
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014
625

INVITED PAPER Special Section on Recent Advances in Simulation Techniques and Their Applications for Electronics

Optical Waveguide Theory by the Finite Element Method

Masanori KOSHIBA†a), Fellow

SUMMARY Recent progress in research on the finite element method
(FEM) for optical waveguide design and analysis is reviewed, focusing on
the author’s works. After briefly reviewing fundamentals of FEM such as
a theoretical framework, a conventional nodal element, a newly developed
edge element to eliminate nonphysical, spurious solutions, and a perfectly
matched layer to avoid undesirable reflections from computational win-
dow edges, various FEM techniques for a guided-mode analysis, a beam
propagation analysis, and a waveguide discontinuity analysis are described.
Some design examples are introduced, including current research activities
on multi-core fibers.
key words: finite element method, beam propagation method, spurious
solutions, fiber optics, nanophotonics

1. Introduction

Recent advances in the field of guided-wave optics, such
as fiber optics and nanophotonics, have included the intro-
duction of arbitrarily-shaped optical waveguides which, in
many cases, also happened to be inhomogeneous, dissipa-
tive, anisotropic, and/or nonlinear. Most of such cases of
waveguide arbitrariness do not lend themselves to analytical
solutions and therefore, computational tools for modeling
and simulation are essential for successful design, optimiza-
tion, and realization of high-performance optical waveg-
uides. For this purpose, various numerical techniques have
been developed. In particular, the finite element method
(FEM) is a powerful and efficient tool for the most general
guided-wave problems. Its use in both the research commu-
nity and the commercial sector is extensive, and indeed it
could be said that without it many optical waveguide prob-
lems would be incapable of solution.

Over the last few decades, the author and his co-
workers have developed new numerical formulations and
techniques based on FEM for design and analysis of opti-
cal fibers and nanophotonic devices/circuits that have con-
tributed to the advancement of computational photonics. In
this paper, recent progress in FEM research is reviewed, fo-
cusing on the author’s works. After briefly reviewing fun-
damentals of FEM such as a theoretical framework, a con-
ventional nodal element, a newly developed edge element
to eliminate nonphysical, spurious solutions, and a perfectly
matched layer (PML) to avoid undesirable reflections from
computational window edges, various FEM techniques for
a guided-mode analysis, a beam propagation analysis, and
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a waveguide discontinuity analysis are described. Some de-
sign examples are introduced, including current research ac-
tivities on multi-core fibers (MCFs).

2. Fundamentals of Finite Element Method

2.1 Theoretical Framework

In FEM, instead of differential equations for the system
under consideration, corresponding functionals (variational
expressions) to which a variational principle is applied are
set up, where the region of interest is divided into the so-
called elements as shown in Fig. 1. In FEM, an equivalent
discretized model for each element is considered and then,
all the element contributions to the system are assembled. In
other words, FEM can be considered a subclass of the Ritz
method, in which piecewise defined polynomial functions
are used for trial functions and infinite degrees of freedom
of the system are discretized or replaced by a finite number
of unknown parameters.

Elements can have various shapes, allowing the use of
a non-uniform mesh. Therefore, FEM is suitable for prob-
lems with very steep variations of fields. Furthermore, this
approach can be easily adopted into inhomogeneous and
anisotropic problems, and it is possible to systematically
increase the accuracy of solutions obtained, as necessary.
In addition, FEM can be established not only by the vari-
ational method but also by the Galerkin method which is
a weighted residual method. Therefore, FEM may be ap-
plicable to lossy and/or leaky optical waveguides, where a
variational principle does not exist or cannot be identified.

2.2 Nodal and Edge Elements

Various elements are available in FEM. Figures 2 and 3
show conventional nodal elements. Triangular and tetrahe-
dral elements are utilized for two-dimensional and three-

Fig. 1 Element division.
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dimensional problems, respectively. The lowest-order or
linear element employs the first-order polynomial. The
quadratic element, on the other hand, employs the second-
order polynomial.

The most serious difficulty in applying FEM to electro-
magnetic wave problems was the appearance of nonphysi-
cal, spurious solutions. Consequently, the development of a
method to suppress or eliminate such spurious solutions was
pressingly needed.

The spurious solutions can be characterized as

∇×Φ = 0 (1)

with Φ being the electric field E or the magnetic field H.
Considering that the electromagnetic fields have to be tan-

(a) Linear element. (b) Quadratic element. 

