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Reflection, Diffraction and Scattering at Low Grazing Angle of
Incidence: Regular and Random Systems

Junichi NAKAYAMA†a), Member

SUMMARY When a monochromatic electromagnetic plane wave is in-
cident on an infinitely extending surface with the translation invariance
property, a curious phenomenon often takes place at a low grazing angle
of incidence, at which the total wave field vanishes and a dark shadow ap-
pears. This paper looks for physical and mathematical reasons why such
a shadow occurs. Three cases are considered: wave reflection by a flat
interface between two media, diffraction by a periodic surface, and scat-
tering from a homogeneous random surface. Then, it is found that, when
a translation invariant surface does not support guided waves (eigen func-
tions) propagating with real propagation constants, such the shadow always
takes place, because the primary excitation disappears at a low grazing an-
gle of incidence. At the same time, a shadow form of solution is proposed.
Further, several open problems are given for future works.
key words: reflection, diffraction by periodic surface, scattering by random
surface, shadow theory. reciprocity, guided wave

1. Introduction

Wave reflection, diffraction and scattering at a low graz-
ing angle of incidence (LGAI) are practically important in
radar sensing of land and sea [1], [2]. When a monochro-
matic electromagnetic plane wave is incident on a surface
with translation invariance property, however, a curious phe-
nomenon often takes place at LGAI. The total wave field
vanishes and physically becomes a dark shadow which we
call the Fresnel shadow.

In the case of a flat interface, an exact solution indicates
the reflected wave has the reflection coefficient equal to −1
and completely cancels the incident plane wave at LGAI
[3]. In the case of a periodic grating, the 0th order diffrac-
tion amplitude (reflection coefficient) becomes −1 and any
other order ones vanish at LGAI [4]–[6]. In the case of a
randomly rough surface, approximate solutions by a proba-
bilistic method [7]–[11] indicate that the incoherent scatter-
ing into all directions disappears and the coherent reflection
coefficient becomes −1 at LGAI, which mean the Fresnel
shadow.

Why does the Fresnel shadow take place at LGAI in
these cases? What are conditions under which the Fresnel
shadow appears? How can we explain the Fresnel shadow?
This paper tries to answer these questions. Then, we find
that, when a translation invariant surface does not support
guided waves with real propagation constants, the Fresnel
shadow takes place, because the primary excitation disap-
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pears at LGAI.
We only discuss the transverse magnetic (TM) case,

where the time dependence e−iω̂t with angular frequency ω̂
is assumed.

2. Reflction and Transmission

Let us reconsider a well known problem: the reflection and
transmission of a plane wave by an infinitely extended flat
interface between two media (See Fig. 1.). Obviously, the
interface is invariant under any translation in the x direc-
tion. We write the wave number km and impedance Zm of
the medium m as

km = ω̂
√
εmμm, Zm =

√
μm/εm, (m = 0, 1). (1)

Here, εm and μm are permittivity and permiability of the
medium m. For simplicity, however, they are assumed to
be real and to satisfy∗

Fig. 1 Reflection and transmission of a TM plane wave by a flat interface
(z = 0) between media 0 and 1.

∗If the condition (4) is removed, guided waves (eigen func-
tions) propagating along the interface could exist. If guided waves
exist, (8) and (9) must be rewritten as

H(0)
y = e−ipx−iβ0(p)z

+ Γ(p)e−ipx+iβ0(p)z +
∑

l

A(0)
l ψ(0)

G (x, z|pl), (2)

H(1)
y = T (p)e−ipx−iβ1(p)z +

∑
l

A(1)
l ψ(1)

G (x, z|pl)., (3)

Here, by ψ(0)
G (x, z|pl) and ψ(1)

G (x, z|pl) we denote a guided wave with
propagation constant pl, and A(0)

l and A(1)
l are constants. In our re-

flection problem, however, guided waves with complex propaga-
tion constants are suppressed physically, because the field must be
finite even for x → ±∞. Thus, the reflection problem has a unique
solution and the Fresnel shadow takes place at LGAI, if and only
if guided waves with real propagation constants do not exist.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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μ0 = μ1, k1 > k0 > 0. (4)

By ex, ey and ez, we denote unit vectors into the x, y and z
directions, respectively.

