
IEICE TRANS. ELECTRON., VOL.E97–C, NO.3 MARCH 2014
149

INVITED PAPER Special Section on Leading-Edge Technology of Superconductor Large-Scale Integrated Circuits

Circuit Description and Design Flow of Superconducting SFQ Logic
Circuits

Kazuyoshi TAKAGI†,††a), Nobutaka KITO†††,††, Members, and Naofumi TAKAGI†,††, Senior Member

SUMMARY Superconducting Single-Flux-Quantum (SFQ) devices
have been paid much attention as alternative devices for digital circuits,
because of their high switching speed and low power consumption. For
large-scale circuit design, the role of computer-aided design environment
is significant. As the characteristics of the SFQ devices are different from
conventional devices, a new design environment is required. In this paper,
we propose a new timing-aware circuit description method which can be
used for SFQ circuit design. Based on the description and the dedicated
algorithms we have been developing for SFQ logic circuit design, we pro-
pose an integrated design flow for SFQ logic circuits. We have designed
a circuit using our developed design tools along with the design flow and
demonstrated the correct operation.
key words: single-flux-quantum circuit, design methodology, circuit de-
scription, logic design, layout design, design verification

1. Introduction

Superconducting Single-Flux-Quantum (SFQ) devices are
expected to be emerging digital circuit devices that can fol-
low conventional CMOS devices [1]. With the progress of
integration and the development of technologies of high-
speed interconnecting transmission lines [2], SFQ digital
circuits with thousands of Josephson junctions working at
high clock frequency up to several tens of GHz have become
feasible [3]–[5].

To design large-scale circuits, computer-aided circuit
design systems are indispensable. For CMOS circuits, sys-
tems to support various aspects of the design process have
been used for years. Though some part of the software tools
can be applied to SFQ circuit design, dedicated design al-
gorithms and tools are needed in many stages in the design
process, because the nature of SFQ circuits is different from
that of CMOS circuits.

In SFQ circuits, digital information is represented by
a magnetic flux quantum passing through a superconduct-
ing loop and is transmitted by a voltage pulse generated by
a Josephson junction. From the viewpoint of logic design,
SFQ circuits operate by pulse logic and hence have different
circuit structure compared to conventional level logic. Pa-
rameters to consider in optimization, such as trade-off values
between timing and area costs and balances between logic

Manuscript received August 2, 2013.
Manuscript revised November 12, 2013.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606-8501 Japan.
††The authors are with ALCA-JST.
†††The author is with the School of Engineering, Chukyo Uni-

versity, Toyota-shi, 470-0393 Japan.
a) E-mail: ktakagi@i.kyoto-u.ac.jp

DOI: 10.1587/transele.E97.C.149

gate and transmission performances, are also special in SFQ
circuit design. Design flow for high-performance SFQ cir-
cuits should take these factors into account.

Design tools for SFQ circuits have been developed and
an integrated design methodology has been proposed in [6].
In their work, circuits are designed with zero-skew syn-
chronous clocking, which is common in semiconductor cir-
cuits. They successfully showed that design automation of
large-scale SFQ circuits is possible with synchronous clock-
ing scheme.

Our aim is to develop an advanced design methodol-
ogy applicable to SFQ circuits with flow-clocking, which
is a skewed clocking scheme suitable for high-speed SFQ
circuits. Here, new algorithms to deal with the distinctive
timing-related issues are required.

Design environment and tools for flow-clocking SFQ
circuits have to be concious of signal timing at each gate.
To specify the logical behavior of an SFQ circuit in a con-
ventional design environment, a circuit description close to
physical layout is required, because the signal timing affects
the functionality. However, close relationship between log-
ical and phisical design stages results in difficulties in the
design flow. To resolve the situation, in this paper, we pro-
pose a timing-aware circuit description method in logical
schematic level. By using the proposed description, signal
timing which affects the circuit behavior can be specified
completely, while being independent of physical design.

Based on the timing-aware description and the dedi-
cated algorithms we have been developing for SFQ logic
circuit design, we propose a design flow for SFQ logic cir-
cuits. For given circuit description in logic level, synthesis,
placement, and routing processes are performed to obtain
a circuit layout. At each stage, SFQ-specific design algo-
rithms are employed. To deal with the pulse-based behav-
ior, we have to construct a mechanism for synchronization.
Because of the high-speed switching, timing design should
take priority over other parameters at every stage. The pro-
posed design flow is composed of these stages combined
consistently.