Fig. 2 Triangular nodal elements.

(a) Linear element. (b) Quadratic element. 

Fig. 3 Tetrahedral nodal elements.

(a) Constant tangential and linear 

normal (CT/LN) element. 

(b) Linear tangential and quadratic 

normal (LT/QN) element. 

Fig. 4 Triangular edge elements.

(a) Constant tangential and linear 

normal (CT/LN) element. 

(b) Linear tangential and quadratic 

normal (LT/QN) element. 

Fig. 5 Tetrahedral edge elements.

gentially continuous across material interfaces and eliminat-
ing some of null-space degrees of freedom corresponding to
irrotational, spurious fields expressed as Eq. (1) from trial
fields, the so-called edge elements as shown in Figs. 4 and 5
have been developed [1], [2].

The lowest-order triangular and tetrahedral edge ele-
ments, which employ three and six variables, respectively,
are based on constant tangential and linear normal (CT/LN)
vector basis functions. The tangential component of a par-
ticular CT/LN basis function is constant along one edge of
triangle and tetrahedron, and is zero along the other edges,
while the normal component is a linear function along all
edges. The higher-order triangular and tetrahedral edge el-
ements, which employ eight and twenty variables, respec-
tively, are based on linear tangential and quadratic normal
(LT/QN) vector basis functions.

2.3 Perfectly Matched Layer

When simulating optical waveguide devices and/or circuits,
in order to reduce spurious reflections from the compu-
tational window edges, the use of appropriate absorbing
boundary conditions is indispensable. For this purpose, the
PML condition [3] was developed. Unfortunately, since the
earlier PML technique involves a modification of Maxwell’s
equations based on the splitting of field components into
two subcomponents, these non-Maxwellian equations do
not have a desirable form for the FEM formulations. Re-
cently, the so-called anisotropic PML, which does not in-
volve the field splitting, was developed [4] and has been
widely used for mesh truncation in the FEM analysis.

We consider a three-dimensional domain surrounded
by PML regions 1 to 7 with thickness di (i= 1, 2, 3) as
shown in Fig. 6. A non-PML region has dimensions a,
b, and c in the x, y, and z directions, respectively. Using
the anisotropic PML, the PML permittivity and permeabil-
ity tensors are written as

[ε]PML = sxsysz[S ][ε][S ] (2a)

[µ]PML = sxsysz[S ][µ][S ] (2b)

with

[S ] =


1/sx 0 0

0 1/sy 0
0 0 1/sz

 (3)

where [ε] and
[
µ
]

are, respectively, the permittivity and per-
meability tensors of the original PML regions. PML param-
eters sx, sy, sz are listed in Table 1, where the values of si in
Table 1 are real for bounded-field problems as

si = 1 + αi (4)

and they are complex for unbounded-field problems as

si = 1 − jαi (5)

Attenuation of the electromagnetic field in PML regions can
be controlled by choosing appropriate values of αi and we
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Fig. 6 Computational domain surrounded by perfectly matched layers.

Table 1 Perfectrly matched layer (PML) parameters.

PML PML region
parameter 1 2 3 4 5 6 7

sx s1 1 1 1 s1 s1 s1

sy 1 s2 1 s2 1 s2 s2

sz 1 1 s3 s3 s3 1 s3

For two-dimensional problems, which are uniform in the x, y, and z
directions, sx, sy, and sz are set to 1, respectively.

assume parabolic profiles of αi as

αi = αi,MAX (ρ/di)
2 (6)

where ρ is the distance from the beginning of PML and the
subscript “max” denotes the maximum value.

3. Guided-mode Analysis

3.1 Straight Waveguide Analysis

Although a formulation based on a single scalar quantity is
inadequate for the general guided-mode analysis, the use-
ful approximation can be found for weakly guiding struc-
tures and the so-called approximate scalar FEM has been
developed [5], [6]. In the approximate scalar FEM, conven-
tional nodal elements can be used and spurious solutions do
not occur. However, to rigorously evaluate guided-modes
in strongly guiding structures such as high-index contrast
(HIC) waveguides, photonic crystal (PC or PhC) waveg-
uides, hole-assisted fibers (HAFs), and photonic crystal
fibers (PCFs) which are grouped into holey fibers (HFs) with
index-guiding effect and photonic band-gap fibers (PBGFs)
with photonic band-gap effect, a full vector analysis is nec-
essary, and different types of full vector FEM have been
developed. Here, the electromagnetic field with a time (t)
dependence of the form exp ( jωt) is expressed as

Φ=ϕ (x, y) exp[ j (ωt−βz)] (7)

where z is the propagation direction, ω is the angular fre-
quency, and β is the propagation constant.