In the TM case, the electric field E(m) is derived from
H(m)
y the y component of the magnetic field as

E(m) = i(Zm/km)rot[H(m)
y ey], (m = 0, 1). (5)

As is shown in Fig. 1, the total field (E(0),H(0)
y ) in the

medium 0 is a sum of the incident field (E(i),H(i)
y ) and the re-

flected wave (E(r),H(r)
y ), whereas (E(1),H(1)

y ) represents the
transmitted wave in the medium 1. The H(m)

y satisfies

[∂2/∂x2 + ∂2/∂z2 + k2
m]H(m)

y = 0, (m = 0, 1), (6)

and the boundary conditions on the interface at z = 0,

H(0)
y − H(1)

y = 0,
1
ε0

∂H(0)
y

∂z
− 1
ε1

∂H(1)
y

∂z
= 0, (z = 0).

(7)

Next, we write the magnetic field as

H(0)
y = e−ipx−iβ0(p)z + Γ(p)e−ipx+iβ0(p)z, (8)

H(1)
y = T (p)e−ipx−iβ1(p)z, (9)

p = k0 cos(θi). (10)

Here, the first term in (8) represents the incident magnetic
field H(i)

y and the second the reflected one H(r)
y , where Γ(p) is

the reflection coefficient, T (p) is the transmission coefficient
and θi is the angle of incidence measured from the x axis
(See Fig. 1). For real p, βm(p) is defined as

βm(p) =
√

k2
m − p2,

Re[βm(p)] ≥ 0, Im[βm(p)] ≥ 0, (m = 0, 1), (11)

where Re and Im represent real and imaginary part, respec-
tively. From (10) and (11), we have at LGAI with θi → 0,

p→ k0, β0(p)→ 0, (θi → 0). (12)

Note that the incident wave e−ipx−iβ0(p)z and the reflected
wave e−ipx+iβ0(p)z are two independent solutions if p � ±k0

but degenerate at LGAI†.
As is well known, the boundary conditions (7) may be

solved exactly and Γ(p) and T (p) are obtained as

Γ(p) + 1 = T (p) =
2β0(p)

k0
S (p), (14)

S (p) =
k0/ε0

β0(p)/ε0 + β1(p)/ε1
, (15)

where S (p) is the scattering factor. Due to the factor
β0(p)/k0 = sin(θi), the reflection coefficient Γ(p) becomes
−1 and the transmission coefficient T (p) vanishes at LGAI
(See Figs. 1. 22 and 1. 23, in Ref. [3] for examples.). As a re-
sult, the incident plane wave is completely cancelled by the
reflected wave and the transmitted wave vanishes at LGAI

[3]. Physically this means that the wave field becomes a
dark shadow at LGAI, which we call the Fresnel shadow.

To represent the Fresnel shadow explicitly, we intro-
duce the primary excitation ψp(x, z) as a sum of the incident
plane wave and a reflected wave with amplitude −1, and the
elementary excitation ψe(x, z) as,

ψp(x, z) = e−ipx[e−iβ0(p)z − eiβ0(p)z] =
2β0(p)

k0
ψe(x, z),

(16)

ψe(x, z) =
e−ipx[e−iβ0(p)z − eiβ0(p)z]

[2β0(p)/k0]
(17)

where ψp(x, z) is proportional to β0(p) and vanishes at
LGAI. However, ψe(x, z) becomes −ik0ze−iko x at LGAI.
Then, using (14), we rewrite (8) as

H(0)
y = ψp(x, z) + [Γ(p) + 1]e−ipx+iβ0(p)z (18)

=
2β0(p)

k0
H (0)

y , (19)

H (0)
y = ψe(x, z) + S (p)e−ipx+iβ0(p)z, (20)

H(1)
y =

2β0(p)
k0
H (1)

y , (21)

H (1)
y = S (p)e−ipx−iβ1(p)z. (22)

In (18) and (21), we regard ψp(x, z) physically excites the
modified reflected wave with the modified reflection coeffi-
cient [Γ(p)+1] and the transmitted wave H(1)

y . Since ψp(x, z)
is proportional to β0(p), [Γ(p)+1] and T (p) are proportional
to β0(p), as is shown by (14). Separating the common factor
2β0(p)/k0, we obtain shadow form solutions (19) and (21),
which explicitly represent the Fresnel shadow at LGAI. In
other words, the Fresnel shadow takes place, because the
primary excitation vanishes at LGAI.