This paper is organized as follows. We show the is-
sues to consider in designing SFQ logic circuits in Sect. 2.
In Sect. 3, we propose a timing-aware circuit description and
show a circuit simulation method as an application of the de-
scription. In Sect. 4, we describe the proposed design flow
for SFQ circuits. An overview of the individual algorithms
and an example of circuit design to demonstrate the prac-
ticality of the design flow are also shown. Section 5 is a

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



150
IEICE TRANS. ELECTRON., VOL.E97–C, NO.3 MARCH 2014

conclusion.

2. Design issues of SFQ Logic Circuits

2.1 Logical Expression and Timing

The main reason that we need new circuit description
method and new design algorithms for SFQ logic circuits
is that they work by pulse logic. In designing SFQ logic cir-
cuits, presence and absence of a pulse are associated with
logic values ‘1’ and ‘0’ respectively. A clock signal is in-
troduced to define time frames and the logic value ‘0’ is
distinguished from the state that the pulse has not arrived.
Therefore, we have to be aware of the timing of clock distri-
bution. Because timing information has not been described
in a circuit schematic, a new timing-aware circuit descrip-
tion method is necessary. New design algorithms for timing-
driven optimization are also required.

Each SFQ logic gate is driven by synchronous clock
pulses, and the circuit behavior can be interpreted in the
same way as conventional CMOS logic circuits. However,
it is not practical to design totally synchronous circuits in
which a clock pulse is fed to all gates at the same time,
because the switching speed is very high and wiring delay
is not negligible. Therefore, flow-clocking design is com-
monly used, where clock skew for each logic gate is intro-
duced. A clock pulse is distributed along with the data and
reaches to each gate after a different amount of time. Hence,
the clock is skewed, i.e., the time frames defined at each gate
are different to one another. For correct operation, we have
to design the topology and the geometry to distribute a clock
signal carefully, in order to ensure that setup and hold con-
ditions at each gate are satisfied.

Flow-clocking can be classified into several schemes.
In the concurrent-flow clocking scheme, clock pulses are
fed to the circuit along with data pulses, and a clock pulse
arrives before the data pulses at each gate. A circuit with
concurrent-flow clocking operates in a pipelined manner
where each level of gates corresponds to a stage. In the
clock-follow-data clocking scheme, clock pulses are fed to
the circuit along with data pulses, which is the same as the
concurrent-flow clocking, but a clock pulse arrives after the
data pulses at each gate. Behavior of a clock-follow-data
clocking circuit is interpreted in the same way as a combi-
national circuit.

Because SFQ circuits can operate at high switching fre-
quency, timing-related issues are critical throughout the de-
sign flow. In typical circuit design, concurrent-flow clocking
is employed as a whole, and a small cluster of gates is pos-
sibly designed by the clock-follow-data clocking scheme to
save operation clock cycles. If the clock timing of the fabri-
cated circuit is not as intended by the designer, the circuit
does not work correctly. Therefore, timing-aware circuit
description is required to specify the logical behavior com-
pletely. Because timing adjustment in detailed design on
trial-and-error basis is hard for large-scale circuits, design
automation using computer-aided design tools is indispens-

able.

2.2 Cell-Based Design and Interconnects

Design of SFQ logic circuits is performed in a cell-based
manner [7]. The set of logic gates are predefined as a cell li-
brary, which contains logical and physical information. Cir-
cuits are implemented by arranging cells and interconnects.
Connections between cells are implemented by simply plac-
ing next to each other, or by using Josephson transmission
lines (JTLs) and splitters. Splitters and JTLs are also prede-
fined in the cell library. With the progress of the fabrication
process technology, passive transmission lines (PTLs) have
become available as interconnects.

There are several aspects specific to SFQ devices to
consider in circuit design. The timing requirement is much
more severe compared to conventional CMOS circuits, be-
cause of the high switching speed and the pulse-based be-
havior. As for the circuit topology, we have to use active
cells to make fan-out, because PTLs are basically one-to-
one transmission lines. In timing design, though PTLs can
be used for faster interconnects especially for long connec-
tions, they require overheads of transmitters and receivers.
In layout design, JTLs have to be arranged in the active
layer, while PTLs are routed through other layers.

In the design process for SFQ circuits, there have been
a lot of procedures processed manually, and our aim is to
establish an automated design flow. Computer-aided design
algorithms should be designed with the SFQ-specific issues
taken into account.