Of the various formulations, the FEM using full vector
electric or magnetic field is quite suitable for a wide range

Fig. 7 Curvilinear hybrid edge/nodal elements.

of practical, complicated problems. The most serious prob-
lem associated with this approach is the appearance of spuri-
ous solutions. The penalty function method (PFM) has been
widely used to cure this problem [7]–[9], but in this tech-
nique, an arbitrary positive constant, called the penalty coef-
ficient, is involved and the accuracy of solutions depends on
its magnitude. Furthermore, in PMF, the propagation con-
stant is first given as an input datum, and subsequently the
operating angular frequency or the operating wavelength is
obtained as a solution.

In order to overcome these issues in PFM, edge ele-
ments have been introduced into the guided-mode analysis
of a waveguide with arbitrary cross section in the xy (trans-
verse) plane [10]–[12], and curvilinear hybrid edge/nodal
elements with triangular shape as shown in Fig. 7 were de-
veloped [12].

Figure 7(a) shows the lowest-order hybrid element
which is composed of a CT/LN edge element with three
variables for transverse fields and a linear nodal element
with three variables for axial fields [10]. Figure 7(b) shows
the higher-order hybrid element which is composed of a
LN/QT edge element with eight variables and a quadratic
nodal element with six axial variables. Removing ϕt7 and
ϕt8 from the LT/QN element, we can obtain another higher-
order hybrid element composed of a linear tangential and
linear normal (LT/LN) element and a quadratic nodal ele-
ment [11]. Curvilinear hybrid elements can give faster con-
vergence than rectilinear hybrid elements and when using a
curvilinear hybrid element composed of a LN/QT edge el-
ement and a quadratic nodal element, significantly fastest
convergence is obtained, irrespective of values of the oper-
ating wavelength (input datum) [12].

3.2 Curved Waveguide Analysis

A curvilinear hybrid edge/nodal element has been used not
only for a straight optical waveguide analysis but also for
a curved optical waveguide analysis. In [13], a full vector
FEM was formulated in a local cylindrical coordinate sys-
tem and an anisotropic PML was implemented to the com-
putational window edges.

Recently, using this approach, a bend-insensitive and
effectively single-moded all-solid PBGF (AS-PBGF) with
heterostructured cladding was designed and fabricated [14].
Figures 8(a), (b), and (c) show a typical AS-PBGF (uni-
form structure), a segmented cladding structure, and a wind-
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Fig. 8 All-solid photonic band-gap fiber with heterostructured cladding
[14].

mill structure, respectively. In Fig. 9, the bending losses as
a function of bend radius at 1550-nm wavelength are pre-
sented for these structures. We can see that the bending
loss of the windmill structure is effectively low and com-
patible to that of the multi-moded 7-cell-core uniform struc-
ture. Therefore, the windmill structure based on the het-
erostructured cladding exhibits both low bending losses and
low confinement losses while keeping single-mode opera-
tion, which is one of the issues in a solid core PBGF.

4. Beam Propagation Analysis

4.1 Beam Propagation Method

The beam propagation method (BPM) is at present the most
widely used for the study of light propagation in longitu-
dinally varying waveguides. Under the slowly varying en-
velope approximation (SVEA), the electromagnetic field is
expressed as

Φ=ϕ (x, y, z) exp[ j (ωt−β0z) ] (8)

where ϕ is the slowly varying complex amplitude and β0 is
the reference propagation constant which can be renewed at
every propagation step.

In the BPM based on FEM (FE-BPM), the field in
the transverse (xy) plane is discretized with FEM and the
Crank-Nicholson algorithm is applied to the propagation

Fig. 9 Bending losses as a function of bend radius for 7-cell-core uni-
form, segmented cladding, and windmill structures [14].

(z) direction. It is possible to use non-uniform finite ele-
ment meshes and these meshes can be adaptively updated
along the propagation direction so that computational effi-
ciency can be improved without degrading numerical accu-
racy. Simple and efficient mesh generation algorithms for an
approximate scalar FE-BPM analysis [15] and a full vector
FE-BPM analysis [16] have already been developed.