However, we call H (0)
y and H (1)

y the elementary fields,
which are closely related to Green’s function [20], [22]. We
think of that the elementary fields should be first determined
by (7), and then Γ(p) and T (p) should be calculated by (14).
Using this idea, we will deal with the wave diffraction and
scattering later.

2.1 Geometrical Explanation of the Fresnel Shadow

Let us consider geometrically why the Fresnel shadow ap-
pears at LGAI. Our solution is illustrated in Fig. 2.

†Let us write mathematical points first. When p = k0, the mag-
netic filed in medium 0 is generally given, with aribitrary constants
c1 and c2, by H(0)

y = (c1+c2z)e−iko x. By use of ψe(x, z) in (17), how-
ever, a general solution applicable for any real p is mathematically
represented as

H(0)
y = c3ψe(x, z) + c4e−ipx+iβ0(p)z. (13)

where c3 and c4 are constants independent of x and z. On the other
hand, the incident wave component of c3ψe(x, z) must equal the
first term in (8) for any real p. From this physical condition, we
must set c3 = 2β0(p)/k0. This means that (8) and (18) are complete
expressions of the field even at LGAI in our reflection problem.



4
IEICE TRANS. ELECTRON., VOL.E94–C, NO.1 JANUARY 2011

We start with an initial assumption such that electro-
magnetic fields exist in media 0 and 1 even at LGAI (See
Fig. 2.). At LGAI, however, the incident and reflected plane
waves degenerate into a transverse electromagnetic (TEM)
wave propagating into the −x direction and hence E(0) =

E(i) + E(r) has no x component, i.e., E(0)ex = 0. By Snell’s
law, however, the refraction angle θt in Fig. 2 becomes pos-
itive and less than π/2 under the condition (4). This means
that the field in the medium 1 becomes a TEM wave prop-
agating into the lower left direction and E(1) has non-zero x
component.

Next, let us apply the boundary condition on the inter-
face at z = 0. Since the x component of the electric field is
continuous across the interface, E(1)ex = E(0)ex = 0 holds
for any x at z = 0. This means that E(1) = 0 holds identi-
cally in the medium 1, because π/2 > θt > 0 and E(1) is the
electric field of a TEM wave. Since E(1)=0 in medium 1,
the magnetic field H(1)

y vanishes identically. Since the mag-
netic field is also continuous across the interface, we obtain
H(0)
y = H(1)

y = 0 for any x at z = 0. Since H(0)
y is the magnetic

field of a TEM wave, H(0)
y = 0 and E(0) = 0 hold identically

in the medium 0. Thus, we conclude that Snell’s law and
the continuity of the electromagnetic field at the interface
generate the Fresnel shadow at LGAI.

2.2 A Guided Wave on Perfectly Conductive Surface

The Fresnel shadow at LGAI occurs in general. When the
medium 1 is perfectly conductive and (4) is unsatisfied,
however, there exist guided waves with real propagating
constants. The electric fields of guided waves are given as
(See Fig. 3)

E(0) = Aeze
±ik0 x, (23)

where A is any number. Notice that (23) exactly satisfies
Maxwell’s equations and the boundary conation ez×E(0) = 0
on the surface z = 0. Due to the existence of such a guided

Fig. 2 Electromagnetic field at low grazing angle of incidence. A dotted
line indicates an equi-phase plane.

Fig. 3 A guided wave propagating along a flat surface.

wave, H(0)
y cannot be determined in unique sense and the

Fresnel shadow may not take place in the perfectly conduc-
tive flat case.

When the perfectly conductive surface becomes ran-
domly rough, such a guided wave is expected to become a
random leaky wave due to the surface scattering. However,
no one obtains any solutions for such a random leaky wave
yet [12].