3. Timing-Aware Circuit Description and Simulation

3.1 Timing-Aware Circuit Description

SFQ circuits of the same topology may have different func-
tions, depending on the signal timing caused by switching
and transmission delay. However, transmission delay is not
usually specified in the circuit schematic. Therefore, circuit
schematic solely cannot describe the functionality of the cir-
cuits and we have to be aware of temporal information. In
conventional design environment, the logical behavior of the
SFQ circuits cannot be settled before detailed layout design.
Therefore, logical and physical design of SFQ circuits are
tightly bounded together, which is a bad practice with re-
spect to step-wise refinement of design.

To cope with this situation, we propose a timing-aware
schematic representation of SFQ circuits [8]. Because the
function of each gate in a circuit depends on the timing of
pulse arrivals, we attach an annotation of the order of pulse
arrivals to each gate in a schematic to describe function ac-
curately. The order is represented by inequalities between
input terminals including the clock input. We define peri-
odical time frames, which are typically the clock cycles, to
define the order.

Here, we consider circuits which satisfy the following
conditions.



TAKAGI et al.: CIRCUIT DESCRIPTION AND DESIGN FLOW OF SUPERCONDUCTING SFQ LOGIC CIRCUITS
151

Condition 1: Each gate in a circuit has the order of possible
pulse arrivals independent of parameters such as clock
frequency and gate delay.

Condition 2: The order of possible pulse arrivals at each
gate is always consistent with a partial order defined
on the input terminals.

By these conditions, we exclude circuits containing multi-
cycle paths and autonomous oscillator circuits.

The following proposition is derived from the above
conditions and now we can specify the function of an SFQ
circuit accurately.

Proposition 1: The function of an SFQ circuit is specified
uniquely by the schematic with annotations of the order
of pulse arrivals.

Proof: When input pulses are fed to a circuit, internal states
of the gates after current time frame are determined by the
current internal states and the current input pulses, indepen-
dent of the clock frequency (Condition 1). The order of
pulse arrivals at each gate is specified by the annotation and
hence the behavior of the gate is completely described (Con-
dition 2). Therefore, the function of the circuit as a whole is
specified uniquely. �

Figures 1(a) and (b) are examples of schematics with
annotations. Figure 1(a) is a circuit with clock-follow-
data clocking and Fig. 1(b) is a circuit with concurrent-
flow clocking. In a circuit with clock-follow-data clocking,
data pulses arrive at each gate before a clock pulse arrives.
Therefore, we give an inequality “i1, i2 < clk” for each gate
in Fig. 1(a). In a circuit with concurrent-flow clocking, a
clock pulse arrives at each gate before data pulses arrive.
Therefore, we give an inequality “clk < i1, i2” for each gate
in Fig. 1(b).

Figures 2(a1) and (b1) are examples of SFQ circuit
schematics with feedback loops. Clock wires are omitted
in these figures. Figures 2(a2) and (b2) show the behav-
ior of the circuits in Figs. 2(a1) and (b1), respectively. In
Fig. 2(a1), gate G3 receives a pulse from the feedback loop.
The pulse through the loop arrives at G3 after a clock pulse
arrives, and the logical value is interpreted in the next time
frame. In Fig. 2(b1), G2 receives a pulse from the feed-
back loop. Though the circuits shown in Figs. 2(a1) and
(b1) work differently, they cannot be distinguished by the
schematic descriptions only, because they have the same
topology. Annotations of the order of pulse arrivals are suf-
ficient to specify the circuit behavior.

Fig. 1 SFQ logic circuit schematics with annotations of the order of
pulse arrivals. (a) Clock-follow-data clocking. (b) Concurrent-flow clock-
ing.

Now we show a formulation for describing the anno-
tations of the order of pulse arrivals in circuit description
language for SFQ circuits. This description can be used for
design automation for SFQ logic circuits. In the new de-
scription language, we represent a gate as follows.

o = GAT E G (w1@p1, w2@p2, . . . , wk@pk);

Here, GAT E is a primitive logic function, such as AND, OR
and XOR. G is the instance name of the gate. w1, w2, . . . , wk

are inputs of the gate. p1, p2, . . . , pk are integers to describe
the order of pulse arrivals. o is the output of the gate. This
description represents a sequence of inequalities for each
gate by the values of p1, p2, . . . , pk. pi < pj means the order
that the pulse on wi precedes the pulse on w j.

