph of the adaptive antenna matching module showing
the packaged RF-MEMS, high-voltage generator, and impedance phase de-
tector dice.

impedance correction because it is the simplest network that
effectively compensates the resulting inductive antenna be-
havior. The adaptive tuning system comprises a tunable 5-
bit switched capacitor array, high-voltage MEMS biasing
switches, a high-voltage generator, a phase detector, and an
up/down counter.

Mismatch information is derived from the phase of the
matched impedance ZM at the network input, which is given
by the phase difference between the input signals u and i.
Both signals are hard limited and applied to a mixer to ob-
tain the phase ϕZ DET [23]. Depending on the sign of the
detected phase, the counter output, and hence the switched
capacitor array, will either be increased or decreased in steps
of 1LSB (least significant bit). Consequently, the loop con-
trols the phase of the detected impedance ϕZ DET to zero,
step by step, keeping phase transients of the transmitted sig-
nal small. The photograph in Fig. 11 shows the adaptive
antenna matching module that consists of a Si-capped RF-
MEMS array, a detector, and a high voltage generator die
mounted on laminate.

The variable capacitor is realized as a 5-bit binary
weighted switched capacitor array as depicted in Fig. 12.
Each bit is activated via a bias control line bi. The resis-
tors R provide RF-isolation and have high impedances to
minimize insertion loss.

Hardware evaluation proves the module to meet all
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Fig. 12 Binary weighted RF-MEMS switched capacitor array, including
DC-block capacitors and bias resistors, and its corresponding control curve.

Fig. 13 Measured input impedance of the module when connected to a
PIFA that is influenced by hand-effects, for open loop and closed loop con-
ditions. f = 900 MHz.

GSM/EDGE/WCDMA linearity requirements. Adaptive
control of the complete module, connected to a planar
inverted-F antenna (PIFA), has been verified. When a hand
is moved towards the PIFA, the module input impedance re-
mains close to the center of the Smith chart in closed loop
condition, whereas the impedance shifts away in open loop
condition, as depicted in Fig. 13. For extreme hand-effects
the maximum correction is −75 jΩ. Hence, the module cor-
rects antenna impedance disturbances as expected.

7.2 Smart Beamforming

As discussed already shortly in Sect. 5, beamsteering is a
very effective way to provide extra selectivity (in the spatial
domain, thus providing antenna gain) and decrease of inter-
ferers (so high signal gain and selectivity). If the zeros in the
antenna radiation pattern are put in the direction of the in-
terferers, a high suppression of them can be achieved. How-
ever, this requires both electrically programmable beams
and a smart control. Here, we will limit us to our research
on electrically-controlled beamforming with the use of a
phased antenna array, in the context of transmission at high
frequencies (60 GHz), where the antenna dimensions, and
the distances between the antennas in the array, can be kept
small. Figure 6 already showed a beamsteering receiver (in
conjunction with the wake up radio that was discussed), and
in [24] several phase shift architecture options, and a series-

Fig. 14 Circuit diagram of 4-bit phase shifter.

Fig. 15 Microphotograph of 4-bit phase shifter.

tuned phase shifter are discussed. In [25] a 4-bit controlled
varactor-loaded differential transmission-line phase shifter
is described, implemented in 65 nm CMOS, to achieve a
phase resolution of 22.5◦.

Figure 14 shows the circuit diagram. Each varactor is
controlled by just one bit, placing the varactor at one of the
two insensitive ends of its voltage range. The differential op-
eration of the varactor keeps the well at virtual earth, making
it quite insensitive to parasitics. The 7-bits thermometer-
code control for the seven stages is decoded from the 3 LSB
PCM bits. The MSB PCM bit controls a swap, thus pro-
viding a corresponding 180◦ phase shift. The whole phase
shifter, see Fig. 15, occupies only 0.2 mm2.

8. Smart and Flexible Data Converters

For the data converters, too, it holds that smartness can de-
crease the margins and increase the ratio between effective
data capacity and power dissipation (Fig. 1). In [2], [3] it
is described how smartness can be applied in various ways,
both to combat various problems like interferences and tech-
nology spread and dependence, and to optimally adapt to
and cooperate with the rest of the chain, system, user and en-
vironment. The margin can also be reduced by adapting the
conversion (and the whole system) to the application, which
requires flexibility. In this section we will first address ex-
amples of smart and flexible DA converters, and next give
an example of a flexible AD converter.

8.1 Smart and Flexible DA Converters

A first approach to smartness, to improve the performance
in a DAC, is to calibrate the individual current sources, on-
chip, and autonomously. The conventional way, and also our
first step, is to do that for the unary currents in a segmented
converter [26], leaving the binary currents uncalibrated, and
hence leaving the converter partly dependent on architec-
ture (choice of segmentation) and technology. A better ap-
proach is to include the binary currents in the calibration.
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A methodology for calibrating binary currents is proposed
in [28]. The basic idea is that two (or more) sets of binary
currents are available, by just copying the binary set, or by
splitting each individual binary current source in two.