3. Wave Diffraction by a Periodic Surface

Let us consider the diffraction of a TM plane wave by a per-
fectly conductive surface (See Fig. 4). We represent the pe-
riodic corrugation with the period L as

z = f (x) = f (x + L), σh = max[ f (x)], (24)

where σh denotes the highest excursion of the surface. The
y component of the magnetic field H(0)

y satisfies (6) in the
medium 0 and the Neumann condition

∂H(0)
y /∂n|z= f = 0 (25)

on the surface (24), where ∂/∂n is normal derivative.
By (24), the surface corrugation is invariant under the

translation by the period L, i.e. f (x) → f (x + L). By such
invariance, there exists a solution H(0)

y (x, z) such that

H(0)
y (x + L, z) = e−ipLH(0)

y (x, z), (26)

which is a well known Floquet’s theorem. In our opinion,
there are several forms of H(0)

y (x, z) that satisfy (26). A form
is given by

(AM) H(0)
y = e−ipxA(x, z), A(x + L, z) = A(x.z), (27)

which we call the amplitude-modutaion (AM) representa-
tion. The Eq. (27) is widely used to represent the wave field
in the region z ≥ σh. However, we point out that the phase-
amplitude modulation (PAM) representation

(PAM) H(0)
y = exp

(
−i

∫ x

0
p′(τ, z)dτ

)
A′(x, z),

p′(x + L, z) = p′(x, z), A′(x + L, z) = A′(x, z), (28)

also satisfies (26), where p′(x, z) and A′(x, z) are periodic
functions of x. The PAM representation is an analogy of
the theory of waves in a homogeneous random media [13].
We believe that (28) is useful for the wave diffraction by
a periodic surface when the period L is much larger than

Fig. 4 Diffraction by a perfectly conductive periodic surface.
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the wavelength. However, how to determine two periodic
functions p′(x, z) and A′(x, z) is still open question.

3.1 Conventional Floquet’s Form

From (27), the wave field is usually represented as

H(0)
y = e−ipx−iβ(p)z

+
∑

m

Am(p)e−i(p+mkL)x+iβ0(p+mkL)z, z ≥ σh, (29)

which is the conventional Floquet form. Here, kL is the spa-
tial angular frequency of the period L,

kL = 2π/L. (30)

The first term in (29) is the incident plane wave, p and β0(p)
are defined by (10) and (11). The second term is a sum of
up-going plane waves and evanescent waves, where Am(p)
is the mth order diffraction amplitude and A0(p) is the re-
flection coefficient. However, note that (29) is valid when
the diffraction problem is solved uniquely for any real p and
when guided waves with real propagation constants do not
exist.

3.2 Reciprocal Theorem

Diffraction amplitudes are determined approximately [4] or
numerically [14]–[17]. At LGAI, however, many of them
can be determined exactly by the reciprocity. Such determi-
nation was discussed in detail [18]. But we write only some
important points here.

The reciprocal theorem [17] may be written as

β0(p)Am(−p − mkL) = β0(−p − mkL)Am(p),

(m = 0,±1,±2, · · ·), (31)

which is exact and applicable for any periodic grating.
Putting m = 0, we find A0(p) = A0(−p), because β0(p) =
β0(−p) by (11). Putting p = k0 and using β0(k0) = 0, one
finds at LGAI for m � 0

β0(−k0 − mkL)Am(k0) = 0, (m = ±1,±2, · · ·), (32)

by which we will determine Am(k0) below.

Single anomaly case. In the single anomaly case, L � mλ/2
holds for any positive integer m, λ = 2π/k0 being wave
length. Then, β0(−k0 − mkL) � 0 holds for any integer
m(� 0). Thus, from (32) we obtain exactly

Am(k0) = 0, (m = ±1,±2,±3, · · ·), (33)

by which (29) is reduced to a sum of two terms,

H(0)
y = [e−ik0 x + A0(k0)e−ik0 x], (34)

as is shown in Fig. 5. Since (29) is a sum of infinite terms,
it could diverge for z < σh. However, (34) is free from such
a divergence problem and can be applicable for any z. If the
surface (24) is flat without any roughness, (34) becomes a

Fig. 5 Reciprocity. When a plane wave is incident with a low grazing
angle from a direction (1), diffraction into directions (3) and (4) disappears.
Only the reflected wave propagating into a grazing direction (2) may exist.
Furthermore, a plane wave into another grazing direction (5) can exist if
the periodic surface satisfies the double anomaly condition.

Fig. 6 Examples of perfectly conductive step gratings which support
guided standing waves, when the period L and groove widths w, w1, w2

are integer multiples of λ/2, λ being wavelength.

guided wave. In a case of a corrugated surface, however, it
can be shown [18] from (34) and (25)

A0(k0) = −1, (35)

which means that the Fresnel shadow at LGAI always takes
place in the single anomaly case.

