We show by numerical calculations that a chaotic neuron model driven by a weak sinusoid has resonance. This resonance phenomenon has a peak at a drive frequency similar to that of noise-induced stochastic resonance (SR). This neuron model was proposed from biological studies and shows a chaotic response when a parameter is varied. SR is a noise induced effect in driven nonlinear dynamical systems. The basic SR mechanism can be understood through synchronization and resonance in a bistable system driven by a subthreshold sinusoid plus noise. Therefore, background noise can boost a weak signal using SR. This effect is found in biological sensory neurons and obviously has some useful sensory function. The signal-to-noise ratio (SNR) of the driven chaotic neuron model is improved depending on the drive frequency; especially at low frequencies, the SNR is remarkably promoted. The resonance mechanism in the model is different from the noise-induced SR mechanism. This paper considers the mechanism and proposes possible explanations. Also, the meaning of chaos in biological systems based on the resonance phenomenon is considered.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shin MIZUTANI, Takuya SANO, Tadasu UCHIYAMA, Noboru SONEHARA, "Resonance in a Chaotic Neuron Model Driven by a Weak Sinusoid" in IEICE TRANSACTIONS on Fundamentals,
vol. E82-A, no. 4, pp. 671-679, April 1999, doi: .
Abstract: We show by numerical calculations that a chaotic neuron model driven by a weak sinusoid has resonance. This resonance phenomenon has a peak at a drive frequency similar to that of noise-induced stochastic resonance (SR). This neuron model was proposed from biological studies and shows a chaotic response when a parameter is varied. SR is a noise induced effect in driven nonlinear dynamical systems. The basic SR mechanism can be understood through synchronization and resonance in a bistable system driven by a subthreshold sinusoid plus noise. Therefore, background noise can boost a weak signal using SR. This effect is found in biological sensory neurons and obviously has some useful sensory function. The signal-to-noise ratio (SNR) of the driven chaotic neuron model is improved depending on the drive frequency; especially at low frequencies, the SNR is remarkably promoted. The resonance mechanism in the model is different from the noise-induced SR mechanism. This paper considers the mechanism and proposes possible explanations. Also, the meaning of chaos in biological systems based on the resonance phenomenon is considered.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e82-a_4_671/_p
Copy
@ARTICLE{e82-a_4_671,
author={Shin MIZUTANI, Takuya SANO, Tadasu UCHIYAMA, Noboru SONEHARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Resonance in a Chaotic Neuron Model Driven by a Weak Sinusoid},
year={1999},
volume={E82-A},
number={4},
pages={671-679},
abstract={We show by numerical calculations that a chaotic neuron model driven by a weak sinusoid has resonance. This resonance phenomenon has a peak at a drive frequency similar to that of noise-induced stochastic resonance (SR). This neuron model was proposed from biological studies and shows a chaotic response when a parameter is varied. SR is a noise induced effect in driven nonlinear dynamical systems. The basic SR mechanism can be understood through synchronization and resonance in a bistable system driven by a subthreshold sinusoid plus noise. Therefore, background noise can boost a weak signal using SR. This effect is found in biological sensory neurons and obviously has some useful sensory function. The signal-to-noise ratio (SNR) of the driven chaotic neuron model is improved depending on the drive frequency; especially at low frequencies, the SNR is remarkably promoted. The resonance mechanism in the model is different from the noise-induced SR mechanism. This paper considers the mechanism and proposes possible explanations. Also, the meaning of chaos in biological systems based on the resonance phenomenon is considered.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Resonance in a Chaotic Neuron Model Driven by a Weak Sinusoid
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 671
EP - 679
AU - Shin MIZUTANI
AU - Takuya SANO
AU - Tadasu UCHIYAMA
AU - Noboru SONEHARA
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E82-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 1999
AB - We show by numerical calculations that a chaotic neuron model driven by a weak sinusoid has resonance. This resonance phenomenon has a peak at a drive frequency similar to that of noise-induced stochastic resonance (SR). This neuron model was proposed from biological studies and shows a chaotic response when a parameter is varied. SR is a noise induced effect in driven nonlinear dynamical systems. The basic SR mechanism can be understood through synchronization and resonance in a bistable system driven by a subthreshold sinusoid plus noise. Therefore, background noise can boost a weak signal using SR. This effect is found in biological sensory neurons and obviously has some useful sensory function. The signal-to-noise ratio (SNR) of the driven chaotic neuron model is improved depending on the drive frequency; especially at low frequencies, the SNR is remarkably promoted. The resonance mechanism in the model is different from the noise-induced SR mechanism. This paper considers the mechanism and proposes possible explanations. Also, the meaning of chaos in biological systems based on the resonance phenomenon is considered.
ER -