A description of a logic circuit is a collection of the
descriptions of all gates. Any SFQ circuit satisfying Condi-
tions 1 and 2 can be described. For example, we describe
the circuit in Fig. 1(a) as follows.

d = AND G1 (a@1, b@1, clk@2);

e = AND G2 (c@1, d@1, clk@2);

Because a clock pulse arrives after data inputs, the value
attached to “clk” is greater than those for “a”, “b”, “c”, and
“d”. The same value 1 for “a” and “b”, and “c” and “d”
means that we give no order between these inputs. Another
example is in Fig. 3, which corresponds to the circuit with a

Fig. 2 Examples of SFQ logic circuits with feedback loops.

1: x = D G1( b@0, clk@1 );

2: out = OR G3( x@0, y@2, clk@1 );

3: y = AND G2( a@0, out@0, clk@1 );

Fig. 3 Circuit description for Fig. 2(a1).



152
IEICE TRANS. ELECTRON., VOL.E97–C, NO.3 MARCH 2014

1: // Input: circuit description(composed of N gates from G1 to GN),
2: // input sequence I0, I1, . . . (each for input ik at time frames 1 to T )
3: // Output: output sequence
4: //
5: // Definition of Gl: ol = gatel Gl(wl,1@pl,1, wl,2@pl,2, . . . , wl,kl @pl,kl );
6: // pclk

l : the order for “clk” input of Gl if it exists, otherwise∞.
7: // PHl: set of pairs of input and order {wl,k@pl,k | pl,k > pclk

l }.
8: // PLl: set of pairs of input and order {wl,k@pl,k | pl,k ≤ pclk

l }.
9: // ol corresponds to sequence Ol.

10: // wl,1, . . . , wl,kl correspond to sequences Wl,1, . . . ,Wl,kl , respectively.
11:
12: Prepare sequences of length T corresponding to wires in the description.
13: Initialize all sequences except input sequences (Invalidate all elements of sequences).
14:
15: for t from 1 to T do
16: S ← {1, 2, . . . ,N}
17: while S is not empty do
18: Select l from S such that all sequences corresponds to PLl have valid t-th elements.
19: Remove l from S .
20: Calculate new internal state of Gl using (t − 1)-th elements of sequences corresponding to PHl according to the order.
21: Calculate new internal state of Gl using t-th elements of sequences corresponding to PLl according to the order.
22: Ol[t]← output of Gl.
23: end while
24: end for
25: print output sequences

Fig. 4 Logic simulation algorithm.

feedback loop in Fig. 2(a1).

3.2 Circuit Simulation in Logic Level

The logical behavior of a circuit is completely specified with
the proposed schematic level description. One of the advan-
tages of the description is that we can perform circuit sim-
ulation without calculation of transmission delay from the
precise layout design.

We show a simulation algorithm for SFQ circuits in
Fig. 4 as an application of the proposed description lan-
guage. For a given description of a circuit and the inputs,
simulation for each input data is performed by iteratively
calculating outputs of gates whose input values are updated.
For each gate, we calculate the internal state according to
the order of pulse arrivals.

The calculation progresses in topological order of the
gates. The difference from standard simulation algorithm is
that the logical values of the inputs are chosen from (t − 1)-
th and t-th time frames according to the timing of the signal
compared to the clock signal. Thus, the time complexity
of the algorithm is O(NT ), where N denotes the number of
gates and T denotes the number of time frames to simulate.

4. Design Flow for SFQ Logic Circuits

4.1 Proposed Design Flow

We propose a design flow of SFQ logic circuits as shown
in Fig. 5. The design flow is based on that for conventional
CMOS circuits. The conventional design flow is adapted
to SFQ circuit design. Several dedicated components have
been developed to capture design issues of SFQ circuits and

Fig. 5 Design flow for SFQ logic circuits.

integrated in this flow.
A functional description of a circuit is given as the de-

sign entry. The description is in circuit schematic or in a
description language equivalent to schematic. In Sect. 3, we
proposed a new timing-aware description which can be used
for logic simulation. Detailed design of the clock distribu-
tion network is not required in the design entry.

The design is synthesized into a gate-level logic netlist
with the support of dedicated synthesis subsystems for SFQ
circuits. Our focus in this stage is the methods for clock dis-
tribution. As explained in the previous sections, we design
flow-clocking circuits. Because time frames of clock cy-



TAKAGI et al.: CIRCUIT DESCRIPTION AND DESIGN FLOW OF SUPERCONDUCTING SFQ LOGIC CIRCUITS
153

Fig. 6 Construction of skewed clock distribution network.

cles are different among logic gates, in order to optimize the
clock distribution network, we have to solve combinational
problems which are hard to solve by hand. Therefore, we
developed optimization algorithms to solve the problems.