Double anomaly case. In the double anomaly case where the
period L is an integer multiple of λ/2, there exists an integer
m̂(� 0) for which β0(−k0− m̂kL) = 0 holds. Therefore, from
(32) we obtain exactly

Am(k0) = 0, m � 0, m̂, (36)

H(0)
y = e−ik0 x + A0(k0)e−ik0 x + Am̂(k0)eik0 x. (37)

Since (37) must satisfy (25) on the periodic surface, we ob-
tain in general

A0(k0) = −1, Am̂(k0) = 0, (38)

which means H(0)
y vanishes for any x and z at LGAI.

However, an exception takes place in the double
anomaly case [18]. For step gratings shown in Fig. 6, where
L, w, w1 and w2 are integer multiples of λ/2, there exists a
guided standing wave

H(0)
y = Ae±ik0 x[1 + e∓2ik0 x] = 2A cos(k0x), (39)

which may be understood as a guided wave with a real prop-
agation constant k0 or −k0, and A is any constant. Note that
(39) satisfies (6) and the boundary condition (25) on the sur-
face of a step grating in Fig. 6.
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In a previous paper [20], we started with a hypothe-
sis such that the Fresnel shadow always takes place for any
periodic gratings. However, the existence of guided stand-
ing waves means that such a hypothesis is imperfect and the
uniqueness theorem does not hold for the TM wave case.
Then, we conclude that the Fresnel shadow appears when
and only when guided waves with real propagation constants
do not exist.

3.3 Shadow Form of Solution

Assuming that such guided waves do not exist, we derive a
shadow form of the diffracted field [20].

Using the primary excitation ψp(x, z) in (16), we
rewrite (29) as

H(0)
y = ψp(x, z)

+
∑

m

[Am(p) + δm0]e−i(p+mkL)x+iβ(p+mkL)z. (40)

Here, [Am(p)+δm0]e−i(p+mkL)x+iβ(p+mkL)z is the mth order mod-
ified diffracted wave, which is excited by ψp(x, z). Since
ψp(x, z) is proportional to β0(p), so is [Am(p) + δm0]. Thus,
we may write

Am(p) + δm0 =
2β0(p)

k0
S m(p), (41)

where S m(p) is the mth order scattering factor. By the reci-
procity, we find

S m(p − mkL/2) = S m(−p − mkL/2). (42)

Thus, S m(p) is symmetrical with respect to the symmetrical
axis p = −mkL/2, which is verified numerically [20]–[22].

Using (41), we obtain a shadow form of the diffracted
field,

H(0)
y =

2β0(p)
k0
H (0)

y , (43)

H (0)
y = ψe(x, z) +

∑
m

S m(p)e−i(p+mkL)x+iβ0(p+mkL)z.

(44)

Here, (43) explicitly represents that the Fresnel shadow
takes place, because the primary excitation (16) is propor-
tional to β0(p) and vanishes at LGAI.

In our opinion [20], however, scattering factors should
be first determined from (44) and (25). Then, Am(p) should
be calculated by (41).

3.4 Energy Conservation

In the grating theory, the diffraction efficiency is subject of
interest. By use of the scattering factor, several properties of
the diffraction efficiency become clear.

The energy conservation law may be written as∑
m

ηm(p) = 1. (45)

Here, ηm(p) is the mth order diffraction efficiency which is
given in terms of the scattering factor as [20],

(when m � 0)

ηm(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4Re[β0(p + mkL)]β0(p)|S m(p)|2
k2

0

|p| ≤ k0

4Re[β0(p + mkL)]|S m(p)|2
k0Re[S 0(p)]

|p| > k0

(when m = 0)

η0(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣1 − 2β0(p)

k0
S 0(p)

∣∣∣∣∣
2

, |p| ≤ k0

0, |p| > k0

. (46)

These equations enable us to define ηm(p) for a propagat-
ing wave incidence (|p| < k0), an evanescent wave incidence
(|p| > k0) and even at LGAI (p = ±k0). By (46), we find
ηm(p) is discontinuous at p = ±k0, which is verified numer-
ically [20]–[22]. When θi is real and goes to zero, we obtain

lim
θi→0

ηm (k0 cos(θi)) = δm0, (47)

which means that the 0 order diffraction efficiency becomes
unity and any other order one vanishes at LGAI. This agrees
with numerical results [14]–[16], [22].