In [28]–[30] both the algorithm and a fully integrated
DAC, with self-calibrating unary and binary current sources,
are presented (Fig. 16). Four individual DACs are preceded
on-chip by a programmable digital preprocessing block that
provides smartness and flexibility: depending on a chosen
mode of operation (op-mode) it redistributes the input dig-
ital word w(nT) among the sub-conversion branches. The
four DACs on the chip together can e.g. be seen as one DAC
with an unconventional segmentation (four main segments,
each of them unary/binary segmented), which provides flex-
ibility and redundancy in current-source combinations. This
has been exploited to achieve both unary and binary cali-
bration, making the (static) performance of the DAC com-
pletely independent of architecture and technology.

The flexibility and redundancy in this DAC architec-
ture can also be exploited by finding, via on-chip measure-
ment facilities, from all redundant combinations the best
sets of combinations (‘optimal mapping of codes to current
sources’), such as to minimize e.g. the INL (static perfor-
mance) or SFDR (dynamic performance), see [30]. In ear-
lier work [31] we introduced a mapping technique that, ap-
plied to a set of thermometer current sources, showed an
improvement in SFDR of about 30 dB for a linear distribu-
tion of errors, and 20–25 dB for a random one. Again an-
other option is to randomize the combinations (‘shuffling’),
thus randomizing the errors, which minimizes the distortion
components.

Fig. 16 Smart and flexible DAC.

Fig. 17 Flexible AD architecture.

Finally, the flexibility can be exploited to achieve flex-
ibility at application level (like user programmable choice
of the number of DA conversion functions, the resolution,
and the power dissipation), which facilitates the use of this
DAC on programmable chips, like multistandard/multimode
chips or even FPGAs.

8.2 Smart and Flexible AD Converters

An example of a flexible AD converter is given in [32]–
[34]. This converter is built up in an ‘FPGA-like’ way,
see the chip photomicrograph in Fig. 17, with basic mod-
ules (residue stages) that can be combined in various ways,
so as to provide the structure of choice, like pipeline, time-
interleaved or cyclic structure; to parallelize units to opti-
mize the signal to noise ratio; or to minimize the power dis-
sipation for a given speed. Also, several independent ADs
can be configured in parallel. This makes this approach such
flexible that it can be used as a component in programmable
chips, like the general purpose FPGAs.

9. Smart Pre and Post Correction

Margin reduction, and thus improvement of effective data
capacity (Fig. 1), can also be achieved by compensation of
distortion errors by means of pre and post processing.

9.1 Smart Digitally-Assisted Analog Pre-Correction

In [35], [36] a method for the on-chip measurement and ana-
log correction of gain errors, offsets and non-linearities of
the T&H circuit of an ADC was presented. The T/H was
made programmable in the analog domain and digitally as-
sisted, to correct for (matching) errors in e.g. an interleaved
AD converter, see Fig. 18. The method does not require an
accurate reference source nor an accurate measurement de-
vice.

9.2 Smart Digital Post Correction

Digital post correction at baseband, e.g. for AD converters is
well known and widely used. An example of post correction
of the aforementioned T&H in the digital domain is given in
[37]. A further integration of post correction with the chain,
especially with the IF or RF part of it, is less straightforward.

Fig. 18 Digitally-assisted programmable T/H’s.
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A prerequisite then is a proper estimation and a modeling of
the impairments at RF/IF level to their influence at baseband
where it is to be corrected. In [38] this baseband modeling
is done for I/Q imbalance, DC offsets and non-linearities in
the IF part between mixer and AD converter. Conventional
distortion metrics, like 1 dB-compression point and IP3, are
not suited for this purpose. Instead, a bounded Taylor se-
ries is used to describe the signal, and all potential distor-
tion products (limited by the bound on the Taylor series),
with assumed independent phases, are taken into account
and translated to a parameter matrix in a baseband model
description. The parameters, describing the amplitudes of
the individual distortion components, can be estimated dur-
ing pilot tones that are sent out in preambles, and used to
correct the linearity of the system by means of an inverse
non-linear characteristic in a post-processing block. The fi-
nal parameter values can also be mapped back, finally, to the
conventional parameters, to ease their interpretation.

10. Conclusions

Future transmission chains require an integral multi-
disciplinary chain optimization, both over the hardware
chain and across various OSI layers. A high-level Shan-
non view in combination with trends reveals that the analog
front-end will become a severe bottleneck, and that this asks
for a new FE-centric view on the partitioning and on the
client-server relations in the overall chain. Antenna, analog
FE and converters should be seen as one function: optimal
translation of the incoming signals into relevant bits, and
vice versa. A smart-FE approach is required to fight the
increase in margins and thus to increase the effective data
capacity of the channel, and to optimize the utilization of
this data capacity. Several examples have been shown to
concretize it.
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André van Bezooijen received the B.S. de-
gree in Electrical Engineering from Breda Tech-
nical University, The Netherlands, in 1984. Cur-
rently, he is working towards a Ph.D. degree
on adaptive RF front-ends. Since 1998 he has
been a Senior Engineer with Philips Semicon-
ductors Nijmegen, The Netherlands, where, in
the role of Project Leader, he is engaged in con-
cept development of power amplifier and front-
end modules for cellular phone applications.
In 2006, the organization became part of NXP

Semiconductors. He was involved in analogue and mixed-signal integrated
circuit design at Philips Research, Eindhoven, The Netherlands, from 1984
to 1993. From 1993 to 1998, he was with Philips Semiconductors Sys-
tem Laboratories, Eindhoven where he worked on RF IC design and digital
zero-IF receiver concepts. Since July 2008 he is, as RF System Architect,
with EPCOS working on tunable RF front-ends. He is author or co-author
of several papers and holds a dozen of patents.