One of the key issues in implementing FE-BPM to
study light propagation in a finite spatial domain is the
boundary condition at the computational window edges.
Recently, an anisotropic PML has been effectively imple-
mented not only to a two-dimensional FE-BPM (2D-FE-
BPM) [17] for planar optical waveguides but also to an ap-
proximate scalar three-dimensional FE-BPM (3D-FE-BPM)
[18] and a full vector 3D-FE-BPM [19] for arbitrarily-
shaped optical waveguides.

Recently, using the approximate scalar 3D-FE-BPM, a
low-loss and broadband mode (de)multiplexer based on a
directional coupler (DC) and a wavelength insensitive cou-
pler (WINC) as shown in Fig. 10 was designed and fabri-
cated for mode-division multiplexing (MDM) transmission
[20], where a silica-based planar lightwave circuit (PLC) is
used. Figures 11(a) and (b) show, respectively, the numeri-
cal and the experimental results of the wavelength depen-
dence of the transmission of the mode (de)multiplexer at
port 4 when the LP01 mode is input into port 1 or port 2.
The inset images in Fig. 11(b) show near field patterns mea-
sured at wavelengths of 1060 nm, 1310 nm, and 1550 nm.
Excepting the radiation loss due to the mode field diame-
ter mismatch between the input/output fiber and the PLC
waveguide, the experimental results agree well with the nu-
merical results and it is confirmed that the broadband mode
conversion from the LP01 mode to the LP11 mode is realized
by using the WINC-based mode multiplexer.

4.2 Imaginary Distance Beam Propagation Method

It should be noted that the so-called imaginary distance
BPM (ID-BPM) has been reported as an analysis method
of guided modes. In ID-BPM, the propagation direction is
selected along the imaginary axis and selecting the appropri-
ate propagation step size, we can extract the specific guided
mode from the initial input field. There are a number of
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Fig. 10 Structures of mode (de)multiplexers [20].

Fig. 11 Wavelength dependence of the transmission of mode (de) multi-
plexers at port 4 [20].

versions of ID-BPM. In the ID-BPM based on FEM (FE-
ID-BPM), to evaluate propagation losses of leaky modes,
an anisotropic PML is employed as a boundary condition at
computational window edges. Both an approximate scalar
FE-ID-BPM [21] with conventional nodal elements and a
full vector FE-ID-BPM [22] with hybrid edge/nodal ele-
ments have already been developed.

In particular, the full vector FE-ID-BPM has been ef-
fectively applied to characterizing various PCFs such as HFs
[23],[24] and PBGFs [25]. To model PCFs accurately, es-
pecially with large air holes or high-index rods, it is cru-
cial to use a full vector model. FEM is useful not only
for idealized-model simulations but also for realistic-model
simulations based on actual fiber structures [26]. A curvi-
linear hybrid element composed of a LN/QT edge element
and a quadratic nodal element shown in Fig. 7(b) is useful
for accurately modeling the curved boundaries of air holes

and high-index rods.
Here, we consider a fabricated dispersion compensat-

ing PCF (DCPCF) [27] as shown in Fig. 12(a), which is
based on a concentric dual core refractive index profile,
where the ring core (second air-hole ring from the central
core) is formed by reducing the air-hole size. The diameter
of outer cladding air-holes is tailored to control the disper-
sion slope as well as the confinement loss. The air-holes
surrounding the inner core are not circular in shape and two
opposing holes are smaller than the other four. This makes
this fiber highly birefringent and the two fundamental core
modes become polarization-split. One mode will be polar-
ized along the slow-axis and the other along the fast-axis.
Figure 12(b) shows the finite element mesh used in the full
vector FE-ID-BPM simulation [28], where the number of
hybrid edge/nodal elements is 47,000 and the number of the
unknowns is 327,000. Anisotropic PML boundaries are ap-
plied to enable the calculation of the precise leakage loss of
the fiber. Figure 12(c) shows the electric field distribution of
the slow-axis mode at 1550-nm wavelength [28]. The mode
is well confined to the inner core. The effective area of the
realistic fiber was calculated to be 1.81 µm2 at 1550 nm,
which is slightly smaller than the value of effective area of
2.0 µm2 of the fabricated DCPCF [27].