4. Scattering from Randomly Rough Surface

Several analytical methods have been proposed for the scat-
tering from a randomly rough surface [19]. However, it is
quite difficult to exactly obtain an analytical solution. Nu-
merical solutions are also difficult to obtain for an infinitely
extending random surface.

However, we have proposed a probabilistic method
which makes use of the translation invariance property of a
homogeneous random function [13]. Assuming that the sur-
face corrugation is mathematically given by a homogeneous
random function, we have shown that the scattered wave has
a stochastic Floquet’s form, which is a product of an expo-
nential phase factor and a homogeneous random function
[7]. For a slightly rough case [8], [9], we have obtained
an approximate solution, which indicates that the incoher-
ent scattering into all directions disappears and only the co-
herent reflection occurs with the reflection coefficient −1 at
LGAI. (See Figs. 3 and 7 in Ref. [9] for numerical exam-
ples.). By use of the reciprocity, this section newly demon-
strates that such a curious phenomenon at LGAI takes place
not only in a slightly rough case but also in general case.

Let us consider the scattering of a TM plane wave from
a perfectly conductive random surface shown in Fig. 7. We
assume the corrugation is given by a homogeneous Gaus-
sian random function f (x, ω), where ω is a sample point in
the sample space Ω. To express explicitly the translation
invariance property, we represent f (x, ω) as [13],

z = f (x, ω) = f (0, T xω), (48)

where T x is a measure preserving transformation taking a
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Fig. 7 Scattering from a homogeneous random surface. The coherent
reflection into the specularly reflected direction and incoherent scattering
into all directions.

sample point ω into another sample point T xω. The right
hand side indicates that f (x, ω) is invariant under a transla-
tion (x, ω)→ (x+a, T−aω) for any a. Taking such translation
invariance, we can find the scattered wave has a stochastic
Floquet’s form (51) below.

Let us represent the incident plane wave by e−ipx−iβ0(p)z

and the scattered wave by ψs(x, z, ω). Then we write the
total field as

H(0)
y = e−ipx−iβ0(p)z + ψs(x, z, ω), (49)

which satisfies (6) and the Neumann condition (25) on the
surface (48), where p is given by (10).

Since the random surface is invariant under the transla-
tion above, the scattered wave must satisfy

ψs(x + a, z, T−aω) = e−ipaψs(x, z, ω), (50)

which we call the stochastic Floquet theorem [7]. By use
of a homogeneous random function v(T xω, z), a solution of
(50) is given as

ψs(x, z, ω) = e−ipxv(T xω, z), (51)

which is a stochastic Floquet’s form of solution. Note that,
if we replace v(T xω, z) by a periodic function A(x, z), (51) is
reduced to the AM representation (27).

For concrete discussions, we write

z = f (0, T xω) =
∫ ∞

−∞
F(λ)e−iλxdB(λ, ω),

F(λ) = F∗(−λ), (52)

where the asterisk denotes complex conjugate, and dB(λ, ω)
is a complex Gaussian random measure with

dB(λ, ω) = dB∗(−λ, ω), (53)

〈dB(λ, ω)〉 = 0, (54)

〈dB(λ, ω)dB∗(λ′, ω)〉 = δ(λ − λ′)dλdλ′ (55)

dB(λ, T−aω) = eiλadB(λ, ω). (56)

Here, the angle brackets denote ensemble average over Ω.
From these equations, we obtain

〈 f (x, ω)〉 = 0, (57)

σ2 = 〈 f 2(x, ω)〉 =
∫ ∞

−∞
|F(λ)|2dλ, (58)

where σ is the root mean square surface height and |F(λ)|2

is the power spectrum of the random surface. We assume
|F(λ)|2 is a continuous function of λ to make the Gaussian
process f (0, T xω) ergodic.