756
IEICE TRANS. ELECTRON., VOL.E92–C, NO.6 JUNE 2009

Johannes A. (Hans) Hegt was born on
June 30, 1952 in Amsterdam, the Netherlands.
After finishing the education in Electrical En-
gineering at the Technical College in ’s Herto-
genbosch, he studied Electrical Engineering at
the Eindhoven University of Technology, where
he graduated with honours in 1982. From 1983
until 1986 he was an assistant at the TUE. Since
1987, he is a lecturer at this University, where he
gives courses in the areas of switched-capacitor
filter engineering, switched current filters, digi-

tal electronics, microprocessors, digital signal processing, and neural net-
works. In 1988 he received a Ph.D. degree on synthesis of switched-
capacitor filters. Since 1994 he is an Associate Professor on mixed ana-
logue/digital circuit design. He is currently involved in the realisation of
data converters.

Emanuele Lopelli was born on September
1st, 1976 in Bari, Italy. From 1996 till 2002 he
studied Electrical Engineering at Politecnico di
Bari, in Bari (Italy). He performed his gradu-
ation project at Ericsson “Microwave and High
Speed Electronics Research Center” in Mölndal,
Sweden. The subject concerned the design of
a mixed analog and digital control circuit for
a multi-band VCO for Minilink application us-
ing 0.5 μm BiCMOS technology. In Novem-
ber 2002 he graduated (Summa cum Laude) at

the Politecnico di Bari. From January 2003 till September 2003 he was
employed as a Mixed-Signal research engineer at “Centre National de la
Recherche Scientifique” (CNRS) in Strasbourg (France). During this pe-
riod he worked in the development of the read-out electronics for Minu-
mum Ionising Particle MOS Active Pixel Sensor (MAPS) in CMOS tech-
nology. In November 2003 he moved in Eindhoven (The Netherlands) to
Eindhoven University of Technology, in the Mixed-Signal Microelectronics
Group (MsM), where he is currently pursuing his Ph.D. degree on Ultra-
Low Power Transceiver for Wireless Personal Area Network (WPAN). He
is currently a staff scientist at Broadcom Corporation, Bunnik, the Nether-
lands. He holds three patents.

Reza Mahmoudi studied Electrical En-
gineering at the Delft University of Technol-
ogy, Delft, The Netherlands, where he joined
the Microwave Component Group and received
his M.Sc. degree in 1993 with a thesis entitled
“A Measurement System for Noise Parameters.”
He was employed as a full member of the same
group from January 1, 1993 to December 7,
1999. He earned the Designers Certificate from
Delft in 1996 with a thesis entitled “A System-
atic Design Method for a Feed-Forward Error

Control System.” This work was the initial step leading to his Ph.D. the-
sis (2001). He worked for Philips Discrete Semiconductors in Nijmegen,
The Netherlands, and Advanced Wave Research in El Segundo, California.
Since April 2003 he has been an Assistant Professor in the Department of
Electrical Engineering at Eindhoven University of Technology.

Georgi I. Radulov was born on April 23,
1978 in Plovdiv, Bulgaria. He studied Electri-
cal Engineering at the Technical University of
Sofia, where he graduated with honors in 2001.
From 2002 until 2004 he studied and gradu-
ated the two year post-masters program “Profes-
sional Doctorate in Engineering” of Stan Acker-
mans Institute at Eindhoven University of Tech-
nology (TU/e). Since 2004, he is pursuing the
Ph.D. degree at Mixed-Signal Microelectronics
group at TU/e in the field of Digital-to-Analog

Converters (DACs). At IEEE APPCAS’08, his paper “A flexible 12-bit
self-calibrated quad-core current-steering DAC” was recognized with the
award for “Outstanding Student Paper.” He holds two US patents on DAC
current sources calibration.

Maja Vidojkovic was born in Kumanovo,
Macedonia. In 1999 she graduated successfully
at the Faculty of Electronic Engineering in Nis,
Serbia, where she was working as a research as-
sistant. In 2003 she received her TWAIO de-
gree on Platform-based IC design in the Mixed-
signal Microelectronics group at the Eindhoven
University of Technology (TU/e), The Nether-
lands. Currently, she is working in IMEC-NL
on low power receivers. Also, she is working to-
wards her PhD at TU/e on multi-standard, multi-

band reconfigurable RF receiver front-ends.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