Recently, using the full vector FE-ID-BPM, a bending-
insensitive single-mode HAF with two air-hole rings was
designed and fabricated [29] as shown in Fig. 13. A circular
bend structure was replaced by a straight fiber with equiva-
lent refractive index and an anisotropic PML was used along
the radiation direction. Figure 14 shows the theoretical and
experimental bending loss of HAF with two air-hole rings
as a function of bending radius at 1550-nm wavelength. We
can see that the bending loss of the HAF is much less than
that of the standard single-mode fiber (SMF), especially for
small bending radius. The theoretical results are in good
agreement with the experimental results.

5. Waveguide Discontinuity Analysis

5.1 Frequency-domain Analysis

BPM assumes only the forward propagating waves and
therefore, it is difficult to take into account backward reflec-
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Fig. 12 Realistic model simulation.

tion from the waveguide discontinuity region. In the waveg-
uide discontinuity analysis performed in the frequency do-
main, the electromagnetic field is expressed as

Φ=ϕ (x, y, z) exp ( jωt) (9)

The frequency-domain FEM (FD-FEM) has been
widely used for the waveguide discontinuity problems. In
the earlier works, FEM was applied to the finite discontinu-
ity region and the mode expansion technique was used for
representing infinite uniform waveguides connected to the
input and output ports. However, it is difficult and cumber-
some to construct the mode expansion boundary condition
by taking all the existing modes into account.

Recently, by replacing the input and output ports by
anisotropic PML absorbers, the FD-FEM without mode
expansion technique has been developed not only for 2D

Fig. 13 Single-mode hole-assisted fiber with two air-hole rings [29].

Fig. 14 Bending loss as a function of bending radius at 1550 nm [29].

waveguide discontinuity problems [30] but also for 3D
waveguide discontinuity problems [31]. In 2D-FD-FEM, a
triangular nodal element shown in Fig. 2(b) is used and in
3D-FD-FEM, on the other hand, a tetrahedral edge element
shown in Fig. 5(b) is used.

More recently, using the 2D-FD-FEM, a compact two-
mode multi/demultiplexer (TM-MUX) consisting of mul-
timode interference (MMI) waveguides and a wavelength-
insensitive phase shifter (PS) was designed for MDM trans-
mission [32]. A silicon-on-insulator (SOI) wafer is assumed
and the 3D waveguide structure is replaced by the equivalent
2D waveguide structure with the help of the effective index
method. Figure 15(a) shows a schematic drawing of TM-
MUX which includes MMI-based mode converter-splitter
(MCS), PS with butterfly-shape tapered waveguide struc-
ture, and MMI-based 3-dB coupler. Figure 15(b) shows the
structure of TM-MUX. Ports 1, 3, and 6 are placed to pre-
vent the reflections at the end of MMI waveguides. Fig-
ures 16(a) and (b) show the field distributions of TM-MUX
at 1550-nm wavelength for the cases of inputting the fun-
damental mode and of the first higher-order mode, respec-
tively. When the fundamental mode is input, the fundamen-
tal mode is output into port 5. When the first higher-order
mode is input, on the other hand, the first higher-order mode
is converted into the fundamental mode and is output into
port 4. In both cases, little lights are output into the other
ports. Therefore, the TM-MUX works as a mode demulti-
plexer when input port is port 2.

5.2 Time-domain Analysis

Usual BPMs are inadequate for the waveguide discontinuity
analysis. Recently, under the condition that the modulation
frequency is much lower than the career frequency, a sim-
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Fig. 15 Compact two-mode multi/demultiplexer [32].

Fig. 16 Field distributions in two-mode multi/demultiplexer [32].

ple and efficient propagation algorithm was developed and is
called the time-domain BPM (TD-BPM). In this algorithm,
the electromagnetic field is expressed as

Φ = ϕ (x, y, z, t) exp( jω0t) (10)

where ϕ is the modulated envelope and ω0 is the career cen-
ter angular frequency.

In the TD-BPM based on FEM (FE-TD-BPM) with
anisotropic PMLs [33], the computational spatial domain is
discretized with FEM and the Crank-Nicholson algorithm is
applied to the time (t) domain. The FE-TD-BPM can tackle
waveguide discontinuity problems and a high-performance
PML was also developed for PC waveguide discontinuity
problems [34]. Recently, a MUX/DEMUX based on PC
couplers was proposed and its wavelength demultiplexing
properties were investigated by using the FE-TD-BPM [35].