Mathematically, v(T xω, z) is a functional of the random
surface f (0, T xω). By (52), it is regarded as a stochas-
tic functional of the complex Gaussian random measure
dB(λ, ω) and is represented by the Wiener expansion [23]
as

H(0)
y = e−ipx−iβ0(p)z + a0(p)e−ipx+iβ0(p)z +

∫ ∞

−∞
a1(λ|p)

×e−i(p+λ)x+iβ0(p+λ)zĥ(1)[dB(λ)] +
∫ ∞

−∞

∫ ∞

−∞
a2(λ1, λ2|p)

e−i(p+λ1+λ2)x+iβ0(p+λ1+λ2)zĥ(2)[dB(λ1), dB(λ2)]

+ · · · , (59)

where we drop ω in dB(λ, ω) to simplify notations.
ĥ(1)[dB(λ)], ĥ(2)[dB(λ1), dB(λ2)], · · · are random functions,
called the Winener-Hermite differentials [23], with statisti-
cal properties:

〈ĥ(n)[dB(λ1), dB(λ2), · · · , dB(λn)]〉 = 0, n ≥ 1, (60)

〈ĥ(n)[dB(λ1), dB(λ2), · · · , dB(λn)]

×ĥ(m)[dB(λ1), dB(λ2), · · · , dB(λm)]〉 = 0, m � n.

(61)

a0(p),a1(λ|p),a2(λ1, λ2|p), · · · are deterministic functions
called Wiener kernels, which are implicitly assumed to be
continuous with respect to their arguments. The expression
(59) satisfies (6) term by term. Physically, integrals rep-
resent incoherent waves made up of up-going waves and
evanescent waves with random amplitudes. Thus, the ex-
pression (59) is valid in a region above the highest excur-
sion of the surface. In a random case, however, the highest
excursion is difficult to define. However, we expect (59) is
practically exact in the region z >> σ. Furthermore, (59)
is a rigorous expression only when the scattered wave has a
unique solution for any real p. This condition is implicitely
assumed below.

From (59) and (60), we obtain the coherent wave field
(average part) as

〈H(0)
y 〉 = e−ipx−iβ0(p)z + a0(p)e−ipx+iβ0(p)z, (62)

which is made up of the incident plane wave and the re-
flected wave with a0(p) the coherent reflection coefficient.

4.1 Reciprocity and Scattering Factor

Let us determine Wiener kernels at LGAI by the reciprocity.
Reciprocity relations of Wiener kernels are given as [10],

β0(p)an(λ1, λ2, · · · , λn| − p − λ1 − λ2 − · · · − λn)

= β0(−p − λ1 − λ2 − · · · − λn)an(λ1, λ2, ·λ, λn|p).

(63)

When n = 0, this means a0(p) = a0(−p) because β0(p) =
β0(−p). Putting p = k0 and using β0(k0) = 0, one finds, for
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n ≥ 1, β0(−k0 − λ1 − λ2 − · · · − λn)an(λ1, λ2, ·λ, λn|k0) = 0,
which means

an(λ1, λ2, · · · , λn|k0) = 0, n ≥ 1, (64)

since an(λ1, λ2, · · · , λn|k0) is continuous with respect its ar-
guments. Because of (64), all integrals in (59) vanish and the
incoherent scattering disappears at LGAI. Thus, we have at
LGAI.

H(0)
y = e−ik0 x + a0(k0)e−ik0 x, (65)

which is applicable for any z. Because (65) satisfies the Neu-
mann condition on the random surface, we find the coherent
reflection coefficient becomes −1 at LGAI,

a0(k0) = −1. (66)

From this and (64), we may conclude that the Fresnel
shadow always takes place at LGAI for a homogeneous
Gaussian random surface, if guided waves with real prop-
agation constants do not exist.

Next, let us obtain a shadow form of the scattered field.
Using (16), we rewrite (59) as

H(0)
y = ψp(x, z) + [a0(p) + 1]e−ipx+iβ0(p)z +

∫ ∞

−∞
a1(λ|p)

×e−i(p+λ)x+iβ0(p+λ)zĥ(1)[dB(λ)] +
∫ ∫ ∞

−∞
a2(λ1, λ2|p)

×e−i(p+λ1+λ2)x+iβ0(p+λ1+λ2)zĥ(2)[dB(λ1), dB(λ2)]

+ · · · · · · . (67)

Here, the second term is the modified reflected wave. We re-
gard again that ψp(x, z) excites the modified reflected wave
and incoherent waves. Since ψp(x, z) is proportional to
β0(p), the modified reflected wave and incoherent waves
must be proportional to β0(p). Therefore, we may write

a0(p) + 1 =
2β0(p)

k0
S 0(p), (68)

an(λ1, λ2, ·λ, λn|p) =
2β0(p)

k0
S n(λ1.λ2, · · · , λn|p), (69)

S n(λ1.λ2, · · · , λn|p)

= S n(λ1.λ2, · · · , λn| − p − λ1 − λ2 − · · · − λn), (70)

where S n(λ1, λ2, · · · , λn|p) is the nth order scattering fac-
tor. The expressions (69) and (70) were first obtained in
Ref. [10]. However, (68) is a new equation obtained in this
paper.