The netlist is then processed by placement and routing
stages. Optimization of the wiring by placement and rout-
ing is the key for high-performance circuit design. Timing-
driven algorithms are introduced both in the placement and
routing stages. It is also necessary to consider geometry in
the synthesis stage. For routing design in particular, the it-
eration process for optimization is aiming at the timing con-
straints in the first place.

Along with the design flow from the design entry to
the layout, verification of the circuit, especially the verifica-
tion related to the timing, is important. Because the skewed
clock design makes the behavior of SFQ logic circuit com-
plicated, logical errors in timing are easily introduced in the
circuits. In our formal design verification method, we deal
with an SFQ circuit as a pipelined circuit with skewed clock
for each gate and perform comprehensive verification of the
circuit behavior. Circuit simulation explained in Sect. 3.2 is
also utilized for verification.

We have developed design tools for SFQ logic circuits,
based on the proposed design algorithms. Some of them
are implemented as extensions on top of the Cadence Vir-
tuoso design environment. The implemented tools includes
a clock tree synthesis tool which also perform rough global
placement, an automatic PTL routing tool, and a logic sim-
ulation tool based on the timing-aware circuit description.

In the following, we look into the algorithms developed
for each procedure in the design flow.

4.2 Logical Design

The timing behavior of concurrent-flow clocking SFQ cir-
cuits can be regarded as a pipeline constructed for exploiting
the ultra-fast switching speed. We have been proposed an al-
gorithm for skewed clock scheduling of SFQ logic circuits
[9]. We assumed PTLs as the signal wires and showed an al-
gorithm to determine the signal timing for each logic gate of
a concurrent-flow clocking circuit, with inserting delays on
datapaths (Fig. 6). Splitters denoted as black dots in the fig-
ure are used for fan-out and JTLs are used as delay elements.
Given a clock period, the proposed algorithm determines the
number of splitters on each clock path and delay elements

(JTLs) that should be inserted on each data path, when the
clock period can be achieved. Once a clock scheduling is
obtained, a clock tree to realize the scheduling can be con-
structed. We restricted the solution space to be searched by
the proposed algorithm for efficient computation. Experi-
mental results on sample circuits showed that the proposed
algorithm can obtain near optimal solutions.

As the routability and length of PTLs are not negligi-
ble, we have to consider geometry of the clock distribution.
In the method we proposed in [10], a clock tree to distribute
clock signals satisfying the timing restrictions for the whole
circuit is calculated. A clock tree without wire intersection
is obtained. Because the method takes account of geome-
try for circuit layout, a linear arrangement of gates in each
level is obtained at the same time. This information is to be
utilized for the initial placement in the next placement stage.

4.3 Layout Design

Layout design of an SFQ circuit is performed for each log-
ical level. Interconnects between adjacent levels can be im-
plemented by PTLs. However, using PTLs for short in-
terconnects is not efficient, because it requires overheads
in timing. Implementing all interconnects by JTLs, on the
other hand, is not practical, because the circuit area becomes
larger. One reasonable solution is to form clusters of the
levels and to use JTLs inside the clusters and PTLs among
the clusters. Optimization of the clustering can be done by
an algorithm based on dynamic programming, by evaluating
the area and delay as the constraint and objective function.

Detailed layout design is done for each logical level
or cluster. Using the rough global placement obtained by
the clock tree synthesis algorithm, placement of each cell
is determined. The constraint comes from the wiring delay
and congestion, and the optimization objective is the circuit
area.

We have developed a PTL routing method for SFQ cir-
cuits based on timing slack allocation [11], [12]. The under-
lying routing algorithm is the A∗ algorithm which connects
two endpoints by heuristic estimation of the wiring cost. In
the proposed routing process shown in Fig. 7, clock nets are
routed first. Next, we group clocked gates by their level and
route data nets for each level. Before the data net routing,
we calculate timing slacks and sort wires ordering by tim-
ing slack. Each net is routed incrementally in the order of
global/detailed routing. The routing and analysis phases are
iterated to optimize the layout. Because the timing require-
ment is crucial while the routing channel is limited, restric-
tions coming from the nets which already have routed are
taken into account in the analysis phase. Using timing and
layout information of routed nets, timing slack of each path
is calculated and the slack is assigned to wire segments com-
posing the path. The wire ordering and the congestion map
are updated dynamically.



154
IEICE TRANS. ELECTRON., VOL.E97–C, NO.3 MARCH 2014

Fig. 7 Algorithm for PTL routing.