Here, we consider a sharp 90◦ bend based on PCs com-
posed of dielectric pillars in air on square array with lattice
constant of 0.580 µm, where the radius and the refractive
index are 0.104 µm and 3.4, respectively [36]. In this struc-
ture, almost 100% transmission could be achieved. Fig-
ure 17 shows the electric field patterns for the input pulse
of career center wavelength of 1.45 µm, where the time
step size is taken as 1.0 fs [33]. In the well-known finite-
difference time-domain (FDTD) method, very small time
step size must be used, compared with FE-TD-BPM, be-
cause in FDTD, both the carrier and the modulated envelope
are included in the wave propagator. In Fig. 17, the reflected
fields from the 90◦ bend can be hardly observed.

6. Multi-core Fiber Design and Analysis

In current optical fiber transmission systems, transmis-
sion capacity is rapidly approaching its fundamental limit.
Therefore, an innovative technology is expected to break the

limit. In order to overcome this issue, space division mul-
tiplexing (SDM) and MDM technologies based on uncou-
pled MCFs [37], coupled MCFs [38], and few-mode fibers
(FMFs) have been investigated actively [39].

The most important issue peculiar to uncoupled MCFs
is to reduce the intercore crosstalk. Recently, to estimate the
intercore crosstalk in bent and twisted MCFs, a coupled-
mode theory (CMT) and a coupled-power theory (CPT)
have been newly formulated [40], and an analytical expres-
sion for estimating the average intercore crosstalk was also
found, resulting in no need for heavy numerical compu-
tations [41]. Propagation characteristics of each core and
coupling coefficients between two cores in a straight MCF
necessary for the solutions of CMT and CPT are accurately
evaluated with the full vector FE-ID-BPM which can treat
measured refractive-index profiles [42].

Here, we consider a quasi-homogeneous 7-core fiber
with nearly identical cores [43] as shown in Fig. 18. Fig-
ure 19 shows the bending-diameter dependence of crosstalk
from center core 1 to outer cores 2 to 7 calculated with the
analytical expression [41], where the dotted line, solid line,
dashed line, and dashed and dotted line stand for the cor-
relation lengths of 10 mm, 50 mm, 100 mm, and 500 mm,
respectively. The theoretical results with correlation length
of 50 mm are in good agreement with the experimental re-
sults [43].

In order to realize low crosstalk and a dense core ar-
rangement simultaneously in MCFs, various trench-assisted
MCFs (TA-MCFs) such as 7-core fiber with one-pitch lay-
out [44], 10-core fiber with two-pitch layout [45], 12-core
fiber with one-ring layout [46], and 12-core fiber with two-
ring layout [47] have been developed as shown in Fig. 20.
The full vector FE-ID-BPM and the CPT have been effec-
tively utilized for design and analysis of these TA-MCFs.



632
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014

Fig. 17 Electric field patterns in photonic crystal bend [33].

Fig. 18 Quasi-homogeneous multi-core fiber [43].

Most recently, the transmission experiment with the record
capacity of 1.01 Pb/s over the one-ring 12-core TA-MCF has
been reported [48]

In MDM based on coupled MCFs and FMFs, a mode
MUX/DEMUX is needed for exciting and separating dif-
ferent modes [38]. Recently, using the full vector FE-ID-
BPM for a guided-mode analysis and the full vector FE-
BPM for a beam propagation analysis, a fiber-based 1 × 4
mode MUX/DEMUX was designed for the coupled MCF
based MDM [49].

Fig. 19 Crosstalk from center core 1 to outer cores 2 to 7 [41].

Fig. 20 Trench-assisted multi-core fibers.

7. Conclusion

Recent progress in FEM research for optical waveguide de-
sign and analysis was reviewed, focusing on the author’s
works. After briefly reviewing fundamentals of FEM such
as a theoretical framework, a conventional nodal element,
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a newly developed edge element to eliminate nonphysi-
cal, spurious solutions, and a PML to avoid undesirable re-
flections from computational window edges, various FEM
techniques for a guided-mode analysis, a beam propaga-
tion analysis, and a waveguide discontinuity analysis were
described and some design examples were introduced, in-
cluding current research activities on MCFs. FEMs have
also been applied to design and analysis of various opti-
cal waveguide structures with electro-optic effect [50], [51],
magneto-optic effect [52],[53], acousto-optic effect [54]–
[56], nonlinear effect causing second harmonic generation
[57], and instantaneous Kerr-type nonlinear effect [58]–
[60].

It is the author’s wish that this paper will contribute to
the dissemination and development of computational pho-
tonics in future.
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