Using these relations, we obtain a shadow form of the
wave field as

H(0)
y =

2β0(p)
k0
H (0)

y , (71)

where the elementary fieldH (0)
y is given by

H (0)
y = ψe(x, z) + S 0(p)e−ipx+iβ0(p)z +

∫ ∞

−∞
S 1(λ|p)

×e−i(p+λ)x+iβ0(p+λ)zĥ(1)[dB(λ)] +
∫ ∫ ∞

−∞
S 2(λ1, λ2|p)

×e−i(p+λ1+λ2)x+iβ0(p+λ1+λ2)zĥ(2)[dB(λ1), dB(λ2)]

+ · · · · · · . (72)

Our shadow form (71) represents that the Fresnel shadow
takes place because the primary excitation is proportional to
β0(p) and vanishes at LGAI. We note that (71) and (72) give
a rigorous expression in a Gaussian random surface case.

4.2 Approximate Solution

Let us obtain low order scattering factors in a slightly rough
case with k0σ << 1, First, we approximate the Neumann
condition (25) to obtain an effective boundary condition on
the z = 0 plane,

[
−d f

dx
∂

∂x
+
∂

∂z
+ f (x, ω)

∂2

∂z2

]
H(0)
y = 0, (z = 0). (73)

Substituting (71) and (72) into (73), we obtain a set of equa-
tions for scattering factors. Neglecting higher order scatter-
ing factors, we approximately obtain S 0(p) and S 1(λ|p) as

S 0(p) =
k0

β0(p) + Zs(p)
, (74)

S 1(λ|p) = −i
k0

β0(p) + Zs(p)

[k2
0 − p(p + λ)]F(λ)

β0(p + λ) + Zs(p + λ)
, (75)

Zs(p) =
∫ ∞

−∞

[k2
0 − p(p + λ)]2|F(λ)|2
β0(p + λ) + Zs(p + λ)

dλ, (76)

where Zs(p) represents effects of multiple scattering [11].
Wiener kernels a0(p) and a1(λ|p) are obtained from (68),
(69), (74) and (75). These kernels so obtained are essentially
same as those in Ref. [9], where Zs(p + λ) in the integrand
in (76) was neglected however. This example demonstrates
that the elementary field (72) can be determined approxi-
mately at least for a slightly rough case. However, it is left
for future work to determine scattering factors for a very
rough case.

5. Conclusions

Wave reflection, diffraction and scattering of a plane wave
by a translation invariance surface often becomes singular
at LGAI. The total wave field vanishes and physically be-
comes a dark shadow which we call the Fresnel shadow.
Such a curious phenomenon is discussed for three cases: re-
flection by a flat interface between two media, diffraction by
a perfectly conductive periodic surface and scattering from a
homogeneous Gaussian random surface. Then, we find that,
when a translation invariant surface does not support guided
waves with real propagation constants, the Fresnel shadow
always takes place, because the primary excitation vanishes
at LGAI. Also, we present a shadow form of solution. Fur-
ther, we have presented several open questions to be solved.

Our discussions were restricted to a TM wave case, but
can be applied to a transverse electric (TE) wave case. We
note that the Fresnel shadow is expected to appear in another
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translation invariance cases, such as a periodic random sur-
face [24], [25] and a homogeneous random slab [26]. How-
ever, the Fresnel shadow at LGAI may not appear in a case
without translation invariance. A periodic grating with finite
extent [27] is an example.

The author would like to thank Jiro Yamakita and mem-
bers of Wave Signal Lab. Kyoto Institute of Technology,
for comments and discussions. Warm thanks go to Akira
Komiyama and Shinya Hasegawa for their interest to this
work.
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