4.4 Design Verification

As we have stated before, a concurrent-flow clocking SFQ
circuit can be considered as a pipelined circuit. The simula-
tion method presented in Sect. 3.2 is effective for verifying
the circuit behavior in logic level, because we can deal with
both logical and temporal relation of signals by the method.

Another method we have proposed for design verifica-
tion is a formal verification method of pipeline processing
behavior of SFQ logic circuits [13]. The design is given as a
logic circuit netlist with annotated timing information. The
specification is given as logic formulae with temporal infor-
mation, or as a circuit whose correct operation is guaran-
teed. If discrepancies of the behavior are detected, they are
fed back to designing process, the circuit design is refined,
and verification is performed again.

Because the logic gates are clocked, the verification
problem cannot be treated in the same way as the case of
combinational circuits. Existing verification methods for se-
quential circuits could be applied, but the number of latches,
which is equal to the number of clocked logic gates, can be
too large and the methods would not be practical. There-
fore, we have proposed a dedicated verification method. In
the proposed method, verification of circuits are performed
in the following two steps.

pipeline timing analysis: We check whether pulses arrive
in appropriate clock cycle.

logic sequence verification: We check whether the logical
sequence of the circuit satisfies the specification.

Let us see examples of design errors which can be de-

Fig. 8 Circuits with different behavior. (a) A circuit with unclocked CB.
(b) A circuit with clocked OR. (c) A circuit with multiple feedback loop.

tected by the proposed method. Let the circuit to be de-
signed is as illustrated in Fig. 8(a). The circuit in Fig. 8(a)
implements logical OR operation at point C using a conflu-
ence buffer (CB). We assume concurrent-flow clocking. Be-
cause a CB is not clocked, the CB together with the clocked
gates in level 2 can be treated as a single pipeline stage.
Note that a clocked non-inverting buffer gate is equivalent
to a D flip-flop. In the design shown in Fig. 8(b), the logical
OR operation at point C is implemented by a clocked OR
gate. Though this circuit is similar to the circuit of Fig. 8(a),
the implemented logic functions are different because they
have different timing behavior. Another design in Fig. 8(c),
where the OR gate is driven by clock-follow-data clocking,
also has similar circuit structure. A new feedback path is
formed in level 2. The logic function is different from that
of Fig. 8(b), but can be same as that of 8(a) for a certain
initial state.

In order to detect design discrepancy as shown in this
example, we deal with the logical structure of the circuit
including the timing of pipeline stages. When the circuits
contain feedback loops as seen in these examples, the spec-
ification described in formulae should contain recurrences.
The input and output variables are common, but the inter-
nal variables for the cutpoints of the feedback loops does
not necessarily match between two sets of formulae. In this
case, we have to check that for all possible sequences of in-
put values, output values in each clock cycles of the circuit
and those of the specification are identical. It can be proved
that checking output values of finite number of clock cy-
cles is sufficient to prove the equivalence, and the necessary
number of checked clock cycles depends on the length of
the feedback loops.

4.5 Circuit Design Using Developed Tools

To demonstrate the feasibility of the proposed design flow,
we designed an 8-bit Kogge-Stone carry lookahead adder
along with the design flow, using the developed tools. The
design process is shown in Fig. 9. On a logic design
in the schematic view, clock tree synthesis is performed



TAKAGI et al.: CIRCUIT DESCRIPTION AND DESIGN FLOW OF SUPERCONDUCTING SFQ LOGIC CIRCUITS
155

Fig. 9 Design of a carry lookahead adder. (a) Clock tree synthesis. (b)
Placement. (c) Routing.

(Fig. 9(a)). The target frequency is 50 GHz. The 158 logic
gates are partitioned into 9 pipeline stages and the gates in
each stage are arranged in a row. A clock tree topology
and a rough placement of logic gates are obtained. Logic
gates are placed (Fig. 9(b)) based on the obtained informa-
tion, and then the wires are routed (Fig. 9(c)). The circuit is
fabricated using ISTEC advanced process 2 (Fig. 10). The
circuit consists of 158 logic cells and 594 PTLs. The num-
ber of Josephson junctions is 8397 and the area is 3.9 mm
× 3.5 mm. The circuit was fully functional at low speed
test, and the partial operation at 50 GHz was confirmed [14],
[15].

5. Conclusion

We have been working on design methods for SFQ circuits,
and have developed algorithms to cope with design issues
specific to SFQ devices. In this paper, we proposed a timing-
aware circuit description in logic level and presented a sim-
ulation method. Now, we can conclude that we have finally
built the fundamental design flow from the design entry in
logic level to the physical layout. Our work to integrate
the individual algorithms into practical design tools is in
progress. Utilization of the timing-aware description to im-
prove design process is also included in our future work.

Because the potential of SFQ devices used as logic cir-

Fig. 10 Fabricated Chip of a carry lookahead adder in Fig. 9.

cuits is not yet fully unveiled, alternative ways to employ
nonconventional circuit structure will be worth challenging.
One of our approach is a dual-rail asynchronous logic design
[16], [17]. Synthesis of asynchronous logic using graph-
based logic expression is effective and this method can be
applied for small parts such as control units. Another idea is
a synthesis method for sequential circuits [18]. Using one-
hot encoding and uniform state machine modules, timing
design can be made easier. We are also developing a circuit
synthesis method based on clockless logic gates which make
synchronization using the timing of data pulses.

Acknowledgments

The authors thank Dr. M. Tanaka of Nagoya University for
his valuable comments and technical support in detailed de-
sign and testing of the circuit. The circuit has been fab-
ricated by using ISTEC advanced process 2 (ADP2). The
National Institute of Advanced Industrial Science and Tech-
nology partially contributed to the circuit fabrication. This
work has been supported in part by CREST JST, ALCA JST,
and VLSI Design and Education Center (VDEC), the Uni-
versity of Tokyo in collaboration with Cadence Design Sys-
tems, Inc.

References

[1] K.K. Likharev and V.K. Semenov, “RSFQ logic/memory fam-
ily: A new Josephson-junction technology for sub-terahertz-clock-
frequency digital systems,” IEEE Trans. Appl. Supercond., vol.1,
no.1, pp.3–28, 1991.

[2] T. Satoh, K. Hinode, S. Nagasawa, Y. Kitagawa, M. Hidaka,
N. Yoshikawa, H. Akaike, A. Fujimaki, K. Takagi, and N. Takagi,
“Planarization process for fabricating multi-layer Nb integrated cir-
cuits incorporating top active layer,” IEEE Trans. Appl. Supercond.,
vol.19, no.3, pp.167–170, 2009.

[3] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie,
N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto, “Design
and implementation of a pipelined bit-serial SFQ microprocessor,
CORE1β,” IEEE Trans. Appl. Supercond., vol.17, no.2, pp.474–
477, 2007.

[4] H. Park, Y. Yamanashi, K. Taketomi, N. Yoshikawa, M. Tanaka, K.
Obata, Y. Ito, A. Fujimaki, N. Takagi, K. Takagi, and S. Nagasawa,
“Design and implementation and on-chip high-speed test of SFQ
half-precision floating-point adders,” IEEE Trans. Appl. Supercond.,



156
IEICE TRANS. ELECTRON., VOL.E97–C, NO.3 MARCH 2014

vol.19, no.3, pp.634–639, 2009.
[5] H. Hara, K. Obata, H. Park, Y. Yamanashi, K. Taketomi, N.

Yoshikawa, M. Tanaka, A. Fujimaki, N. Takagi, K. Takagi, and S.
Nagasawa, “Design, implementation and on-chip high-speed test of
SFQ half-precision floating-point multiplier,” IEEE Trans. Appl. Su-
percond., vol.19, no.3, pp.657–660, 2009.

[6] Y. Kameda, S. Yorozu, and S. Hashimoto, “A new design method-
ology for single-flux-quantum logic circuits (SFQ) using passive-
transmission-line (PTL) wiring,” IEEE Trans. Appl. Supercond.,
vol.17, no.2, pp.508–511, 2007.

[7] Y. Yamanashi, T. Kainuma, N. Yoshikawa, I. Kataeva, H. Akaike,
A. Fujimaki, M. Tanaka, N. Takagi, S. Nagasawa, and M. Hidaka,
“100 GHz demonstrations based on the single-flux-quantum cell li-
brary for the 10 kA/cm2 Nb multi-layer process,” IEICE Trans. Elec-
tron., vol.E93-C, no.4, pp.440–444, April 2010.

[8] N. Kito, K. Takagi, and N. Takagi, “Timing-aware description meth-
ods and gate-level simulation of single flux quantum logic circuits,”
17th Workshop on Synthesis And System Integration of Mixed In-
formation technologies (SASIMI2010), R3-5, pp.319–324, 2012.

[9] K. Obata, K. Takagi, and N. Takagi, “A clock scheduling algorithm
for high-throughput RSFQ digital circuits,” IEICE Trans. Funda-
mentals, vol.E91-A, no.12, pp.3772–3782, Dec. 2008.

[10] K. Takagi, Y. Ito, S. Takeshima, M. Tanaka, and N. Takagi, “Layout-
driven skewed clock tree synthesis for superconducting SFQ cir-
cuits,” IEICE Trans. Electron., vol.E94-C, no.3, pp.288–295, March
2011.

[11] S. Takeshima, K. Takagi, M. Tanaka, and N. Takagi, “Automated
routing method for multi-layered SFQ circuits,” Superconducting
SFQ VLSI Workshop (SSV 2009), p.5, 2009.

[12] M. Tanaka, K. Obata, Y. Ito, S. Takeshima, M. Sato, K. Takagi,
N. Takagi, H. Akaike, and A. Fujimaki, “Automated passive-
transmission-line routing tool for single-flux-quantum circuits based
on A* algorithm,” IEICE Trans. Electron., vol.E93-C, no.4, pp.435–
439, April 2010.

[13] K. Takagi, M. Sato, M. Tanaka, and N. Takagi, “A verifica-
tion method of pipeline processing behavior of superconducting
single-flux-quantum pulse logic circuits,” 16th Workshop on Syn-
thesis And System Integration of Mixed Information technologies
(SASIMI2010), R2-17, pp.208–213, 2010.

[14] M. Tanaka, S. Takeshima, K. Takagi, H. Akaike, A. Fujimaki,
N. Yoshikawa, S. Nagasawa, and N. Takagi, “Multi-layered single-
flux-quantum circuits designed using timing-driven automatic rout-
ing,” Superconductivity Centennial Conference (SCC 2011), 1-EB-
O7, 2011.

[15] M. Tanaka, S. Takeshima, K. Takagi, N. Takagi, and A. Fujimaki,
“Evaluation of 8-bit parallel adder designed using timing-driven
automatic router for multi-layered single-flux-quantum circuits,”
IEICE Gen. Conf. 2013, C-8-3, 2013. (in Japanese).

[16] K. Obata, K. Takagi, and N. Takagi, “Design method of dual-
rail RSFQ logic circuits using 2×2-join,” IEICE Trans. Electron.
(Japanese Edition), vol.J88-C, no.3, pp.202–209, March 2005.

[17] K. Obata, K. Takagi, and N. Takagi, “Logic synthesis method for
dual-rail RSFQ digital circuits using root-shared binary decision di-
agrams,” IEICE Trans. Fundamentals, vol.E90-A, no.1, pp.257–266,
Jan. 2007.

[18] K. Obata, K. Takagi, and N. Takagi “A method of sequential cir-
cuit synthesis using one-hot encoding for single-flux-quantum dig-
ital circuits,” IEICE Trans. Electron., vol.E90-C, no.12, pp.2278–
2284, Dec. 2007.

Kazuyoshi Takagi received the B.E., M.E.
and Dr. of Engineering degrees in information
science from Kyoto University, Kyoto, Japan, in
1991, 1993 and 1999 respectively. From 1995 to
1999, he was a Research Associate at Nara In-
stitute of Science and Technology. He had been
an Assistant Professor since 1999 and promoted
to an Associate Professor in 2006, at the Depart-
ment of Information Engineering, Nagoya Uni-
versity, Nagoya, Japan. He moved to Depart-
ment of Communications and Computer Engi-

neering, Kyoto University in 2011. His current interests include system
LSI design and design algorithms.

Nobutaka Kito received the B.E., M.I.S.
and Dr. of Information Science degrees in in-
formation engineering from Nagoya University,
Nagoya, Japan, in 2004, 2006, and 2009, respec-
tively. He was a research associate since 2010
at Kyoto University, Kyoto, Japan. He moved
to Chukyo University, Toyota, Japan, as an as-
sistant professor in 2012. His current interests
include CAD algorithms for single flux quan-
tum circuits, design for testability, and computer
arithmetic.

Naofumi Takagi received the B.E., M.E.,
and Ph.D. degrees in information science from
Kyoto University, Kyoto, Japan, in 1981, 1983,
and 1988, respectively. He joined Kyoto Univer-
sity as an instructor in 1984 and was promoted
to an associate professor in 1991. He moved to
Nagoya University, Nagoya, Japan, in 1994, and
promoted to a professor in 1998. He returned
to Kyoto University in 2010. His current inter-
ests include computer arithmetic, hardware al-
gorithms, and logic design. He received Japan

IBM Science Award and Sakai Memorial Award of the Information Pro-
cessing Society of Japan in 1995, and The Commendation for Science and
Technology by the Minister of Education, Culture, Sports, Science and
Technology of Japan in 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


